

© 2018 Jose Daniel Velazco, Mohammed Awad and Ernst L. Leiss. This open access article is distributed under a Creative

Commons Attribution (CC-BY) 3.0 license.

Journal of Computer Science

Original Research Paper

Randomization of Statistical Queries of Type Median: A

Simulation Approach

1
Jose Daniel Velazco,

2
Mohammed Awad and

3
Ernst L. Leiss

1Department of Computing Sciences, University of Houston-Clear Lake, Houston, TX 77058, USA
2Department of Computer Science and Engineering, American University of Ras Al Khaimah, UAE
3Department of Computer Science, University of Houston, TX 77204, USA

Article history

Received: 27-09-2017

Revised: 28-12-2017

Accepted: 13-01-2018

Corresponding Author:

Mohammed Awad

Department of Computer

Science and Engineering,

American University of Ras Al

Khaimah, UAE
Email: mohammed.awad@aurak.ac.ae

Abstract: Researcher and third party access to data pertaining to

individuals is becoming the norm. The conclusions drawn from such data

can be extremely beneficial. However, data owners must maintain the

secrecy of the sensitive data fields and make sure it is protected against

inference attacks. There are several techniques and restrictions that can be

made on queries to prevent adversaries from inferring and identifying

sensitive data related to specific individuals. One of the proposed

techniques to prevent the disclosure of private data is randomization. In this

study, we demonstrate and analyze the implementation of randomization in

statistical queries of the selector function median and the results of an

extensive simulation. The randomization technique yields a possibly

erroneous yet usually reasonably accurate response to every query. In

addition, the inference procedure is explained and potential modifications

to counter the randomization technique are analyzed and tested against it.

We show that, despite these modifications, randomization protects the data

by adding uncertainties into the inference procedure, thus, maintaining

differential privacy. The results of an extensive simulation testing the

various parameters of the randomization technique on randomly generated

databases are shown and explained.

Keywords: Inference Attacks, Statistical Database Security, Median

Queries, Randomization

Introduction

Even though data owners are likely to hide private

information (such as a patient’s disease, an employee’s

salary, or a student’s grade) before granting database

access, an adversary may in one way or another be able

to infer some of that private hidden data and deduce

sensitive private information about specific individuals.

Back in 2006, AOL released 20 million search

keywords for 650,000 of its users for research

purposes. Despite masking user identity, several were

identified (Heatherly et al., 2013). Three days later,

AOL took down the published database, but it was

already mirrored on other websites. Such an invasion of

privacy resulted in a lawsuit against AOL and several

concerns about user privacy and the impact of inference

attacks. Nowadays, the amount of data gathered by the

government and the private sector has significantly

increased and the impact of inference attacks is more

significant than ever (Naveed et al., 2015).

The idea of protecting sensitive (private) information

is, by itself, important. However, it extends further than

that. By law, it is mandatory to protect some individuals’

private information, for example medical records (Leiss,

1982a). Compromising an individual’s record not only is a

problem for the individual, but a legal issue for the

database owner. These risks complicate the use of

statistical information as it is possible to infer data from a

combination of legitimate statistical information to obtain

access to private data, known as inference attacks (Leiss,

1982a). Adversaries may be able to use a set of linear

models to relieve some of the database confidential

attributes (Sarathy and Muralidhar, 2002; Cynthia, 2006).

Currently, there are methods used to prevent inference

attacks by rejecting statistical queries that, in combination

with previous queries, can compromise the value of an

element in the database (Adam and Worthmann, 1989).

However, these methods come with significant

disadvantages. Primarily, the database must ensure that the

current query’s response does not yield a compromise when

Jose Daniel Velazco et al. / Journal of Computer Science 2018, 14 (1): 67.80
DOI: 10.3844/jcssp.2018.67.80

68

combined with previous queries, which adds to the work

done by the database. On top of that, it may be possible for

multiple users to work together and yield a compromise.

Some more sophisticated techniques have been found to

audit statistical queries and determine whether new queries

would yield compromises (Cavallo and Canfora, 2016;

Lu et al., 2015). Additionally, assuming the database checks

queries among users, the database would eventually have to

reject every single query requested (Leiss, 1982a). Other

masking techniques involve random noise addition either to

the query itself or the query output (Giggins and Brankovic,

2012; Hegadi et al., 2011), while other techniques ensure

perturbation via microaggregation (Muralidhar and

Sarathy, 1999). Some perturbation techniques consist in

swapping query elements based on distributions calculated

from the database elements (Zou and Zhang, 2012).

Note that while data owners do hide private data for

individual records, they may still allow statistical queries,

which return a value based on these private elements. For

example, such a query may return the average or the

median value. Our paper’s main focus is statistical queries

of type median. We propose a solution that does not

require the database to check for potential compromises.

This approach is relatively simple to implement for an

existing database and probabilistically protects a database

from successful inference attacks. We call this solution

randomization. Essentially, randomization adds a random

element from the database to every query and provides a

possibly erroneous yet usually reasonably accurate

response (Leiss, 1982a). This solution differs significantly

from random noise addition in that we use actual values

from the database. When adding random noise there is

always the danger that it can be removed if the random

generator is known, which is usually unavoidable since

only the seed is unknown, but the algorithm is known.

However, in our approach, the randomly selected database

element is chosen from a range of numbers relative to the

true median of the query, which mitigates that danger.

In this study, we show the implementation of

randomization in statistical queries of the selector

function median and the results of an extensive

simulation. It is worth mentioning that in the case of

medians, noise addition is likely to change nothing

unless that noise is added to the actual median value that

is returned; adding noise to the other values will most

likely not change the value returned because of the

properties of the median function (unlike the mean).

