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Abstract: Researcher and third party access to data pertaining to 

individuals is becoming the norm. The conclusions drawn from such data 

can be extremely beneficial. However, data owners must maintain the 

secrecy of the sensitive data fields and make sure it is protected against 

inference attacks. There are several techniques and restrictions that can be 

made on queries to prevent adversaries from inferring and identifying 

sensitive data related to specific individuals. One of the proposed 

techniques to prevent the disclosure of private data is randomization. In this 

study, we demonstrate and analyze the implementation of randomization in 

statistical queries of the selector function median and the results of an 

extensive simulation. The randomization technique yields a possibly 

erroneous yet usually reasonably accurate response to every query. In 

addition, the inference procedure is explained and potential modifications 

to counter the randomization technique are analyzed and tested against it. 

We show that, despite these modifications, randomization protects the data 

by adding uncertainties into the inference procedure, thus, maintaining 

differential privacy. The results of an extensive simulation testing the 

various parameters of the randomization technique on randomly generated 

databases are shown and explained.  

 

Keywords: Inference Attacks, Statistical Database Security, Median 

Queries, Randomization 

 

Introduction 

Even though data owners are likely to hide private 

information (such as a patient’s disease, an employee’s 

salary, or a student’s grade) before granting database 

access, an adversary may in one way or another be able 

to infer some of that private hidden data and deduce 

sensitive private information about specific individuals. 

Back in 2006, AOL released 20 million search 

keywords for 650,000 of its users for research 

purposes. Despite masking user identity, several were 

identified (Heatherly et al., 2013). Three days later, 

AOL took down the published database, but it was 

already mirrored on other websites. Such an invasion of 

privacy resulted in a lawsuit against AOL and several 

concerns about user privacy and the impact of inference 

attacks. Nowadays, the amount of data gathered by the 

government and the private sector has significantly 

increased and the impact of inference attacks is more 

significant than ever (Naveed et al., 2015).    

The idea of protecting sensitive (private) information 

is, by itself, important. However, it extends further than 

that. By law, it is mandatory to protect some individuals’ 

private information, for example medical records (Leiss, 

1982a). Compromising an individual’s record not only is a 

problem for the individual, but a legal issue for the 

database owner. These risks complicate the use of 

statistical information as it is possible to infer data from a 

combination of legitimate statistical information to obtain 

access to private data, known as inference attacks (Leiss, 

1982a). Adversaries may be able to use a set of linear 

models to relieve some of the database confidential 

attributes (Sarathy and Muralidhar, 2002; Cynthia, 2006). 

Currently, there are methods used to prevent inference 

attacks by rejecting statistical queries that, in combination 

with previous queries, can compromise the value of an 

element in the database (Adam and Worthmann, 1989). 

However, these methods come with significant 

disadvantages. Primarily, the database must ensure that the 

current query’s response does not yield a compromise when 
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combined with previous queries, which adds to the work 

done by the database. On top of that, it may be possible for 

multiple users to work together and yield a compromise. 

Some more sophisticated techniques have been found to 

audit statistical queries and determine whether new queries 

would yield compromises (Cavallo and Canfora, 2016; 

Lu et al., 2015). Additionally, assuming the database checks 

queries among users, the database would eventually have to 

reject every single query requested (Leiss, 1982a). Other 

masking techniques involve random noise addition either to 

the query itself or the query output (Giggins and Brankovic, 

2012; Hegadi et al., 2011), while other techniques ensure 

perturbation via microaggregation (Muralidhar and 

Sarathy, 1999). Some perturbation techniques consist in 

swapping query elements based on distributions calculated 

from the database elements (Zou and Zhang, 2012).  

Note that while data owners do hide private data for 

individual records, they may still allow statistical queries, 

which return a value based on these private elements. For 

example, such a query may return the average or the 

median value. Our paper’s main focus is statistical queries 

of type median. We propose a solution that does not 

require the database to check for potential compromises. 

This approach is relatively simple to implement for an 

existing database and probabilistically protects a database 

from successful inference attacks. We call this solution 

randomization. Essentially, randomization adds a random 

element from the database to every query and provides a 

possibly erroneous yet usually reasonably accurate 

response (Leiss, 1982a). This solution differs significantly 

from random noise addition in that we use actual values 

from the database. When adding random noise there is 

always the danger that it can be removed if the random 

generator is known, which is usually unavoidable since 

only the seed is unknown, but the algorithm is known. 

However, in our approach, the randomly selected database 

element is chosen from a range of numbers relative to the 

true median of the query, which mitigates that danger. 

In this study, we show the implementation of 

randomization in statistical queries of the selector 

function median and the results of an extensive 

simulation. It is worth mentioning that in the case of 

medians, noise addition is likely to change nothing 

unless that noise is added to the actual median value that 

is returned; adding noise to the other values will most 

likely not change the value returned because of the 

properties of the median function (unlike the mean). 

Thus, such an approach (randomization for queries of 

type median) should maximize the accuracy while 

minimizing the inference risks and eventually improve 

differential privacy (Muralidhar and Sarathy, 2003). 

Background 

A statistical query is a statistical question made to 

some set of data, e.g., average, median, max, min, etc. 

