

 © 2018 Han-Gyoo Kim. This open access article is distributed under a Creative Commons Attribution (CC-BY) 3.0 license.

Journal of Computer Science

Technical Reports

Effects of Design Factors of HDFS on I/O Performance

Han-Gyoo Kim

Department of Computer Engineering, Hongik University Seoul, Korea

Article history

Received: 11-01-2018
Revised: 28-02-2018
Accepted: 13-03-2018

Tel: 82-2-320-1469
Email: hgkim@hongik.edu

Abstract: Four major design factors of HDFS, the block size, the number

of data nodes, the number of client processes and replication factor are

investigated to find out the effects on the I/O performance of HDFS by

performing experiments in a real physical HDFS infrastructure consisting

of 64 Hadoop data nodes of Intel i9 based blades. The block size is

observed to be optimal when it equals to about 1Gb or 128MB that is the

amount of the data the hard disk drive device can effectively input and

output for 1 second in most of today’s off-the-shelf computers.

Sophisticated allocation strategy is required to determine the number of

mappers and reducers as the number of data nodes increase because the

overall performance is influenced in complicated manner by the number of

raw data blocks of the job to be processed, the processing time of the

blocks for each node and the overhead of shuffling. Experiments shows that

Hadoop distributes the work properly that the number of clients does not

have a significant impact as the number of clients increases. There is little

delay in copying the replica because replication is done in pipelined manner

although the network is overloaded.

Keywords: Network Integrated Storage, Big Data, Cloud Storage, Scalable

Storage, Huge Scale I/O

Introduction

Optimization of HDFS Data Processing

Hadoop as Operating System for Big Data Processing

The Hadoop Distributed File System (HDFS) and

other software systems that make up the Hadoop

Ecosystem are becoming increasingly valuable as an

operating system for processing Big Data (OPDi, 2017)

(Big Data, 2016) (Chaudhari et al., 2018). The

input/output performance of the HDFS and the

performance of the MapReduce layer implemented on

top of the HDFS should be guaranteed to realize high

performance application that reflects large data

characteristics with a large size and a relatively short life

cycle. A lot of researches have been reported to explore the

I/O performance of HDFS (Park, 2016; Shankar and Lin,

2017; Dev and Patgiri, 2014; Clemente-Castillo et al.,

2018), but few experimentation studies have been

reported on the optimal design factors of HDFS system

such as the block size and minimum number of data

nodes required. In this study, we have studied the factors

that determine the input/output performance of HDFS by

performing the actual performance experiments. To find

out the optimum design factors of the Hadoop cluster.

Distributed File System – HDFS

Although there is performance advantage through
parallel processing of HDFS, a representative distributed
file system supporting the Apache open source project
Hadoop (Apache, 2016), efficient data distribution
control is the most important design element of
distributed file system. It must cope with hardware
failure flexibly and ensure adequate performance
through proper resource management.

Features of HDFS

HDFS divides the file into blocks and the default size of

the HDFS block is 128MB. A node storing an HDFS block

is called a data node and usually a Hadoop cluster is

composed of several tens to thousands of data nodes. HDFS

distributes the blocks constituting a file to multiple data

nodes in order to process the file in parallel. The replicas of

each block are copied to other data nodes to provide the

reliability. This feature of HDFS is suitable for batch

operations requiring high data throughput (HDFS, 2017).

MapReduce

HDFS is a solution that divides a file into blocks of the
same size and stores them in data nodes distributed over the
network. MapReduce is a framework to process in parallel

Han-Gyoo Kim / Journal of Computer Science 2018, 14 (3): 304.309

DOI: 10.3844/jcssp.2018.304.309

305

large amount of data stored over the data nodes. The
Hadoop ecosystem 1.0 has failed to attract many analysts
and users familiar with relational database analysis systems
to Hadoop. To solve these problems, Hadoop ecosystem 2.0
adopted YARN (Yet Another Resource Negotiator) to
improve scalability and data throughput (YARN, 2017).

I/O Operations in Hadoop

Writing and Reading Hadoop Blocks

Figure 1 (HDFS, 2017) shows the process of storing

data blocks in HDFS. When a client of a Java Virtual

Machine (JVM) requests data storage, the data stream

class asks the name node for a list of data nodes to store

the blocks. The data stream class receives the returned

data node list from the name node and sends the blocks

to the data nodes in the list. HDFS prevents data loss by

duplicating the requested data block and storing it in

other data nodes in preparation for hardware failure of

the data node. When a replica is sent from the client to

the first data node in streaming mode, the first data node

receives the data stream and replicates the block and

transfers it to the second data node. After the block is

stored, each data node informs the client and the name

node that it has successfully stored the data.

Hadoop I/O Operations in MapReduce

MapReduce, the data processing framework of

Hadoop, is a process that causes a lot of data storage

device I/O and the network I/O. The efficient block

distribution and shuffling process of Hadoop system

determines big data processing performance (Anjos et al.,

2014). The shuffle/sort process sends and receives the

mapping results to the reducers through the network

connecting the data nodes that stores the intermediate data

blocks of the <key, value> records. The shuffling/sorting

process entails network I/O whose amount of time is

comparable to data block I/O time involved.

