

© 2018 Budi Yulianto, Harjanto Prabowo, Raymond Kosala and Manik Hapsara. This open access article is distributed under

a Creative Commons Attribution (CC-BY) 3.0 license.

Journal of Computer Science

Original Research Paper

Novice Programmer = (Sourcecode) (Pseudocode) Algorithm

1
Budi Yulianto,

2
Harjanto Prabowo,

3
Raymond Kosala and

4
Manik Hapsara

1Computer Science Department, School of Computer Science,

Bina Nusantara University, Jakarta, Indonesia 11480
2Management Department, BINUS Business School Undergraduate Program,

Bina Nusantara University, Jakarta, Indonesia 11480
3Computer Science Department, Faculty of Computing and Media,

Bina Nusantara University, Jakarta, Indonesia 11480
4Computer Science Department, BINUS Graduate Program - Doctor of Computer Science,

Bina Nusantara University, Jakarta, Indonesia 11480

Article history

Received: 7-11-2017
Revised: 14-01-2018
Accepted: 9-04-2018

Corresponding Author:
Budi Yulianto
Computer Science Department,
School of Computer Science,
Bina Nusantara University,
Jakarta, Indonesia 11480
Email: jibril_budi@yahoo.com

Abstract: Difficulties in learning programming often hinder new students

as novice programmers. One of the difficulties is to transform algorithm in

mind into syntactical solution (sourcecode). This study proposes an

application to help students in transform their algorithm (logic) into

sourcecode. The proposed application can be used to write down students’

algorithm (logic) as block of pseudocode and then transform it into selected

programming language sourcecode. Students can learn and modify the

sourcecode and then try to execute it (learning by doing). Proposed

application can improve 17% score and 14% passing rate of novice

programmers (new students) in learning programming.

Keywords: Algorithm, Pseudocode, Novice Programmer, Programming

Language

Introduction

Programming language is a language used by
programmers to write commands (syntax and semantics)
that can be understood by a computer to create a
program (TechTerms, 2011). The development of today's
technology has encouraged the public interest to learn
programming that becomes the prospect and business
opportunity (Microsoft, 2015). Based on Developers
Survey in 2015 (Stack Overflow, 2015), most of them
study programming languages by self-learning or
autodidact (41.8%), bachelor in CS (37.7%), magister in
CS (18.4%), work training (36.7%), industry
certification (6.1%), boot camp (3.5%), doctoral in CS
(2.2%), mentorship program (1.0%) and others (4.3%).

Garner research shows that there are 3 obstacles or

difficulties in learning programming (Shuhidan et al.,

2011). First is errors in writing syntax like missing

semicolon and curly bracket. Second is difficulties in

understanding and designing a program. Third is

difficulties in understanding the basic structure of a

program. These three difficulties often hinder new

student as a novice programmer to learn programming

(Layona et al., 2017).
Novice programmers need some tools to overcome

those difficulties (Yulianto et al., 2016a; Yulianto and
Prabowo, 2017). This also applies to early semester

students in some universities that are new to
programming and have not mastered it. In addition,
some universities (especially in rural areas or with
limited budget) do not have tools that can help their new
students in learning programming (Yulianto et al., 2016b).

Previous researches shown that there are several
educational tools to support students in starting learning
programming (Yulianto et al., 2013). All are operated in
offline, online, or both ways (Brandão et al., 2012).
Some popular applications are Scratch, Alice, Blockly
and Pencil Code (Ebrahimi et al., 2013; Bau et al.,
2015). Scratch can help novice programmers to learn
algorithm by using animation or game (Brandão et al.,
2012; Ebrahimi et al., 2013). Alice can improve novice
programmers’ motivation in learning programming by
using 3D concept and its interactivity. Blockly and Pencil
Code implement block of pseudocode to help novice
programmers in transforming their algorithm into
pseudocode (Bau et al., 2015). Block of pseudocode is a
concept of presenting pseudocode in a block-based rather
than in text-based (Weintrop, 2015). Unfortunately, those
applications don’t generate the pseudocode into sourcecode
to let novice programmers try to modify and learn from it.

Pears and Jordine apply game tool named RoboCode
to help their students in sharpening logic (Pears et al.,
2007; Jordine et al., 2014). RoboCode is a Java and
.NET programming game for developing a robot tank to

Budi Yulianto et al. / Journal of Computer Science 2018, 14 (4): 477.484

DOI: 10.3844/jcssp.2018.477.484

478

battle against other tanks. The robot battles are running in
real-time and on-screen (http://robowiki.net). Hundhausen
and Vivian use LightBot to let their students solve a
puzzle by using programming logic (Hundhausen et al.,
2009; Vivian et al., 2014).