(Leiss, 1982a). In particular, we will be looking at 

statistical queries of type median. The query notation is 

based on the key-specified model (DK). The DK model, 

as described in (Leiss, 1982a), goes as follows: 

 

:{1,..., }DK N → R  

 

where, N is the number of elements in the database. Each 

element in the database is associated with a private 

value. This is the value we are trying to protect. This 

association of element and value is denoted in the 

following form: s is an index to the database and DK(s) 

is the private value associated with s. Each query 

requires a set of exactly k elements for a fixed k ≥ 2. The 

DK model requires that every requested query be of 

same length. In addition, every statistical query yields a 

result. The result depends on the type of function 

requested for the query. In our case, we will use the 

selector function median. By selector function, we mean 

that the response to the query must be one of the 

database elements. The function is denoted as f(Q) where 

Q is the set of database elements involved. For example, 

the function f(DK(i1), DK(i2),…,DK(in)) for a function of 

type median yields the value DK(si) where si is the index 

associated with the median value of the elements 

included in the query. We will use this notation 

throughout to explain our procedures.  

In the past, we have shown the implementation of 
randomization of statistical queries of type average 
(Leiss, 1982a; 1981; 1982b). Statistical queries of type 
average can infer data by using the query elements and 
the query response in combination with the previous 

queries and responses to build a system of linear 
equations and solve for each of the elements involved in 
the queries (Leiss, 1981). The results obtained from this 
simulation showed that the use of randomization, i.e., 
randomly adding an element as part of every query and 
altering the responses slightly, protects the data from 

inference attacks (Leiss, 1981). The error associated with 
every response builds up when solving the system of 
linear equations, which means that the inference attacker 
will obtain incorrect results. More specifically, the error 
of the compromised elements is equal to the error of the 
responses (rather small), multiplied by the condition 

number of the matrix involved in the compromise 
(solving the system of linear equations). Since this 
condition number can be shown to be larger than k, the 
error of the compromised elements is large. We want to 
apply the same principle to queries of type median. 
However, there are major differences between the two. 

First of all, the queries of type median are selector 
functions whereas averages are not and may yield 
responses not present in the database. More importantly, 
every selected value for queries of type average affects 
the result of the response. Queries of type median may 
obtain many different randomly selected values that 
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yield the same response. For example, suppose we have 
a set of values {0, 0, 0}. The average and median 
responses are both equal to 0. Now suppose we 
randomly select a value (from the database) and the said 

value is 1. The average value is now 0.25, but the 
median value is still 0. Now suppose we randomly select 
another value (from the database) and the said value is 
40. The average value is now 10, but the median value is 
still 0! The implementation of randomization for queries 
of type average does not work directly for queries of 

type median for the reasons described above. Therefore, 
we had to find a different implementation involving the 
same principle and ensure that we maintain the same 
security as queries of type average.  

In our research, we present the results of a simulation 

of statistical queries of type median after applying the 

proposed randomization technique. The queries were 

made with the intention to compromise database 

elements using inference attacks. 

Methodology 

In this section, we explain statistical queries of type 

median and their inference procedure. Then, we apply 

the randomization methodology on such queries. After 

that, we propose and implement modifications to 

eliminate the previously witnessed inference attacks.  

Statistical Queries of Type Median 

A statistical query of type median yields the value 

situated in the middle of a set of sorted data. Note that 

there are two possible queries. The query may be of odd 

size. In this case, the result is exactly the value in the 

middle. On the other hand, the query may be of even size 

and we must choose one of two conventions. We either 

choose the smaller or larger median. Alternatively, we 

would find the average of the two medians. However, we 

are dealing with selector functions and such a value does 

not necessarily exist in the database. Therefore, we 

consistently choose one of the two conventions. Either 

way, the implementation of the inference procedures and 

randomization implementation we propose is not 

affected by the chosen convention (Leiss, 1982a). For 

simplicity, we will establish the value of k, the size of 

the query, to be odd.  

Inference Procedure for Medians 

Before we explain our security approach, we will 

show the procedure we used to compromise a database. 
This procedure is proved and formally described in 
(Leiss, 1982a). We will be looking at a small example to 
demonstrate the procedure on a sample database. We 
will make a sample database comprised of distinct values 

as it is the worst-case scenario. In other words, no two 
indices in the database may have the same private value. 
Take the following sample database (Table 1). 

Table 1: Sample database (Example I) 

s DK(s) 

1 3 

2 5 

3 1 

4 7 

5 4 

 
We select the size of our queries to be of size k = 3. 

Note that k must be at least 2 less than the size of our 

database. In other words, k + 2 <= N is needed to achieve 

a compromise. The procedure requires us to initially 

request k +1 queries using k of the same k +1 indices. 