Thus, such an approach (randomization for queries of

type median) should maximize the accuracy while

minimizing the inference risks and eventually improve

differential privacy (Muralidhar and Sarathy, 2003).

Background

A statistical query is a statistical question made to

some set of data, e.g., average, median, max, min, etc.

(Leiss, 1982a). In particular, we will be looking at

statistical queries of type median. The query notation is

based on the key-specified model (DK). The DK model,

as described in (Leiss, 1982a), goes as follows:

:{1,..., }DK N → R

where, N is the number of elements in the database. Each

element in the database is associated with a private

value. This is the value we are trying to protect. This

association of element and value is denoted in the

following form: s is an index to the database and DK(s)

is the private value associated with s. Each query

requires a set of exactly k elements for a fixed k ≥ 2. The

DK model requires that every requested query be of

same length. In addition, every statistical query yields a

result. The result depends on the type of function

requested for the query. In our case, we will use the

selector function median. By selector function, we mean

that the response to the query must be one of the

database elements. The function is denoted as f(Q) where

Q is the set of database elements involved. For example,

the function f(DK(i1), DK(i2),…,DK(in)) for a function of

type median yields the value DK(si) where si is the index

associated with the median value of the elements

included in the query. We will use this notation

throughout to explain our procedures.

In the past, we have shown the implementation of
randomization of statistical queries of type average
(Leiss, 1982a; 1981; 1982b). Statistical queries of type
average can infer data by using the query elements and
the query response in combination with the previous

queries and responses to build a system of linear
equations and solve for each of the elements involved in
the queries (Leiss, 1981). The results obtained from this
simulation showed that the use of randomization, i.e.,
randomly adding an element as part of every query and
altering the responses slightly, protects the data from

inference attacks (Leiss, 1981). The error associated with
every response builds up when solving the system of
linear equations, which means that the inference attacker
will obtain incorrect results. More specifically, the error
of the compromised elements is equal to the error of the
responses (rather small), multiplied by the condition

number of the matrix involved in the compromise
(solving the system of linear equations). Since this
condition number can be shown to be larger than k, the
error of the compromised elements is large. We want to
apply the same principle to queries of type median.
However, there are major differences between the two.

First of all, the queries of type median are selector
functions whereas averages are not and may yield
responses not present in the database. More importantly,
every selected value for queries of type average affects
the result of the response. Queries of type median may
obtain many different randomly selected values that

Jose Daniel Velazco et al. / Journal of Computer Science 2018, 14 (1): 67.80
DOI: 10.3844/jcssp.2018.67.80

69

yield the same response. For example, suppose we have
a set of values {0, 0, 0}. The average and median
responses are both equal to 0. Now suppose we
randomly select a value (from the database) and the said

value is 1. The average value is now 0.25, but the
median value is still 0. Now suppose we randomly select
another value (from the database) and the said value is
40. The average value is now 10, but the median value is
still 0! The implementation of randomization for queries
of type average does not work directly for queries of

type median for the reasons described above. Therefore,
we had to find a different implementation involving the
same principle and ensure that we maintain the same
security as queries of type average.

In our research, we present the results of a simulation

of statistical queries of type median after applying the

proposed randomization technique. The queries were

made with the intention to compromise database

elements using inference attacks.

Methodology

In this section, we explain statistical queries of type

median and their inference procedure. Then, we apply

the randomization methodology on such queries. After

that, we propose and implement modifications to

eliminate the previously witnessed inference attacks.

Statistical Queries of Type Median

A statistical query of type median yields the value

situated in the middle of a set of sorted data. Note that

there are two possible queries. The query may be of odd

size. In this case, the result is exactly the value in the

middle. On the other hand, the query may be of even size

and we must choose one of two conventions. We either

choose the smaller or larger median. Alternatively, we

would find the average of the two medians. However, we

are dealing with selector functions and such a value does

not necessarily exist in the database. Therefore, we

consistently choose one of the two conventions. Either

way, the implementation of the inference procedures and

randomization implementation we propose is not

affected by the chosen convention (Leiss, 1982a). For

simplicity, we will establish the value of k, the size of

the query, to be odd.

Inference Procedure for Medians

Before we explain our security approach, we will

show the procedure we used to compromise a database.
This procedure is proved and formally described in
(Leiss, 1982a). We will be looking at a small example to
demonstrate the procedure on a sample database. We
will make a sample database comprised of distinct values

as it is the worst-case scenario. In other words, no two
indices in the database may have the same private value.
Take the following sample database (Table 1).

Table 1: Sample database (Example I)

s DK(s)

1 3

2 5

3 1

4 7

5 4

We select the size of our queries to be of size k = 3.

Note that k must be at least 2 less than the size of our

database. In other words, k + 2 <= N is needed to achieve

a compromise. The procedure requires us to initially

request k +1 queries using k of the same k +1 indices.

For simplicity, we will use the first k +1 indices. We get

the following queries and responses:

f(1, 2, 3) = f(DK(1), DK(2), DK(3)) = f(3, 5, 1) = 3

f(1, 2, 4) = f(DK(1), DK(2), DK(4)) = f(3, 5, 7) = 5

f(1, 3, 4) = f(DK(1), DK(3), DK(4)) = f(3, 1, 7) = 3

f(2, 3, 4) = f(DK(2), DK(3), DK(4)) = f(5, 1, 7) = 5

The first column is supplied by the query requester and

the fourth column is the response to the corresponding

query. The intermediate columns are there to explain the

results. From this point on, we will omit the first column

since the second column includes the exact same

information. Notice we get exactly two different medians,

one smaller than the other. For simplicity, we will call the

smaller median g and the larger median h:

3, 5g h= =

We can now split our indices into two different sets, a

set of indices G, whose values are less than or equal to g

and a set of indices H, whose values are greater than or

equal to h. One can see that the lower median is obtained

when a higher value is missing and a higher median is

obtained when a lower value is missing. Therefore, G will

contain the indices missing from the queries producing the

median h and H will contain the indices missing from the

queries producing the median g. We get the following sets:

{1,3}, {2,4}G H= =

Although we don’t know the value of any index, we

can tell that either the index 1 or 3 is associated with the

private value of 3. We can make a similar observation

about the set of H. Next, we create a set G’ that contains

the indices of G minus any two indices of G. In the

example, we get:

' {}G =

Now, we form the set G’ combined with H and our

sk+2 index and get:

2
' { } {2,4,5}

k
G H s

+
∪ ∪ =

Jose Daniel Velazco et al. / Journal of Computer Science 2018, 14 (1): 67.80
DOI: 10.3844/jcssp.2018.67.80

70

The set contains all previously used indices except

for two low indices and a new added index. The median

obtained from this set will help us determine if the added

index, sk+2, is an index associated with a higher or lower

value than h. Note that it is not possible for it to be equal

to h because our database contains distinct values and

that value is associated with some index in H. We now

find the median of this query and get:

((2), (4), (5)) (5,7,4) 5f DK DK DK f= =

Because we obtained h as our result, it implies that the

new added element is associated with a lower value than

h. Therefore, we can make the following observation:

(5)DK h<

The alternative would be that DK(5) > h if and only if

the query’s result would have been a value higher than h.

The following step depends on this condition. Since

DK(5) is less than h, we need a subset of H of the same

length minus one, H0. We choose any element of H,

remove it and get:

0
{2}H =

We could have chosen H0 = {4}. The result would

yield a compromise as well. We also need a set formed

by the union of G and the sk+2 index. We get:

2
{ } {1,3,5}

k
G S

+
∪ =

With these two sets, we will form the remaining

needed queries. Every query is made up of the elements

in H0 and p elements of G ∪{sk+2}, where p = (k+1)/2.

We use every combination of p elements in G∪{sk+2}

with H0 to make p+1 queries and get:

f(DK(1), DK(2), DK(3)) = f(3, 5, 1) = 3

f(DK(1), DK(2), DK(5)) = f(3, 5, 4) = 4

f(DK(2), DK(3), DK(5)) = f(5, 1, 4) = 4

We obtain two medians as well. One median occurs p

times and the other occurs only once. The median that

occurs p times is the private value associated with the

missing index in the query that obtained a unique median.

As a result, we infer DK(5) = 4, which is indeed true.

If we had obtained DK(5) > h, we would do the same

with the sets G0 and H∪{sk+2} instead. The procedure

takes at most 3(k+1)/2+2 queries to compromise an

element (Leiss, 1982a). However, the compromised

element cannot be chosen beforehand. It is possible that

repeated procedures yield the same compromise. In

addition, there are elements that are safe from

compromise since they are never the response to any

query. The safe elements are those that, once sorted, are

located in the k/2+1 ends of the sorted set (Leiss, 1982a).

Either way, once an element has been compromised, the

database is said to be compromised (Leiss, 1982a).

Randomization Approach for Medians

With averages, we added an element to the query and

returned as a response the average of such query. With

medians, we will return, when possible, a different value

in the database based on the range of the previous and

next element relative to the median in the query. Figure 1

shows the possible responses to a query when

randomization is applied. The possible responses are

denoted as follows:

• m: True median of original query

• n: next sorted element relative to median in query

(n>m)

• p: Previous sorted element relative to median in

query (p<m)

• i: An element in the database but not in the query

whose value is between p and m (p < i < m)

• j: An element in the database but not in the query

whose value is between m and n (m < j < n)

There are also two “gaps”. The gap between p and m

and the gap between m and n. The values of I and J are

the magnitudes of the gaps:

,I m p J n m= − = −

We will see that the most secure queries are those

capable of returning an i or j value. However, sometimes

a value for either i or j cannot be found. Because we

choose random elements from the database, it is possible

we do not find a value within the gaps since such a value

may not even exist in the database. Therefore, we

establish a tolerance number. The number is used to

determine when should we stop looking for an i or j

element. For instance, let the tolerance number be 20. If

we request 20 random elements, one at a time and none

of them are an i or j value, we continue as if there was no

such value. This brings up a question about security vs.

performance. Evidently, the higher the tolerance the

more likely one is to find said value. However, the

higher the tolerance, the more work the database must

perform. The tolerance number can be determined by the

database manager. We show in the results section the

differences in security between giving an i or j value vs.

an m, n, or p value. Based on said results, the manager

can decide the best option for the database.

The randomization process is quite simple and there

are only four different cases.

Jose Daniel Velazco et al. / Journal of Computer Science 2018, 14 (1): 67.80
DOI: 10.3844/jcssp.2018.67.80

71

Fig. 1: Possible responses

Case 1: I = J = 1

The gaps are both equal to 1 implying that there is no

possible value for i or j in the database (recall that we

assume that no entries occur repeatedly). Therefore, we

return m.

Case 2: I > J

In this case, the I gap is larger than J and, by default,

larger than 1. A randomly selected element in the

database whose value lies in the i range is given as the

query’s response. If no value is found, the value of p is

given instead.

Case 3: I < J

Similarly, a randomly selected element in the

database whose value lies in the j range is given as the

query’s response. If no value is found, the value of n is

given instead.

Case 4: I = J > 1

Both gaps are of same magnitude. A randomly

selected element in the database found whose value is

either in the i or j range is given as the query’s response.

If no element is found, the value of m is given instead.