Other tools have been applied to help their students,
such as Jeroo (Pears et al., 2007), Kodu (Sentance and
Schwiderski-Grosche, 2012), Pencil Code (Vivian et al.,
2014), Cargo-Bot and Move the Turtle (Grantham, 2011).
Jeroo is an effective classroom-tested tool that helps
novices learn fundamental concepts of object-oriented
programming (www.jeroo.org and
http://home.cc.gatech.edu/dorn/jeroo). Kodu lets students to
create games on PC and Xbox via a simple visual
programming language (https://www.kodugamelab.com).
Pencil Code is used for learning professional programming
languages by using an editor that lets students work in
blocks (https://pencilcode.net/). Cargo-Bot is a puzzle game
to teach a robot how to move crates
(https://twolivesleft.com/CargoBot/). Move the Turtle
teaches students the basics of programming
(http://movetheturtle.com/). Unfortunately, those tools don’t
provide a feature of conversion to programming language
source code to lets students modify and execute it in real
environment (learning by doing).

Based on that problems, this study proposes an
approach by using application for new students to convert
their algorithm in mind into block of pseudocode, then
generate it into a selected programming language
(sourcecode). After that, students can try to modify and

execute the generated sourcecode (learning by doing)
(Yulianto et al., 2017). By this method, students can
overcome the difficulties in transforming their algorithm
into programming language.

Converting a data type to another in a programming

language is called ‘type casting’ and symbolized with

round brackets ‘()’. That’s why this study is titled “Novice

Programmer = (Sourcecode) (Pseudocode) Algorithm”,

which means converting algorithm in mind into pseudocode

and then into sourcecode for novice programmers.

Data Collection

Software development method used in this study is
Rational Unified Process (RUP). This study is not
focusing in RUP discussion since it’s a common
method and easily to be learned. Data collection is
gathered by distributing questionnaire to 129 students.
Questionnaire results will be a foundation in
developing the purposed application. Based on the
results, most respondents learn C or C++ in early
semester (Table 1). After early semester, most
respondents learn PHP, PL/SQL, HTML/JavaScript,
Java, or C# in next semesters. Most respondents
recommend C, C++ and Java as first programming
languages to be learned by new students (Fig. 1). This
application provides C, C++ and Java to be selected
by students when converting pseudocode into a
programming language. Students can select which
programming language to be used.

Fig. 1: First programming languages recommendation

3 (2.3%)

4(3.1%)

44 (34.1%)

95(73.6%)

24 (18.6%)

0 (0%)

0 (0%)

28 (21.7%)

34 (26.4%)

0 (0%)

2 (1.6%)

1 (0.8%)

12 (9.3%)

12 (9.3%)

24 (18.6%)

0 (0%)

0 (0%)

1 (0.8%)

2 (1.6%)

2 (1.6%)

0 (0%)

0 10 20 30 40 50 60 70 80 90

Assembly

C

C++

C#

Delphi/Pascal

Go

Groovy

HTML/JavaScript

Java

Matlab

Objective-C

Perl

PHP

PL/SQL

Python

R

Ruby

Swift

VB

VB .NET

Other

Budi Yulianto et al. / Journal of Computer Science 2018, 14 (4): 477.484

DOI: 10.3844/jcssp.2018.477.484

479

Table 1: Programming language learned in early and next
semester

Prog. Lang. 1 2 3 4 5

C 50 64 2 11 2
C++ 45 38 9 34 3
C# 32 5 41 29 22
Delphi / Pascal 7 15 6 11 90
HTML / JavaScript 29 8 65 16 11
Java 27 16 42 35 9
PHP 12 4 80 8 25
PL/SQL 14 7 78 12 18
Python 9 15 23 18 64
VB 11 11 17 18 72
VB.NET 5 6 29 12 77
1Learn in the early semester and continue
2Learn in the early semester but not continue
3Learn in next semester (after first programming language)
and continue

4Learn in next semester (after first programming language)
and not continue

5Never learn

Table 2: Common mistakes in writing sourcecode

Mistake 1 2 3 4

Statement operator 62 13 54 0
e.g., { } () [] ; .
Assignment and arithmetic operator 57 8 64 0
eg., = + - / * % ++ --
Relational Operator 68 13 48 0
e.g., <<= >>= == !=
Logical operator 81 18 30 0
e.g., && || ^ !
Data type and variable 66 14 49 0
Input/output 57 17 55 0
Selection 62 15 52 0
e.g., if-else, switch case
Repetition 70 20 39 0
e.g., for, do-while, while
1Often happens at the beginning, but less in next
2Often happens at the beginning and next
3Rarely happens at the beginning
4Never happen

Table 3: Features to be developed

Features Respondents

Save and open (pseudocode) project 62
Copy, edit, delete the sequence or logic 47
Undo/redo 56
Error message 87
Convert pseudocode to sourcecode 86
Pseudocode templates 71
Others 9

Half of respondents often make more errors at the

beginning of learning programming, but make less in the

next learning. Another half respondents make less errors

at the beginning of learning (Table 2). This means that

they can overcome the errors along the time of learning.