For simplicity, we will use the first k +1 indices. We get 

the following queries and responses: 
 

f(1, 2, 3) = f(DK(1), DK(2), DK(3)) = f( 3, 5, 1) = 3 

f(1, 2, 4) = f(DK(1), DK(2), DK(4)) = f( 3, 5, 7) = 5 

f(1, 3, 4) = f(DK(1), DK(3), DK(4)) = f( 3, 1, 7) = 3 

f(2, 3, 4) = f(DK(2), DK(3), DK(4)) = f( 5, 1, 7) = 5 
 

The first column is supplied by the query requester and 

the fourth column is the response to the corresponding 

query. The intermediate columns are there to explain the 

results. From this point on, we will omit the first column 

since the second column includes the exact same 

information. Notice we get exactly two different medians, 

one smaller than the other. For simplicity, we will call the 

smaller median g and the larger median h:  
 

3, 5g h= =  

 
We can now split our indices into two different sets, a 

set of indices G, whose values are less than or equal to g 

and a set of indices H, whose values are greater than or 

equal to h. One can see that the lower median is obtained 

when a higher value is missing and a higher median is 

obtained when a lower value is missing. Therefore, G will 

contain the indices missing from the queries producing the 

median h and H will contain the indices missing from the 

queries producing the median g. We get the following sets: 
 

{1,3}, {2,4}G H= =  

 
Although we don’t know the value of any index, we 

can tell that either the index 1 or 3 is associated with the 

private value of 3. We can make a similar observation 

about the set of H. Next, we create a set G’ that contains 

the indices of G minus any two indices of G. In the 

example, we get: 
 

' {}G =  

 
Now, we form the set G’ combined with H and our 

sk+2 index and get: 
 

2
' { } {2,4,5}

k
G H s

+
∪ ∪ =  
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The set contains all previously used indices except 

for two low indices and a new added index. The median 

obtained from this set will help us determine if the added 

index, sk+2, is an index associated with a higher or lower 

value than h. Note that it is not possible for it to be equal 

to h because our database contains distinct values and 

that value is associated with some index in H. We now 

find the median of this query and get: 

 

( (2), (4), (5)) (5,7,4) 5f DK DK DK f= =  

 

Because we obtained h as our result, it implies that the 

new added element is associated with a lower value than 

h. Therefore, we can make the following observation: 

 

(5)DK h<  

 

The alternative would be that DK(5) > h if and only if 

the query’s result would have been a value higher than h. 

The following step depends on this condition. Since 

DK(5) is less than h, we need a subset of H of the same 

length minus one, H0. We choose any element of H, 

remove it and get: 

 

0
{2}H =  

 

We could have chosen H0 = {4}. The result would 

yield a compromise as well. We also need a set formed 

by the union of G and the sk+2 index. We get: 

 

2
{ } {1,3,5}

k
G S

+
∪ =  

 
With these two sets, we will form the remaining 

needed queries. Every query is made up of the elements 

in H0 and p elements of G ∪{sk+2}, where p = (k+1)/2. 

We use every combination of p elements in G∪{sk+2} 

with H0 to make p+1 queries and get: 

 

f(DK(1), DK(2), DK(3)) = f( 3, 5, 1) = 3 

f(DK(1), DK(2), DK(5)) = f( 3, 5, 4) = 4 

f(DK(2), DK(3), DK(5)) = f( 5, 1, 4) = 4 

 

We obtain two medians as well. One median occurs p 

times and the other occurs only once. The median that 

occurs p times is the private value associated with the 

missing index in the query that obtained a unique median. 

As a result, we infer DK(5) = 4, which is indeed true.   

If we had obtained DK(5) > h, we would do the same 

with the sets G0 and H∪{sk+2} instead. The procedure 

takes at most 3(k+1)/2+2 queries to compromise an 

element (Leiss, 1982a). However, the compromised 

element cannot be chosen beforehand. It is possible that 

repeated procedures yield the same compromise. In 

addition, there are elements that are safe from 

compromise since they are never the response to any 

query. The safe elements are those that, once sorted, are 

located in the k/2+1 ends of the sorted set (Leiss, 1982a). 

Either way, once an element has been compromised, the 

database is said to be compromised (Leiss, 1982a).  

Randomization Approach for Medians 

With averages, we added an element to the query and 

returned as a response the average of such query. With 

medians, we will return, when possible, a different value 

in the database based on the range of the previous and 

next element relative to the median in the query. Figure 1 

shows the possible responses to a query when 

randomization is applied. The possible responses are 

denoted as follows: 

 

• m: True median of original query 

• n: next sorted element relative to median in query 

(n>m) 

• p: Previous sorted element relative to median in 

query (p<m) 

• i:  An element in the database but not in the query 

whose value is between p and m (p < i < m) 

• j: An element in the database but not in the query 

whose value is between m and n (m < j < n) 
 

There are also two “gaps”. The gap between p and m 

and the gap between m and n. The values of I and J are 

the magnitudes of the gaps: 
 

,I m p J n m= − = −  

 

We will see that the most secure queries are those 

capable of returning an i or j value. However, sometimes 

a value for either i or j cannot be found. Because we 

choose random elements from the database, it is possible 

we do not find a value within the gaps since such a value 

may not even exist in the database. Therefore, we 

establish a tolerance number. The number is used to 

determine when should we stop looking for an i or j 

element. For instance, let the tolerance number be 20. If 

we request 20 random elements, one at a time and none 

of them are an i or j value, we continue as if there was no 

such value. This brings up a question about security vs. 

performance. Evidently, the higher the tolerance the 

more likely one is to find said value. However, the 

higher the tolerance, the more work the database must 

perform. The tolerance number can be determined by the 

database manager. We show in the results section the 

differences in security between giving an i or j value vs. 

an m, n, or p value. Based on said results, the manager 

can decide the best option for the database.  

The randomization process is quite simple and there 

are only four different cases. 