It is important to note why case I = J = 0 cannot

occur. For this randomization study, we are assuming

that the selected values are pairwise distinct. It definitely

makes sense methodologically since we want to test how

far this approach can take us towards guaranteeing

security (inference control). Obviously, if all elements

are identical, randomizing of any kind will not achieve

anything (except that there might be some uncertainty

about the k/2–1 smallest and the k/2–1 largest elements

in the database). While the “pair-wise distinct”

assumption may not hold universally, it is not

unreasonable to assume that for many queries it does

hold (note we use only k + 2 elements drawn from the

database and these are likely to be pairwise distinct) –

and therefore it establishes a baseline.

The error involved in the queries is at most the next or

previous sorted element in the query. As a result, the error

is relatively and reasonably small. The randomization

technique may look odd at first. For instance, why choose

the biggest gap and not the smallest gap? More likely, the

smallest gap would provide a more accurate response. The

inference procedure is quite robust. Our goal is to confuse

the inference procedure by having some indices associated

with values less than or equal to g be put into the H set

and vice versa. In other words, we want to introduce errors

into the procedure so that the user is uncertain of the

obtained results. To demonstrate this, take the following

example of what we claim to be the worst-case scenario.

In this scenario, we make our values to be consecutive.

Consider the following sample database (Table 2):

We let our query size be k = 3 and compute p =

(3+1)/2 = 2. We let our k+1 indices be the first k+1

indices and obtain the following queries, gap magnitudes

and responses:

() () ()()

((1), (2), (3)) (1,2,3) 2 1, 1 1 Case 1

((1) (2), (4)) (1,2,4) 3 or 4 1, 2 Case 3

((1), (3), (4)) (1,3,4) 2 or 1 2, 1 Case 2

2 , 3 , 4 (2,3,4) 3 1, 1 1 Cas

f DK DK DK f I J I J

f DK DK DK f I J I J

f DK DK DK f I J I J

f DK DK DK f I J I J

= = = = = =

= = = = <

= = = = >

= = = = = = e 1

We applied randomization as described in the four

cases. Notice the first and fourth queries have gaps of 1

and we have no room to apply randomization. Thus, the

true median value was given as the response. The second

and third query may yield one of two possible responses.

For instance, the second query may return the value of 3 if

and only if the value of 3 was randomly selected within

our tolerance number. Otherwise, we return the value of 4.

Similarly, we get the same scenario for the third query. As

a result, we obtain four possible different combinations

from these responses. Note that the inference attacker

would only get one of these four combinations. Let’s

suppose we get the scenario in which we obtained the

medians 2, 3, 2, 3 respectively. In this case, we follow the

procedure to determine g, h, G and H:

2, 3

{1,3}, {2,4}

g h

G H

= =

= =

We make our sets G’ and G’∪H∪{sk+2}:

2

' {}

' { } {2,4,5}
k

G

G H s
+

=

∪ ∪ =

We make the query using the G’∪H∪{sk+2} elements

and get:

((2), (4), (5)) (2,4,5) 2 3

2, 1 2

f DK DK DK f or

I J I J Case

= =

= = >

n

 j

m

 i

p

Jose Daniel Velazco et al. / Journal of Computer Science 2018, 14 (1): 67.80
DOI: 10.3844/jcssp.2018.67.80

72

Table 2: Sample database (Example II)

s DK(s)

1 1

2 2

3 3

4 4

5 5

At this point, we can obtain one of two different

responses. If we get the value of 3, we make the

observation DK(5) < 3 since we got the value of h as a

result. If we obtain the value of 2, the inference attacker

now knows something is wrong, as it is not possible to

obtain a lower value than h from this query. The

inference attacker has two options when this happens.

The attacker may now be uncertain of the procedure and

stop, or the attacker may decide to proceed as normal

and hope for a compromise. We’ll assume the worst case

and proceed. Because 2 is less than h, we conclude

DK(5) < 3. In this case, both results yield the same

outcome. Thus, we proceed the same way regardless of

the response received. We now make our H0 set and get:

0 0
{2} {4}H or H= =

Previously, we mentioned that the set H0 is the same

as the set H minus any one of its elements. Since we

choose one value and remove at random, it is possible

we obtain one of the two sets above. One important thing

to note is that the subset H0 = {2} is erroneous (the

inference attacker does not know that of course) because

the set of H presumably only contains indices associated

with high values. However, we know that DK(2) = 2

which is not greater than or equal to h. This is an error

introduced into the inference procedure. The alternative

is H0 = {4} which is indeed a correct subset of H since

we know DK(4) = 4 and is greater than or equal to h. We

will proceed with both cases and show that despite of

being possible to obtain a correct subset, the procedure

can still yield incorrect results. Let’s suppose we get H0

= {2}. We form our G∪{sk+2} set:

2
{ } {1,3,5}
k

G s
+

∪ =

Following the procedure, we request our p+1 queries

and get:

f(DK(1), DK(2), DK(3)) = f(1, 2, 3) = 2, I = 1, J = 1, I =

J, Case 1

f(DK(1), DK(2), DK(5)) = f(1, 2, 5) = 3 or 4 or 5, I = 1, J

= 3, I < J, Case 3

f(DK(2), DK(3), DK(5)) = f 2, 3, 5) = 4 or 5, I = 1, J = 2,

I < J, Case 3

There are multiple combinations of responses we

may obtain from these queries. We know we must get

one median that occurs p times and a second median that

occurs only once. To analyze our results, we will classify

our results as a successful procedure or a successful

compromise. A successful procedure is an inference

procedure, which produces a result. A successful

compromise is a successful procedure whose result is a

correct compromise. Note not all successful procedures

are successful compromises, but all fail procedures are

also fail compromises. For instance, if we obtain three

different medians or we do not get two medians with the

required occurrences, we claim the inference procedure

to be a failed procedure and fail compromise. Table 3

contains a list of combinations of the queries’ responses

in the same order as the queries and whether we obtain a

successful inference procedure and compromise.