However, this application will provide features to help

student in minimizing those errors.

Table 4: Chapter number of topic in text book

Topics 1 2 3 4 5 X

Input/Output 2 2 3 2 2 2.2
Variable 2 2 3 2 2 2.2
Assignment 2 2 3 2 2 2.2
Data type 3 2 4 3 2 2.8
In.& decrement 4 3 5 4 2 3.6
Logical operator 4 3 5 4 2 3.6
Selection 4 3 5 4 4 4.0
Repetition 5 4 6 5 4 4.8
Function 6 5 7 6 6 6.0
Array 7 6 7 7 3 6.0
Pointer 8 7 - - - 7.5

Some features that are needed by novice

programmers to help them in learning programming are

also listed on Table 3. Topics are sorted based on

chapters in text books (Table 4). Basic topics (top 5 from

average, symbolized with ‘X’) will be converted as

application features in creating block of pseudocode.

This average method is used to rank which ones to be

basic topics based on smaller score.

Proposed System

System is proposed as a web-based application. Main

window is divided in 4 sections (Fig. 2). First section

(top left) provides students to create new project or open

existing one (on Project tab). Students can also choose a

provided pseudocode template, so they don’t need to

start from blank. On Program Control tab, students

can declare variable, add input/output, selection,

repetition and assignment statement. Second section (top

right) provides tutorial (PDF type) for students. So, they

can choose and read the tutorial during creating the block of

pseudocode. Third section (bottom left) displays the results

of block of pseudocode. Students can also edit, move and

delete block of pseudocode and generate it into sourcecode

of a selected programming language. Last section (bottom

right) will display generated source code and students can

download it. There are also options to generate block of

pseudocode into textual pseudocode form (downloadable as

a text file) or flowchart image (downloadable as a JPG on

Flowchart tab on third section).

When students create a repetition (for) statement, a

pop-up window will be displayed for step 1 (variable
source). Student selects a variable source (from existing
code, or creating new one), data type, variable name and
value (Fig. 3). Student can select variable value from
existing variable or insert new value (custom). On step 2
(condition), student selects a variable to be compared to

another variable or a value. Student can also add
additional conditions in this step. On step 3
(increment/decrement), student selects a variable and set
as increment or decrement. Student can go back to
previous step. After all steps done, block of pseudocode
is displayed. Student can generate it into a programming

Budi Yulianto et al. / Journal of Computer Science 2018, 14 (4): 477.484

DOI: 10.3844/jcssp.2018.477.484

480

language. It is also able to create a ‘do-while’ or ‘while’
statement besides ‘for’.

When student creates a text (output) statement, a pop-
up window will be displayed (Fig. 4). Student inputs a

text to be displayed and can be combined with ASCII
code or escape sequence. After that, block of pseudocode
is displayed and student can generate it into a
programming language.

Fig. 2: Main window (4 sections)

(a) (b)

Budi Yulianto et al. / Journal of Computer Science 2018, 14 (4): 477.484

DOI: 10.3844/jcssp.2018.477.484

481

(c) (d)

.
(e)

Fig. 3: Creating ‘for’ (repetition) statement: (a) parameter 1, (b) parameter 2, (c) parameter 3, (d) block of code, (e) sourcecode

(a) (b)

(c)

Fig. 4: Creating text (output) statement: (a) text to be printed (b) block of code (c) sourcecode

Budi Yulianto et al. / Journal of Computer Science 2018, 14 (4): 477.484

DOI: 10.3844/jcssp.2018.477.484

482

When a student creates an arithmetic statement, a

pop-up window will be displayed (Fig. 5). Student

selects an existing variable, operand 1, operator and

operand 2. Each operand can be dropped down into a sub

arithmetic expression (also consists of operand 1,

operator and operand 2). After that, block of pseudocode

is displayed and student can generate it into a

programming language.