Jose Daniel Velazco et al. / Journal of Computer Science 2018, 14 (1): 67.80 
DOI: 10.3844/jcssp.2018.67.80 

 

71 

 
 

Fig. 1: Possible responses 
 

Case 1: I = J = 1 

The gaps are both equal to 1 implying that there is no 

possible value for i or j in the database (recall that we 

assume that no entries occur repeatedly). Therefore, we 

return m. 

Case 2: I > J 

In this case, the I gap is larger than J and, by default, 

larger than 1. A randomly selected element in the 

database whose value lies in the i range is given as the 

query’s response. If no value is found, the value of p is 

given instead. 

Case 3: I < J 

Similarly, a randomly selected element in the 

database whose value lies in the j range is given as the 

query’s response. If no value is found, the value of n is 

given instead. 

Case 4: I = J > 1 

Both gaps are of same magnitude. A randomly 

selected element in the database found whose value is 

either in the i or j range is given as the query’s response. 

If no element is found, the value of m is given instead. 

It is important to note why case I = J = 0 cannot 

occur. For this randomization study, we are assuming 

that the selected values are pairwise distinct. It definitely 

makes sense methodologically since we want to test how 

far this approach can take us towards guaranteeing 

security (inference control). Obviously, if all elements 

are identical, randomizing of any kind will not achieve 

anything (except that there might be some uncertainty 

about the k/2–1 smallest and the k/2–1 largest elements 

in the database). While the “pair-wise distinct” 

assumption may not hold universally, it is not 

unreasonable to assume that for many queries it does 

hold (note we use only k + 2 elements drawn from the 

database and these are likely to be pairwise distinct) – 

and therefore it establishes a baseline.  

The error involved in the queries is at most the next or 

previous sorted element in the query. As a result, the error 

is relatively and reasonably small. The randomization 

technique may look odd at first. For instance, why choose 

the biggest gap and not the smallest gap? More likely, the 

smallest gap would provide a more accurate response. The 

inference procedure is quite robust. Our goal is to confuse 

the inference procedure by having some indices associated 

with values less than or equal to g be put into the H set 

and vice versa. In other words, we want to introduce errors 

into the procedure so that the user is uncertain of the 

obtained results. To demonstrate this, take the following 

example of what we claim to be the worst-case scenario. 

In this scenario, we make our values to be consecutive. 

Consider the following sample database (Table 2): 

We let our query size be k = 3 and compute p = 

(3+1)/2 = 2. We let our k+1 indices be the first k+1 

indices and obtain the following queries, gap magnitudes 

and responses: 

 

( ) ( ) ( )( )

( (1), (2), (3)) (1,2,3) 2 1, 1  1 Case 1

( (1) (2), (4)) (1,2,4) 3 or 4 1, 2  Case 3

( (1), (3), (4)) (1,3,4) 2 or 1 2, 1 Case 2

2 , 3 , 4 (2,3,4) 3 1, 1  1 Cas

f DK DK DK f I J I J

f DK DK DK f I J I J

f DK DK DK f I J I J

f DK DK DK f I J I J

= = = = = =

= = = = <

= = = = >

= = = = = = e 1

 

 

We applied randomization as described in the four 

cases. Notice the first and fourth queries have gaps of 1 

and we have no room to apply randomization. Thus, the 

true median value was given as the response. The second 

and third query may yield one of two possible responses. 

For instance, the second query may return the value of 3 if 

and only if the value of 3 was randomly selected within 

our tolerance number. Otherwise, we return the value of 4. 

Similarly, we get the same scenario for the third query. As 

a result, we obtain four possible different combinations 

from these responses. Note that the inference attacker 

would only get one of these four combinations. Let’s 

suppose we get the scenario in which we obtained the 

medians 2, 3, 2, 3 respectively. In this case, we follow the 

procedure to determine g, h, G and H: 

 

2, 3

{1,3}, {2,4}

g h

G H

= =

= =

 

 

We make our sets G’ and G’∪H∪{sk+2}: 
 

2

' {}

' { } {2,4,5}
k

G

G H s
+

=

∪ ∪ =

 

 

We make the query using the G’∪H∪{sk+2} elements 

and get: 
 

( (2), (4), (5)) (2,4,5) 2 3

2, 1 2

f DK DK DK f or

I J I J Case

= =

= = >

 

n 

 j 

 
m 

 i 

 
p 
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Table 2: Sample database (Example II) 

s DK(s) 

1 1 

2 2 

3 3 

4 4 

5 5 

 
At this point, we can obtain one of two different 

responses. If we get the value of 3, we make the 

observation DK(5) < 3 since we got the value of h as a 

result. If we obtain the value of 2, the inference attacker 

now knows something is wrong, as it is not possible to 

obtain a lower value than h from this query. The 

inference attacker has two options when this happens. 