From the six possible responses, four of them are said to

be a fail since no value is obtained from the procedure. The

other two are said to be successes since they produce a

result. However, only one of the two successes is a

successful compromise. In other words, there is a 16.67%

chance that the inference attacker receives a correct

compromise for this database and this value of k. Even then,

the observation we made earlier stated that DK(5) < 3 and

our result says that DK(5) = 5 (which is correct). The two

contradict each other. Can the inference attacker accept the

result even with this uncertainty? What if the user instead

received DK(5) = 4 on top of the uncertainty? We show that

as we get more complicated and larger databases and use

smaller sizes of k relative to the database size (which are

more realistic), the probability of successful compromises

decreases and the level of uncertainty increases.

The alternative was to get H0 = {4}. We obtain the same

set G∪{sk+2} = {1, 3, 5} and request the following queries:

f(DK(1), DK(3), DK(4)) = f(1, 3, 4) = 1 or 2, I = 2, J = 1,

I > J, Case 2

f(DK(1), DK(4), DK(5)) = f(1, 4, 5) = 1 or 2 or 3, I = 3,

J = 1, I > J, Case 2

f(DK(3), DK(4), DK(5)) = f(3, 4, 5) = 4, I = 1, J = 1, I =

J, Case 1

We repeat the same analysis with the possible
combinations we obtain from the p+1 queries and get the
following results (Table 4).

We produce the exact same results for a different

index. We may have obtained a valid subset of H for H0.

However, the indices in G are used as part of the queries

and we know G contains incorrect indices as well.

These are the results for the first combination of

responses from the first k+1 queries. Let’s look at the

second combination of 2, 4, 2, 3. With these responses, we

do not obtain two unique medians. However, one can still

divide the indices evenly into two sets. We can change the

value of g and h to be inequalities instead and claim that:

2, 3g h≤ ≥

Jose Daniel Velazco et al. / Journal of Computer Science 2018, 14 (1): 67.80
DOI: 10.3844/jcssp.2018.67.80

73

Table 3: Queries responses and compromise status

Responses Procedure Result Compromise

2, 3, 4 Fail None Fail

2, 3, 5 Fail None Fail

2, 4, 4 Success DK(5) = 4 Fail

2, 4, 5 Fail None Fail

2, 5, 4 Fail None Fail

2, 5, 5 Success DK(5) = 5 Success

Table 4: P+1 Queries responses and compromise status

Responses Success Result Compromise

1, 1, 4 Success DK(1) = 1 Success

1, 2, 4 Fail None Fail

1, 3, 4 Fail None Fail

2, 1, 1 Fail None Fail

2, 2, 4 Success DK(1) = 2 Fail

2, 3, 4 Fail None Fail

Following the same procedure, the indices missing in

the queries that obtained a response of 3 or higher go

into the set of G and the indices missing in the queries

that obtained a response of 2 or lower go into the set of

H. We get the following sets:

{1,3}, {2,4}G h= =

Notice both sets contain the same elements as our

first scenario! We will not proceed with the steps since

the procedure would yield the same responses. If we

follow the procedure on the two remaining scenarios, we

will obtain the same sets and responses. In addition, we

have an extra uncertainty since we obtained 3 different

medians instead of 2. In the next section, we explain how

an inference attacker could go about when obtaining

results that do not go accordingly to the standard

inference procedure.

Earlier in the section, we mentioned how some

elements are protected from compromise, as they are

never the response to any query. Because of

randomization, those elements that used to be safe from

compromise are not necessarily completely safe anymore.

This can be observed by looking at the uncertain

compromise of DK(1) = 1. Before, with a size of k = 3, the

value of 1 would never be a possible response of any

combination of 3 elements from the 5 element database.

However, when we choose to select the previous element

relative to the median, we now use that element as part of

a response. Either way, our goal is not to protect specific

elements, but to ensure that the database is overall secure.

Modifications to the Inference Procedure

There were simpler randomization implementations

that successfully broke the standard inference procedure.

However, simple changes to the procedure would yield a

successful compromise. One modification was shown

earlier. We changed the values of g and h to be

inequalities instead. However, it gets more complicated

than that. Our database and query sizes were small. For

larger values of N and k, we obtain results that are not as

friendly. For instance, for k = 7, we could get 6 repeated

medians and 2 different medians for our initial k+1

queries. To explain these modifications, suppose we do

not apply the proposed randomization technique. Instead,

we apply a similar technique as the one described in

(Garcia et al., 2010): Instead of adding a random element

from the database, we will remove the median value of

the query and return the median of the new query.

Consider the following sample database (Table 5).

We let our size of k = 5 and compute p = (5+1)/2 =

3. We produce our k+1 queries and get the following

responses:

f(DK(1), DK(2), DK(3), DK(4), DK(5)) = f(4, 2, 1, 8, 9)

= f(1, 2, 4, 8, 9) = 8

f(DK(1), DK(2), DK(3), DK(4), DK(6)) = f(4, 2, 1, 8, 6)

= f(1, 2, 4, 6, 8) = 6

f(DK(1), DK(2), DK(3), DK(5), DK(6)) = f(4, 2, 1, 9, 6)

= f(1, 2, 4, 6, 9) = 6

f(DK(1), DK(2), DK(4), DK(5), DK(6)) = f(4, 2, 8, 9, 6)

= f(2, 4, 6, 8, 9) = 8

f(DK(1), DK(3), DK(4), DK(5), DK(6)) = f(4, 1, 8, 9, 6)

= f(1, 4, 6, 8, 9) = 8

f(DK(2), DK(3), DK(4), DK(5), DK(6)) = f(2, 1, 8, 9, 6)