Evaluation

Evaluation is conducted by doing an experiment to

260 first semester students in computer laboratory

(divided in 2 groups of 130 students). All are new

students who have learned basic Java programming

theory (I/O, variable, data type) and introductory of

selection and repetition structure. Group 1 is for

traditional learning without using this application and

Group 2 is using. By giving same pretest (an

arithmetic case), both groups are statistically indicated

as normal and homogeneous population and have

same average of score. Average pretest score for

Group 1 is 53.53 and Group 2 is 54.24.

Due to limitation of computer laboratory capacity,

each group is divided in 4 class sessions of 32-33 students.

Instructor (same for all sessions) provides a demo of using

the application for Group 2 and then the students try.

Next, instructor gives same posttest (arithmetic case,

different from pretest). All students for both groups are

given time for thinking the solution (algorithm) in 5 min

and write on white paper. After that, students in Group 1

are writing the code directly by using TextPad.

Students in Group 2 start to transform their algorithm

into block of pseudocode by using the application and

then generate it into Java programming languages

(source code). The source code is downloaded and

then compiled by using TextPad to check its accuracy

for both error free and algorithm correctness. Both groups

are given the same duration of 30 min to finish the

posttest. After the session, questionnaire is distributed to

students in Group 2 to evaluate the application

subjectively. Results are shown on Table 5.

(a) (b)

(c)

Fig. 5: Creating aritmethic statement: (a) operand and operator (b) block of code (c) sourcecode

Budi Yulianto et al. / Journal of Computer Science 2018, 14 (4): 477.484

DOI: 10.3844/jcssp.2018.477.484

483

Table 5: Results of Evaluation

Subject Yes (%) No (%)

Application is easy to use 92.3 7.7
Application UI is attractive 69.2 30.8
Application can help in learning programming 97.7 2.3
Interest to use the application to start learning other programming language 94.6 5.4
Generating sourcecode is quite fast 73.8 26.2
Generated sourcecode is accurate (no error) 100.0 0.0

At the end, instructor collects all source code files

from both groups and compile it one by one. All source

code files from Group 2 are error free (in line with the

questionnaire results). After that, scoring of all students

from both groups is done by checking syntax, I/O, data

type, conditional expression, selection, etc. Average score

of Group 1 is 70.95 from 100 (with lowest score is 50 and

highest is 88). Average score of Group 2 is 87.16 (with

lowest score is 59 and highest is 100).

Conclusion

Based on the experiment conducted on this study,
it can be concluded that this proposed application can
help novice programmers in writing their logic
(algorithm) in the form of block of pseudocode, then
generate it into source code. Generated source code
can be downloaded according to the provided
programming language and then students can modify
and learn from it (learning by doing). Additionally,
this application is also accessible on various devices,
both PC and mobile.

This study has limitation of comparing the

duration of finishing the posttest (how many students

finish the posttest earlier). Further research can

include the time calculation, effectiveness in learning

or improving programming or problem-solving skills

and easiness of learning or migrating the new

programming languages.

Acknowledgment

This research is funded by the Ministry of Research,

Technology and Higher Education of the Republic of

Indonesia through Doctoral Dissertation Grant (contract

number of 039A/VR.RTT/VI/2017); and supported by

Doctor of Computer Science, Bina Nusantara University.

Thanks to Everald Kevin Setiadi, Henry Febryan and

Calvyn Julian in developing the prototype.

Author’s Contributions

Budi Yulianto: Lead research project, coordinate

developer, doing experiment and write the manuscript.

Harjanto Prabowo: Advise research project,

design the experiment, data analysis and write

manuscript.

Raymond Kosala: Advise research project, design
the application, data analysis, write manuscript and
proof reading.

Manik Hapsara: Advise research project, design
the research, methodology, data analysis, write
manuscript and proof reading.

Ethics

Authors confirm that this manuscript has not been
published elsewhere and that no ethical issues are
involved.

References

Bau, D., D.A. Bau, M. Dawson and C. Pickens, 2015.
Pencil code: Block code for a text world.
Proceedings of the 14th International Conference on
Interaction Design and Childre, Jun. 21-24, ACM
New York, NY, USA, pp: 445-448.

 DOI: 10.1145/2771839.2771875

Brandão, L.D., R. da Silva Ribeiro and A.A. Brandão,

2012. A system to help teaching and learning

algorithms. Proceedings of the Frontiers in

Education Conference, Oct. 3-6, IEEE Xplore Press,

Seattle, WA, USA, pp: 1-6.

 DOI: 10.1109/FIE.2012.6462374

Ebrahimi, A., S. Geranzeli, T. Shokouhi and E.R. Tee,

2013. Programming for children; “Alice and scratch

analysis. Proceedings of the 3rd International

Conference on Emerging Trends of Computer and

Information Technology, Nov. 6-7, ResearchGate
GmbH, Singapore, pp: 106-115.