The attacker may now be uncertain of the procedure and 

stop, or the attacker may decide to proceed as normal 

and hope for a compromise. We’ll assume the worst case 

and proceed. Because 2 is less than h, we conclude 

DK(5) < 3. In this case, both results yield the same 

outcome. Thus, we proceed the same way regardless of 

the response received. We now make our H0 set and get: 
 

0 0
{2} {4}H or H= =  

 
Previously, we mentioned that the set H0 is the same 

as the set H minus any one of its elements. Since we 

choose one value and remove at random, it is possible 

we obtain one of the two sets above. One important thing 

to note is that the subset H0 = {2} is erroneous (the 

inference attacker does not know that of course) because 

the set of H presumably only contains indices associated 

with high values. However, we know that DK(2) = 2 

which is not greater than or equal to h. This is an error 

introduced into the inference procedure. The alternative 

is H0 = {4} which is indeed a correct subset of H since 

we know DK(4) = 4 and is greater than or equal to h. We 

will proceed with both cases and show that despite of 

being possible to obtain a correct subset, the procedure 

can still yield incorrect results. Let’s suppose we get H0 

= {2}. We form our G∪{sk+2} set: 
 

2
{ } {1,3,5}
k

G s
+

∪ =  

 

Following the procedure, we request our p+1 queries 

and get: 

 

f(DK(1), DK(2), DK(3)) = f(1, 2, 3) = 2, I = 1, J = 1, I = 

J, Case 1 

f(DK(1), DK(2), DK(5)) = f(1, 2, 5) = 3 or 4 or 5, I = 1, J 

= 3, I < J, Case 3 

f(DK(2), DK(3), DK(5)) = f 2, 3, 5) = 4 or 5, I = 1, J = 2, 

I < J, Case 3 

 

There are multiple combinations of responses we 

may obtain from these queries. We know we must get 

one median that occurs p times and a second median that 

occurs only once. To analyze our results, we will classify 

our results as a successful procedure or a successful 

compromise. A successful procedure is an inference 

procedure, which produces a result. A successful 

compromise is a successful procedure whose result is a 

correct compromise. Note not all successful procedures 

are successful compromises, but all fail procedures are 

also fail compromises. For instance, if we obtain three 

different medians or we do not get two medians with the 

required occurrences, we claim the inference procedure 

to be a failed procedure and fail compromise. Table 3 

contains a list of combinations of the queries’ responses 

in the same order as the queries and whether we obtain a 

successful inference procedure and compromise.  

From the six possible responses, four of them are said to 

be a fail since no value is obtained from the procedure. The 

other two are said to be successes since they produce a 

result. However, only one of the two successes is a 

successful compromise. In other words, there is a 16.67% 

chance that the inference attacker receives a correct 

compromise for this database and this value of k. Even then, 

the observation we made earlier stated that DK(5) < 3 and 

our result says that DK(5) = 5 (which is correct). The two 

contradict each other. Can the inference attacker accept the 

result even with this uncertainty? What if the user instead 

received DK(5) = 4 on top of the uncertainty? We show that 

as we get more complicated and larger databases and use 

smaller sizes of k relative to the database size (which are 

more realistic), the probability of successful compromises 

decreases and the level of uncertainty increases.  

The alternative was to get H0 = {4}. We obtain the same 

set G∪{sk+2} = {1, 3, 5} and request the following queries: 
 
f(DK(1), DK(3), DK(4)) = f( 1, 3, 4) = 1 or 2, I = 2, J = 1, 

I > J, Case 2 

f(DK(1), DK(4), DK(5)) = f( 1, 4, 5) = 1 or 2 or 3, I = 3,  

J = 1, I > J, Case 2 

f(DK(3), DK(4), DK(5)) = f(3, 4, 5) = 4, I = 1, J = 1, I = 

J, Case 1 
 

We repeat the same analysis with the possible 
combinations we obtain from the p+1 queries and get the 
following results (Table 4). 

We produce the exact same results for a different 

index. We may have obtained a valid subset of H for H0. 

However, the indices in G are used as part of the queries 

and we know G contains incorrect indices as well. 

These are the results for the first combination of 

responses from the first k+1 queries. Let’s look at the 

second combination of 2, 4, 2, 3. With these responses, we 

do not obtain two unique medians. However, one can still 

divide the indices evenly into two sets. We can change the 

value of g and h to be inequalities instead and claim that: 
 

2, 3g h≤ ≥  
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Table 3: Queries responses and compromise status 

Responses Procedure Result Compromise 

2, 3, 4 Fail None Fail 

2, 3, 5 Fail None Fail 

2, 4, 4 Success DK(5) = 4 Fail 

2, 4, 5 Fail None Fail 

2, 5, 4 Fail None Fail 

2, 5, 5 Success DK(5) = 5 Success 

 
Table 4: P+1 Queries responses and compromise status 

Responses Success Result Compromise 

1, 1, 4 Success DK(1) = 1 Success 

1, 2, 4 Fail None Fail 

1, 3, 4 Fail None Fail 

2, 1, 1 Fail None Fail 

2, 2, 4 Success DK(1) = 2 Fail 

2, 3, 4 Fail None Fail 

 

Following the same procedure, the indices missing in 

the queries that obtained a response of 3 or higher go 

into the set of G and the indices missing in the queries 

that obtained a response of 2 or lower go into the set of 

H. We get the following sets: 
 

{1,3}, {2,4}G h= =  

 

Notice both sets contain the same elements as our 

first scenario! We will not proceed with the steps since 

the procedure would yield the same responses. If we 

follow the procedure on the two remaining scenarios, we 

will obtain the same sets and responses. In addition, we 

have an extra uncertainty since we obtained 3 different 

medians instead of 2. In the next section, we explain how 

an inference attacker could go about when obtaining 

results that do not go accordingly to the standard 

inference procedure.  