= f(1, 2, 6, 8, 9) = 8

Because our queries are of even size, we choose the

higher value median as our query’s response. At this point,

it is impossible to divide the indices evenly in two different

sets. However, we can still choose our value of g and h to

be 6 and 8 respectively. We get the following sets:

2

{1,2,3,6}

{4,5}

' {1,2}

{ } {1,2,4,5,7}
k

G

H

G

G H s
+

=

=

=

∪ ∪ =

As one can see, the set of G is much larger than the

set of H. This will bring complications towards the end

of the procedure. For now, we proceed as normal and

request the following query:

f(DK(1), DK(2), DK(4), DK(5), DK(7)) = f(4, 2, 8, 9, 5)

= f(2, 4, 5, 8, 9) = 8

We make the observation DK(7) < 8. We form the

following sets:

0

2

{4}

{ } {1,2,3,6,7}
K

H

G s
+

=

∪ =

Jose Daniel Velazco et al. / Journal of Computer Science 2018, 14 (1): 67.80
DOI: 10.3844/jcssp.2018.67.80

74

Table 5: Sample database (Example III)

S DK(S)

1 4

2 2

3 1

4 8

5 9

6 6

7 5

The standard procedure requires forming queries

from the combination of H0 and every combination of p
elements in G∪{sk+2}. However, this is no longer
possible because H0 contains one element and p = 3. In
this case, our queries would have to be of size 4 which
cannot be done. Instead, we form every query that can be
made from the combination of H0 and every combination
of required elements to make queries of size k. We get
the following queries and responses:

f(DK(1), DK(2), DK(3), DK(4), DK(6)) = f(4, 2, 1, 8, 6)

= f(1, 2, 4, 6, 8) = 6

f(DK(1), DK(2), DK(3), DK(4), DK(7)) = f(4, 2, 1, 8, 5)

= f(1, 2, 4, 5, 8) = 5

f(DK(1), DK(2), DK(4), DK(6), DK(7)) = f(4, 2, 8, 6, 5)

= f(2, 4, 5, 6, 8) = 6

f(DK(1), DK(3), DK(4), DK(6), DK(7)) = f(4, 1, 8, 6, 5)

= f(1, 4, 5, 6, 8) = 6

f(DK(2), DK(3), DK(4), DK(6), DK(7)) = f(2, 1, 8, 6, 5)

= f(1, 2, 5, 6, 8) = 6

The standard procedure requires a median to occur p

times and a second median to occur only once. We do
not have a median that occurs p times because we got
more than p+1 queries. However, we still managed to get
two unique medians. One that occurred more than p
times and another that occurred only once. We apply the
same conclusion and obtain:

(6) 6DK =

Despite the differences, we compromised an element

by following the same procedure with a few
modifications. These modifications showed successful
compromises for many of our different tests. The
modifications are formally described as follows:

Modification #1: We will make a sorted list of the

medians obtained from our first k+1 queries. Because k

is odd, we will obtain an even number of medians. We

find the lower and higher value median from the list of

medians. If they are different, we say that g is less than

or equal to the lower median and h is greater than or

equal to the higher median. If both medians are equal,

we take the following approach. We make a sorted list of

the unique medians (remove repetitions) and repeat the

previous process in this new list. If the length of the

unique median list is odd, we say that h is greater than or

equal to the median of the list and g is less than the

median of the list. The following examples summarizes

the different possibilities for query sizes of k = 5:

Medians: 1, 1, 2, 3, 4, 5 → g ≤ 2, h ≥ 3

Medians: 1, 2, 2, 2, 4, 5→ Unique Medians: 1, 2, 4, 5 →

g ≤ 2, h ≥ 4

Medians: 2, 2, 2, 2, 4, 5 → Unique Medians: 2, 4, 5 → g

< 4, h ≥ 4

Modification #2: Due to randomization, it is possible

for the query made from the elements in G’∪H∪{sk+2}
to yield a response less than the value of h. If this
happens, we apply the same observation as if we had got
the value of h, i.e., DK(sk+2) < h.

Modification #3: For the last queries, we may be able

to make more or fewer than p+1 queries because we

obtained different sizes for the sets G and H. We will

combine the set of H0 with every combination of x

elements of G∪{sK+2}, where x = k – size of H0.
Modification #4: Because we may obtain more or

fewer than p+1 queries in the end, we change the number
of occurrences of one median to be greater than or equal
to 2. The second median is still required to occur once.

Note the modifications implemented do not affect the
standard procedure. One can apply the inference
procedure with the modifications described above to a
database without randomization and obtain the exact same
results. At this point, let us define what will be considered
as a fail procedure. A fail procedure can occur if and only
if one of the following conditions is present:

• The initial k+1 queries yield the same median, i.e.,

we obtain one unique median

• We obtain one or more than two unique medians

from the last queries, or

• We do not obtain one median with one occurrence

and another median with the remaining occurrences

As stated earlier, a successful procedure is not
necessarily a successful compromise. The inference
attacker cannot tell if the successful procedure is a
successful compromise. In other words, the obtained
result from the inference procedure can be incorrect (as
shown previously). In the next section, we explain our
simulation approach and the analysis of our results.

Results and Discussion

In this section, we discuss the simulation and analyze
it. Also, we point out the error magnitude and accuracy
level. Furthermore, we describe how to implement
randomization on an existing database.