Grantham, N., 2011. 9 sites that make programming for

kids fun. Fractus Learning.

Hundhausen, C.D., S.F. Farley and J.L. Brown, 2009.

Can direct manipulation lower the barriers to

computer programming and promote transfer of

training? An experimental study. ACM Trans.

Computer-Human Interact., 16: 13-13.

 DOI: 10.1145/1592440.1592442

Jordine, T., Y. Liang and E. Ihler, 2014. A mobile-

device based serious gaming approach for teaching

and learning Java programming. Proceedings of the

Frontiers in Education Conference, Oct. 22-25,

IEEE Xplore Press, Madrid, Spain, pp: 1-5.

 DOI: 10.1109/FIE.2014.7044206

Budi Yulianto et al. / Journal of Computer Science 2018, 14 (4): 477.484

DOI: 10.3844/jcssp.2018.477.484

484

Layona, R., B. Yulianto and Y. Tunardi, 2017. Authoring
tool for interactive video content for learning
programming. Proc. Comput. Sci., 116: 37-44.

 DOI: 10.1016/j.procs.2017.10.006
Microsoft, 2015. Three out of four students in Asia

Pacific want coding as a core subject in school,
reveals Microsoft study.

Pears, A., S. Seidman, L. Malmi, L. Mannila and E.
Adams et al., 2007. A survey of literature on the
teaching of introductory programming. ACM
SIGCSE Bull., 39: 204-223.

 DOI: 10.1145/1345443.1345441
Sentance, S. and S. Schwiderski-Grosche, 2012.

Challenge and creativity: Using .NET gadgeteer in
schools. Proceedings of the 7th Workshop in
Primary and Secondary Computing Education,
Nov. 08-09, ACM New York, USA, Hamburg,
Germany, pp: 90-100.

 DOI: 10.1145/2481449.2481473
Shuhidan, S.M., M. Hamilton and D. D'Souza, 2011.

Understanding novice programmer difficulties via
guided learning. Proceedings of the 16th Annual
Joint Conference on Innovation and Technology
in Computer Science Education, Jun. 27-29, ACM
New York, NY, USA, Darmstadt, Germany,

 pp: 213-217. DOI: 10.1145/1999747.1999808
Stack Overflow, 2015. Developer survey 2015.

http://stackoverflow.com/research/developer-

survey-2015
TechTerms, 2011. Programming Language.

https://techterms.com/definition/programming_lang
uage

Vivian, R., K. Falkner and C. Szabo, 2014. Can
everybody learn to code?: Computer science
community perceptions about learning the
fundamentals of programming. Proceedings of the
14th Koli Calling International Conference on
Computing Education Research, Nov. 20-23, ACM
New York, NY, USA, Koli, Finland, pp: 41-50.
DOI: 10.1145/2674683.2674695

Weintrop, D., 2015. Minding the gap between blocks-

based and text-based programming. Proceedings

of the 46th ACM Technical Symposium on

Computer Science Education, Mar. 04-07, ACM

New York, USA, Kansas City, Missouri,

 pp: 720-720. DOI: 10.1145/2676723.2693622

Yulianto, B. and H. Prabowo, 2017. Effective digital

contents for computer programming learning: A

systematic literature review. Adv. Sci. Lett., 23:

4733-4737. DOI: 10.1166/asl.2017.8877

Yulianto, B., E. Heriyanni, R.E. Sembiring, R. Amalia

and R. Fridian, 2013 Aplikasi pembelajaran

algoritma dasar interaktif berbasiskan computer

assisted instruction. ComTech: Comput., Math. Eng.

Applic., 4: 1255-1266.

 DOI: 10.21512/comtech.v4i2.2611

Yulianto, B., H. Prabowo and R. Kosala, 2016a.

Comparing the effectiveness of digital contents for

improving learning outcomes in computer

programming for autodidact students. J. e-Learn.

Knowl. Society.

Yulianto, B., H. Prabowo, R. Kosala, amd M. Hapsara,

2016b. MOOC architecture model for computer

programming courses. Proceedings of the

International Conference on Information

Management and Technology, Nov. 16-18 IEEE

Xplore Press, Bandung, Indonesia, pp: 35-40.

 DOI: 10.1109/ICIMTech.2016.7930298

Yulianto, B., H. Prabowo, R. Kosala and M. Hapsara,

2017. Harmonik = ++(Web IDE). Proc. Comput.

Sci., 116: 222-231.

 DOI: 10.1016/j.procs.2017.10.044