Earlier in the section, we mentioned how some 

elements are protected from compromise, as they are 

never the response to any query. Because of 

randomization, those elements that used to be safe from 

compromise are not necessarily completely safe anymore. 

This can be observed by looking at the uncertain 

compromise of DK(1) = 1. Before, with a size of k = 3, the 

value of 1 would never be a possible response of any 

combination of 3 elements from the 5 element database. 

However, when we choose to select the previous element 

relative to the median, we now use that element as part of 

a response. Either way, our goal is not to protect specific 

elements, but to ensure that the database is overall secure.  

Modifications to the Inference Procedure  

There were simpler randomization implementations 

that successfully broke the standard inference procedure. 

However, simple changes to the procedure would yield a 

successful compromise. One modification was shown 

earlier. We changed the values of g and h to be 

inequalities instead. However, it gets more complicated 

than that. Our database and query sizes were small. For 

larger values of N and k, we obtain results that are not as 

friendly. For instance, for k = 7, we could get 6 repeated 

medians and 2 different medians for our initial k+1 

queries. To explain these modifications, suppose we do 

not apply the proposed randomization technique. Instead, 

we apply a similar technique as the one described in 

(Garcia et al., 2010): Instead of adding a random element 

from the database, we will remove the median value of 

the query and return the median of the new query. 

Consider the following sample database (Table 5). 

We let our size of k = 5 and compute p = (5+1)/2 = 

3. We produce our k+1 queries and get the following 

responses: 

 

f(DK(1), DK(2), DK(3), DK(4), DK(5)) = f(4, 2, 1, 8, 9) 

= f(1, 2, 4, 8, 9) = 8 

f(DK(1), DK(2), DK(3), DK(4), DK(6)) = f( 4, 2, 1, 8, 6) 

= f(1, 2, 4, 6, 8) = 6 

f(DK(1), DK(2), DK(3), DK(5), DK(6)) = f(4, 2, 1, 9, 6) 

= f(1, 2, 4, 6, 9) = 6 

f(DK(1), DK(2), DK(4), DK(5), DK(6)) = f(4, 2, 8, 9, 6) 

= f(2, 4, 6, 8, 9) = 8 

f(DK(1), DK(3), DK(4), DK(5), DK(6)) = f(4, 1, 8, 9, 6) 

= f(1, 4, 6, 8, 9) = 8 

f(DK(2), DK(3), DK(4), DK(5), DK(6)) = f(2, 1, 8, 9, 6) 

= f(1, 2, 6, 8, 9) = 8 

 

Because our queries are of even size, we choose the 

higher value median as our query’s response. At this point, 

it is impossible to divide the indices evenly in two different 

sets. However, we can still choose our value of g and h to 

be 6 and 8 respectively. We get the following sets: 

 

2

{1,2,3,6}

{4,5}

' {1,2}

{ } {1,2,4,5,7}
k

G

H

G

G H s
+

=

=

=

∪ ∪ =

 

 

As one can see, the set of G is much larger than the 

set of H. This will bring complications towards the end 

of the procedure. For now, we proceed as normal and 

request the following query: 

 

f(DK(1), DK(2), DK(4), DK(5), DK(7)) = f(4, 2, 8, 9, 5) 

= f(2, 4, 5, 8, 9) = 8 
 

We make the observation DK(7) < 8. We form the 

following sets: 

 

0

2

{4}

{ } {1,2,3,6,7}
K

H

G s
+

=

∪ =
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Table 5: Sample database (Example III) 

S DK(S) 

1 4 

2 2 

3 1 

4 8 

5 9 

6 6 

7 5 

 
The standard procedure requires forming queries 

from the combination of H0 and every combination of p 
elements in G∪{sk+2}. However, this is no longer 
possible because H0 contains one element and p = 3. In 
this case, our queries would have to be of size 4 which 
cannot be done. Instead, we form every query that can be 
made from the combination of H0 and every combination 
of required elements to make queries of size k. We get 
the following queries and responses: 

 

f(DK(1), DK(2), DK(3), DK(4), DK(6)) = f(4, 2, 1, 8, 6) 

= f(1, 2, 4, 6, 8) = 6 

f(DK(1), DK(2), DK(3), DK(4), DK(7)) = f(4, 2, 1, 8, 5) 

= f(1, 2, 4, 5, 8) = 5 

f(DK(1), DK(2), DK(4), DK(6), DK(7)) = f(4, 2, 8, 6, 5) 

= f(2, 4, 5, 6, 8) = 6 

f(DK(1), DK(3), DK(4), DK(6), DK(7)) = f(4, 1, 8, 6, 5) 

= f(1, 4, 5, 6, 8) = 6 

f(DK(2), DK(3), DK(4), DK(6), DK(7)) = f(2, 1, 8, 6, 5) 

= f(1, 2, 5, 6, 8) = 6 

 
The standard procedure requires a median to occur p 

times and a second median to occur only once. We do 
not have a median that occurs p times because we got 
more than p+1 queries. However, we still managed to get 
two unique medians. One that occurred more than p 
times and another that occurred only once. We apply the 
same conclusion and obtain: 
 

(6) 6DK =  

 
Despite the differences, we compromised an element 

by following the same procedure with a few 
modifications. These modifications showed successful 
compromises for many of our different tests. The 
modifications are formally described as follows: 