Simulation Results and Analysis

For our research, we implemented a simulation to

simulate statistical queries of type median using our

Jose Daniel Velazco et al. / Journal of Computer Science 2018, 14 (1): 67.80
DOI: 10.3844/jcssp.2018.67.80

75

proposed randomization technique. The queries

requested are made with the intention to compromise

database elements using the modified inference

procedure. The entire simulation was done under the

assumption that all elements are pairwise distinct. This is

certainly the assumption in the theorem that is the basis

of the simulation. For each of the different parameters,

the simulation was run a million times on randomly

generated databases. We set our database size to be N =

500 for all iterations with distinct values ranging from 0

to 999. Every 10 iterations, a new database with new

distinct values is randomly generated. For our test cases,

we use of the following values for k:

5, 15, 25, 45, 95

For each value of k, we have a simulation for the

following values of the tolerance number t:

1, 2, 5, 10, 20, 50

To show our results, we will be looking at two

different sets of graphs. The first set summarizes the
obtained results from the inference procedures done in
each of the simulations. The second set summarizes the
frequencies of type of values returned as a query

response, i.e., frequency of i, j, m, n, or p responses.
Each graph summarizes all the results from all
simulations done on a value of k. The following 5 graphs
(Fig. 2-6) show the inference procedure results.

By looking at the charts, we can make the following

observations:

• As the value of t increases, so does the fail

procedure percentage

• As the value of k increases, the percentage of

successful compromises increases slightly and the

percentage of incorrect results increases slightly

• As the value of k increases, the percentage of fail

procedures decreases

The observations were as expected. The third

observation correlates with the example given earlier of

the sample database made up of consecutive values. In

that example, we showed that the percentage of a

successful compromise was 16.67% and the percentage

of fail procedures was 66.67% which seems to be the

direction of the percentage as the value of k gets closer to

the value of N.

The following graphs (Fig. 7-11) show the response

frequencies for the simulated queries.

Fig. 2: Inference procedures k = 5

Fig. 3: Inference procedures k = 15

Jose Daniel Velazco et al. / Journal of Computer Science 2018, 14 (1): 67.80
DOI: 10.3844/jcssp.2018.67.80

76

Fig. 4: Inference Procedures k = 25

Fig. 5: Inference procedures k = 45

Fig. 6: Inference procedures k = 95

Fig. 7: Query response frequencies k = 5

Jose Daniel Velazco et al. / Journal of Computer Science 2018, 14 (1): 67.80
DOI: 10.3844/jcssp.2018.67.80

77

Fig. 8: Query response frequencies k = 15

Fig. 9: Query response frequencies k = 25

Fig. 10: Query response frequencies k = 45

There are three observations we can make here:

• As the value of t increases, so do the frequencies of i

and j responses

• As the value of k increases, so does the frequency of
m responses

As the value of k increases, a higher value of t is needed

to increase the frequency of i and j responses

Jose Daniel Velazco et al. / Journal of Computer Science 2018, 14 (1): 67.80
DOI: 10.3844/jcssp.2018.67.80

78

Fig. 11: Query response frequencies k = 95

The observations were as expected as well. As the

tolerance increases, it is more probable to find an i or j

value. Similarly, as the query size increases, we are less

likely to get randomly elements with an i or j value

(because there are fewer elements in the database to choose

from). Therefore, the frequency of responses of type m

increases. By the same token, the tolerance number may not

need to be very large for query sizes that are relatively close

to the size of the database. Since there are fewer values to

choose from, one needs fewer tries to find such a value.

Based on these observations and the ones made on

the inference procedure results, we came up with the

following conclusions:

• i or j responses decrease the rate of successful

compromises

• The higher the tolerance, the more likely one is to

find an i or j value

• Higher tolerances are needed as query size increases

(although this depends on the size of N as well)

Using these conclusions, we can determine an

appropriate tolerance for some specific database. One

can see from the results that with a tolerance of 5,

randomization stops about 97% of the inference

procedures. More importantly, it is impossible for the

attacker to know whether a correct or incorrect result

was obtained from the remaining procedures.

It is important to analyze the validity of the simulation

parameters in real databases. In this simulation, we have

sampled queries that are completely random. In reality,

this may not be the case. Requestors may want statistical

information on certain indices that just happen to lie in a

subset of the entire database. Imagine asking for the

medians of certain queries that are comprised entirely of

indices whose responses, once sorted, would lie in the

middle 20% of the database. In such scenario, the other

80% of the database elements would not yield any

contribution to randomization because those elements

cannot be i or j values. If this were to occur (whether it is

intended or not), it would mimic a smaller database. That

is, the value of k would be closer to N. As described from

our observations, a larger tolerance number would benefit

these cases. Nonetheless, randomization still protects

databases under these conditions due to the possibility of

incorrect results and the uncertainty of the inference

procedure. However, it is still recommended for the

database managers to pick adequate tolerance number

depending on the type of information being served by the

database and its performance requirements.

Errors and Other Remarks

Earlier, we briefly discussed the error introduced. At

worst, the error in the query response is the previous or

next element. This error can be very big or very small

depending on the type of data. However, relative to the

given query, the error is relatively small. By the same

token, the error obtained from the inference procedure on

randomized queries is also small. In other words, the

results obtained by the attacker are relatively close to the

real result (and in some cases, as shown, the actual result).

It is the number of fail procedures and level of uncertainty

what makes randomization a secure approach.

Throughout our tests, we ran different implementations

that were not useful for queries of type median. The

removal of the median from every query was shown

earlier to fail against some procedure modifications. The

only other method that showed favorable results was a

similar approach to the one we suggest. In fact, it was tested

before and gave better results than the current suggested

technique. However, it was not a viable option for most

databases as it required to search the entire database on

every query. The method consisted of using the gaps to

find the value closest to the median in the specific range.

The results were more consistent throughout queries,

which gave more incorrect results to the attacker.

One important thing to note is that we tested this
technique on databases composed of distinct values.

Jose Daniel Velazco et al. / Journal of Computer Science 2018, 14 (1): 67.80
DOI: 10.3844/jcssp.2018.67.80

79

Databases may contain repeated values. If the value of p
is equal to the value of m, one could change the value of
p to be the previous different value element in the sorted
query. Hence, a gap could still be used. However, this
will increase the relative error since one is moving
further away from the median, relative to the query.
Although we believe randomization does provide
security for databases including repetitions, we did not
test such a claim. Our implementation depends on the
tolerance number and relative error and is subjective to
the number of repetitions present.

Implementation of Randomization to Existing

Databases

To determine the appropriate value to use as part of

the randomization technique, we had to find the median

of the query. The steps followed up to that point are the

same steps followed as if randomization was not used.

The associated query values must be found and sorted.

Then, the median value is found and returned. With

randomization, one follows the exact same process but

adds the randomization step after finding the median

value. In other words, implementing randomization into

an existing database is relatively simple. Before the

median is returned, the analysis of the gaps is made and

an attempt to retrieve an element fitting in the

appropriate gap based on the appropriate case is made

(up to as many times as the selected tolerance). If the

value is found, it is returned. Otherwise, the true median

already found is returned. With randomization, the extra

calculations are finding the I and J magnitudes,

requesting a random element from the database and

checking if the value is in the range involving the largest

gap. The last two steps are repeated as many times as the

manager needs to (determined by analyzing the trade off

between security and performance).

Conclusion

Randomization is a technique simple to implement on

existing databases. It can protect private information

from statistical queries of type median by ensuring low

probabilities of successful inference attacks. Despite

being possible to attain a correct inference, it is

impossible for the attacker to be certain of the inference

results because of the uncertainty obtained during the

inference procedure. The simulation results are

favorable and demonstrate the security it offers. As

shown, it is still dependent on the database manager to

choose the correct parameters to meet the needs of the

database. In conclusion, we see randomization as a

viable option for statistical databases that need to

provide statistical information and are limited by the

current inference control techniques.

Acknowledgment

Support under NSF grants IIS-1359199 (REU Site

Program) and DGE-1433817 (SfS program) is

acknowledged.

Author’s Contributions

Jose Daniel Velazco: Made considerable

contributions to this research by running the simulation

and analyzing the data; he also contributed to drafting

and critically reviewing the manuscript for significant

intellectual content.

Mohammed Awad: Made considerable

contributions to this research by interpreting the data; he

also contributed in critically reviewing the manuscript

for significant intellectual content.
Ernst L. Leiss: Designed the research plan and

organized the study; he contributed to the presentation
and analysis of the results; he made a critical review of
significant intellectual content and also added genuine
content where applicable.

Ethics

The authors confirm that the article is original,
contains unpublished material, and that there are no
ethical issues associated with its publication.

References

Adam, N.R. and J.C. Worthmann, 1989. Security-control
methods for statistical databases: A comparative
study. ACM Comput. Surveys, 21: 515-556.

Cavallo, B. and G. Canfora, 2016. A probabilistic
approach for disclosure risk assessment in statistical
databases. Quality Quantity, 50: 729-749.

Cynthia, D., 2006. Differential privacy. Proceedings of
the International Colloquium on Automata,
Languages and Programming, (ALP’ 06), pp: 1-12.
DOI: 10.1007/11787006_1

Garcia, J., J. Wilder and E.L. Leiss, 2010. Inference
control in statistical databases: An improved
randomization approach. Proceedings of the
Conferencia Latinoamericana de Informatica, Oct.
18-22, Asuncion, Paraguay.

Giggins, H. and L. Brankovic, 2012. VICUS - A noise
addition technique for categorical data. Proceedings
of the Data Mining and Analytics, (DMA’ 12),

Sydney, Australia, pp: 139-148.
Heatherly, R., M. Kantarcioglu and B. Thuraisingham,

2013. Preventing private information inference
attacks on social networks. IEEE Trans. Knowl.
Data Eng., 25: 1849-1862.

Hegadi, R.S., I.M. Umesh, T.N. Manjunath and G.K.
Ravikumar, 2011. A survey on recent trends,
process and development in data masking for
testing. Int. J. Comput. Sci., 8: 535-544.

Jose Daniel Velazco et al. / Journal of Computer Science 2018, 14 (1): 67.80
DOI: 10.3844/jcssp.2018.67.80

80

Leiss, E.L., 1981. On the security of randomized
databases: A simulation. Tech. Rep. #UH-CS-81-01,
Department of Computer Science, University of
Houston, Houston Texas.

Leiss, E.L., 1982. Principles of Data Security. 1st Edn.,
Plenum Press, New York.

Leiss, E.L., 1982. Randomizing, a practical method for
protecting statistical databases against compromise.
Proceedings of the 8th International Conference on
Very Large Data Bases, Sept. 8-10, Mexico, pp:
189-196.

Lu, H., J. Vaidya, V. Atluri and Y. Li, 2015. Statistical
database auditing without query denial threat. (n.d.).
Informs J. Comput., 27: 20-34.

Muralidhar, K. and R. Sarathy, 1999. Security of random
data perturbation methods. ACM Trans. Database
Syst., 24: 487-493. DOI: 10.1023/A:1025610705286

Muralidhar, K. and R. Sarathy, 2003. A theoretical basis for

perturbation methods. Statist. Comput., 13: 329-335.

DOI: 10.1023/A:1025610705286

Naveed, M., S. Kamara and C.V. Wright, 2015.

Inference attacks on property-preserving encrypted

databases. Proceedings of the 22nd ACM SIGSAC

Conference on Computer and Communications

Security (CCS’ 15), ACM, New York, pp: 644-655.

Sarathy, R. and K. Muralidhar, 2002. The security of

confidential numerical data in databases. Inform. Syst.

Res., 13: 389-403. DOI: 10.1287/isre.13.4.389.74

Zou, G. and M. Zhang, 2012. A new data perturbation

method of reference control in statistical database.

Applied Mechan. Mater., 3134: 241-244.