Modification #1: We will make a sorted list of the 

medians obtained from our first k+1 queries. Because k 

is odd, we will obtain an even number of medians. We 

find the lower and higher value median from the list of 

medians. If they are different, we say that g is less than 

or equal to the lower median and h is greater than or 

equal to the higher median. If both medians are equal, 

we take the following approach. We make a sorted list of 

the unique medians (remove repetitions) and repeat the 

previous process in this new list. If the length of the 

unique median list is odd, we say that h is greater than or 

equal to the median of the list and g is less than the 

median of the list. The following examples summarizes 

the different possibilities for query sizes of k = 5:  
 

Medians: 1, 1, 2, 3, 4, 5 → g ≤ 2, h ≥ 3 

Medians: 1, 2, 2, 2, 4, 5→ Unique Medians: 1, 2, 4, 5 → 

g ≤ 2, h ≥ 4 

Medians: 2, 2, 2, 2, 4, 5 → Unique Medians: 2, 4, 5 → g 

< 4, h ≥ 4 

 
Modification #2: Due to randomization, it is possible 

for the query made from the elements in G’∪H∪{sk+2} 
to yield a response less than the value of h. If this 
happens, we apply the same observation as if we had got 
the value of h, i.e., DK(sk+2) < h.  

Modification #3: For the last queries, we may be able 

to make more or fewer than p+1 queries because we 

obtained different sizes for the sets G and H. We will 

combine the set of H0 with every combination of x 

elements of G∪{sK+2}, where x = k – size of H0. 
Modification #4: Because we may obtain more or 

fewer than p+1 queries in the end, we change the number 
of occurrences of one median to be greater than or equal 
to 2. The second median is still required to occur once. 

Note the modifications implemented do not affect the 
standard procedure. One can apply the inference 
procedure with the modifications described above to a 
database without randomization and obtain the exact same 
results. At this point, let us define what will be considered 
as a fail procedure. A fail procedure can occur if and only 
if one of the following conditions is present: 
 

• The initial k+1 queries yield the same median, i.e., 

we obtain one unique median 

• We obtain one or more than two unique medians 

from the last queries, or 

• We do not obtain one median with one occurrence 

and another median with the remaining occurrences 
 

As stated earlier, a successful procedure is not 
necessarily a successful compromise. The inference 
attacker cannot tell if the successful procedure is a 
successful compromise. In other words, the obtained 
result from the inference procedure can be incorrect (as 
shown previously). In the next section, we explain our 
simulation approach and the analysis of our results.  

Results and Discussion 

In this section, we discuss the simulation and analyze 
it. Also, we point out the error magnitude and accuracy 
level. Furthermore, we describe how to implement 
randomization on an existing database. 

Simulation Results and Analysis 

For our research, we implemented a simulation to 

simulate statistical queries of type median using our 
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proposed randomization technique. The queries 

requested are made with the intention to compromise 

database elements using the modified inference 

procedure. The entire simulation was done under the 

assumption that all elements are pairwise distinct. This is 

certainly the assumption in the theorem that is the basis 

of the simulation. For each of the different parameters, 

the simulation was run a million times on randomly 

generated databases. We set our database size to be N = 

500 for all iterations with distinct values ranging from 0 

to 999. Every 10 iterations, a new database with new 

distinct values is randomly generated. For our test cases, 

we use of the following values for k: 

 

5,  15,  25,  45,  95  

 

For each value of k, we have a simulation for the 

following values of the tolerance number t: 

 

1,  2,  5,  10,  20,  50  

 
To show our results, we will be looking at two 

different sets of graphs. The first set summarizes the 
obtained results from the inference procedures done in 
each of the simulations. The second set summarizes the 
frequencies of type of values returned as a query 

response, i.e., frequency of i, j, m, n, or p responses. 
Each graph summarizes all the results from all 
simulations done on a value of k. The following 5 graphs 
(Fig. 2-6) show the inference procedure results. 

By looking at the charts, we can make the following 

observations: 

 

• As the value of t increases, so does the fail 

procedure percentage 

• As the value of k increases, the percentage of 

successful compromises increases slightly and the 

percentage of incorrect results increases slightly 

• As the value of k increases, the percentage of fail 

procedures decreases 

 

The observations were as expected. The third 

observation correlates with the example given earlier of 

the sample database made up of consecutive values. In 

that example, we showed that the percentage of a 

successful compromise was 16.67% and the percentage 

of fail procedures was 66.67% which seems to be the 

direction of the percentage as the value of k gets closer to 

the value of N. 

The following graphs (Fig. 7-11) show the response 

frequencies for the simulated queries. 

 

 

 

Fig. 2: Inference procedures k = 5 
 

 

 

Fig. 3: Inference procedures k = 15 
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Fig. 4: Inference Procedures k = 25 
 

 
 

Fig. 5: Inference procedures k = 45 
 

 
 

Fig. 6: Inference procedures k = 95 
 

 
 

Fig. 7:  Query response frequencies k = 5 
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Fig. 8: Query response frequencies k = 15 

 

 
 

Fig. 9: Query response frequencies k = 25 
 

 
 

Fig. 10: Query response frequencies k = 45 

 

There are three observations we can make here: 

 

• As the value of t increases, so do the frequencies of i 

and j responses 

• As the value of k increases, so does the frequency of 
m responses 

 
As the value of k increases, a higher value of t is needed 

to increase the frequency of i and j responses 
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Fig. 11: Query response frequencies k = 95 
 

The observations were as expected as well. As the 

tolerance increases, it is more probable to find an i or j 

value. Similarly, as the query size increases, we are less 

likely to get randomly elements with an i or j value 

(because there are fewer elements in the database to choose 

from). Therefore, the frequency of responses of type m 

increases. By the same token, the tolerance number may not 

need to be very large for query sizes that are relatively close 

to the size of the database. Since there are fewer values to 

choose from, one needs fewer tries to find such a value.  

Based on these observations and the ones made on 

the inference procedure results, we came up with the 

following conclusions: 

 

• i or j responses decrease the rate of successful 

compromises 

• The higher the tolerance, the more likely one is to 

find an i or j value 

• Higher tolerances are needed as query size increases 

(although this depends on the size of N as well) 

 

Using these conclusions, we can determine an 

appropriate tolerance for some specific database. One 

can see from the results that with a tolerance of 5, 

randomization stops about 97% of the inference 

procedures. More importantly, it is impossible for the 

attacker to know whether a correct or incorrect result 

was obtained from the remaining procedures.   

It is important to analyze the validity of the simulation 

parameters in real databases. In this simulation, we have 

sampled queries that are completely random. In reality, 

this may not be the case. Requestors may want statistical 

information on certain indices that just happen to lie in a 

subset of the entire database. Imagine asking for the 

medians of certain queries that are comprised entirely of 

indices whose responses, once sorted, would lie in the 

middle 20% of the database. In such scenario, the other 

80% of the database elements would not yield any 

contribution to randomization because those elements 

cannot be i or j values. If this were to occur (whether it is 

intended or not), it would mimic a smaller database. That 

is, the value of k would be closer to N. As described from 

our observations, a larger tolerance number would benefit 

these cases. Nonetheless, randomization still protects 

databases under these conditions due to the possibility of 

incorrect results and the uncertainty of the inference 

procedure. However, it is still recommended for the 

database managers to pick adequate tolerance number 

depending on the type of information being served by the 

database and its performance requirements. 

Errors and Other Remarks 

Earlier, we briefly discussed the error introduced. At 

worst, the error in the query response is the previous or 

next element. This error can be very big or very small 

depending on the type of data. However, relative to the 

given query, the error is relatively small. By the same 

token, the error obtained from the inference procedure on 

randomized queries is also small. In other words, the 

results obtained by the attacker are relatively close to the 

real result (and in some cases, as shown, the actual result). 

It is the number of fail procedures and level of uncertainty 

what makes randomization a secure approach. 

Throughout our tests, we ran different implementations 

that were not useful for queries of type median. The 

removal of the median from every query was shown 

earlier to fail against some procedure modifications. The 

only other method that showed favorable results was a 

similar approach to the one we suggest. In fact, it was tested 

before and gave better results than the current suggested 

technique. However, it was not a viable option for most 

databases as it required to search the entire database on 

every query. The method consisted of using the gaps to 

find the value closest to the median in the specific range. 

The results were more consistent throughout queries, 

which gave more incorrect results to the attacker.   

One important thing to note is that we tested this 
technique on databases composed of distinct values. 
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Databases may contain repeated values. If the value of p 
is equal to the value of m, one could change the value of 
p to be the previous different value element in the sorted 
query. Hence, a gap could still be used. However, this 
will increase the relative error since one is moving 
further away from the median, relative to the query. 
Although we believe randomization does provide 
security for databases including repetitions, we did not 
test such a claim. Our implementation depends on the 
tolerance number and relative error and is subjective to 
the number of repetitions present.  

Implementation of Randomization to Existing 

Databases 

To determine the appropriate value to use as part of 

the randomization technique, we had to find the median 

of the query. The steps followed up to that point are the 

same steps followed as if randomization was not used. 

The associated query values must be found and sorted. 

Then, the median value is found and returned. With 

randomization, one follows the exact same process but 

adds the randomization step after finding the median 

value. In other words, implementing randomization into 

an existing database is relatively simple. Before the 

median is returned, the analysis of the gaps is made and 

an attempt to retrieve an element fitting in the 

appropriate gap based on the appropriate case is made 

(up to as many times as the selected tolerance). If the 

value is found, it is returned. Otherwise, the true median 

already found is returned. With randomization, the extra 

calculations are finding the I and J magnitudes, 

requesting a random element from the database and 

checking if the value is in the range involving the largest 

gap. The last two steps are repeated as many times as the 

manager needs to (determined by analyzing the trade off 

between security and performance).  

Conclusion  

Randomization is a technique simple to implement on 

existing databases. It can protect private information 

from statistical queries of type median by ensuring low 

probabilities of successful inference attacks. Despite 

being possible to attain a correct inference, it is 

impossible for the attacker to be certain of the inference 

results because of the uncertainty obtained during the 

inference procedure. The simulation results are 

favorable and demonstrate the security it offers. As 

shown, it is still dependent on the database manager to 

choose the correct parameters to meet the needs of the 

database. In conclusion, we see randomization as a 

viable option for statistical databases that need to 

provide statistical information and are limited by the 

current inference control techniques.   
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