Formula for Data Processing Time of a Hadoop Job

Hadoop processing involves hashing for mappers and

shuffling and sorting for reducers as well as inputting

and outputting of HDFS data blocks. The following

formula elicits simple but solid model to estimate the job

completion time for a Hadoop task:

/ /

()

()

ElapsedTime Map HashTime Reduce SortTime

Block Input Hashing Output

Shuffle Sorting BlockOutput

= +

= + +

+ + +

Notice that individual factors in the formula are

intertwined such that improving a factor in the formula

often accompanies degenerating other factor. For

example, reducing the time for inputting the blocks

usually increases the network traffic for shuffling among

the nodes thus leading to the increase of shuffle time.

Fig. 1: HDFS block write

Distributed

file system
Namenode

2

12

1

3

11

HDFS

client FSDataOutputStream

DFSOutputStream

Create

Complete

5 4

9
Ack queue Data queue DataStreamer

Writing packet 7
10 Sending
ackonwledgment

packet 8 8

DataNode DataNode DataNode

10 10

6 DataNodes Pipeline

Han-Gyoo Kim / Journal of Computer Science 2018, 14 (3): 304.309

DOI: 10.3844/jcssp.2018.304.309

306

HDFS Design Factors that affects the I/O

Performance of Hadoop Systems

Factors that influence HDSF I/O performance include
the size of the block, the number of data nodes, the
number of clients and how many blocks to replicate.

Block Size

Blocks are the units for reading and writing in HDFS.
A file is divided into blocks, which are usually stored in
blocks of 64 MB or 128 MB. The smaller the block size,
the greater the block seek time. Conversely, if the size is
too large, the degree of parallelism of the data is lowered
and the efficiency of distributed processing is lowered.
Therefore, the size of the HDFS block should be set to be
optimal. Currently the default block size is set to 128MB.

Number of Data Nodes

If the number of nodes is increased, sufficient
performance improvement can be expected due to the
increase degree of distributed data processing in parallel.
However, each data node continuously communicates
with the name node, which causes overhead to increase
the network load. HDFS manages the nodes on a rack-
by-rack basis using the Rack Awareness function.

Number of Clients

Increase in the number of clients increases the load

on the network, leading to a decrease in performance.

However, if the node having the block is busy, the load

is distributed to other nodes having the duplicate copies

by YARN to balance the overall job processing.

Number of Replicas

Because replication is performed in pipelined manner,

that is, the primary data node sends the replica to the

secondary node at the same time it stores the block to itself,

replication does not impose additional time to complete.

Therefore, there is no delay in copying. However, the

network load is increased. Hadoop's replication strategy is

that if the client is a data node, it writes a block to itself and

copies the replica to the nodes in other rack. If the client is

not a data node, it is stored in one of the data nodes in the

client's rack and the replica is stored in the other rack.

Hadoop I/O Performance Experiments

Experiments in this study were performed on a HDFS

cluster with 64 Hadoop data nodes connected by 1Gbps

Ethernet switch. Each data node is equipped with Intel i9 10

core 3.3GHz process, 8GB DRAM and SATA II HDD’s.

Block Size and Performance

MapReduce jobs can impact overall performance
depending on the number of mapper and reducer
processes. Since the data is divided into a larger number
of blocks of same size, more mapper processes make it

possible to work faster. Therefore, the performance of
MapReduce can be improved by increasing the number of
mapper processes by reducing the block size. However,
this is different from writing performance measurements
because it is viewed from the perspective of MapReduce.
From a writing point of view, SATA II disks used in
Hadoop cluster nodes in the current experiment generally
have a sustained data rate of about 130MB/s. It is
concluded that reading and writing 100MB at a time is the
most efficient if the average sustained data rate of disk is
about 100MB/s. It also confirms the result is consistent to
the conclusion from other papers (Tang, 2016; Shi et al.,
2015; Mirza and Nagori, 2017; Ye et al., 2016; Ouyang
et al., 2017). Experimental results of this paper showed
the performance was best when the block size is of 64 ~
128MB as given in Fig. 2.

Number of Data Nodes and Performance

Figure 3 shows the variation of I/O performance as

the number of data nodes increases. The nodes are

connected by 1Gbps Ethernet. In the experiment, all data

nodes are installed in a single Ethernet switch to

minimize the performance degradation due to the

bandwidth limitation of the network.
The graph in Fig. 3 shows a relatively constant

input/output speed of about 70 to 80MB/s regardless of
the number of data nodes. Once the mapping process is
completed, the resulting blocks are stored on the hard disk
drives and the stored intermediate blocks are shuffled. In
this case, blocks are transferred and received between the
data nodes shuffling through the network. In other words,
in addition to simply inputting and outputting data blocks,
a considerable amount of network input/output occurs
between data nodes. Therefore, depending on the
bandwidth of the network connecting the data nodes, the
overall input/output performance is greatly affected.

Notice in Fig. 3 that the per node average block write

speed is relatively constant until each data node is

overloaded by the number of blocks to write. It can be

seen from the result that the processing speed is not

lowered when each node writes up to a certain number of

blocks, but when the number of blocks is increased, the

processing speed is lowered. That is, there exists a

minimum number of nodes that can process the total

number of blocks without slowing down.

We also performed the same sets of experiments using
low bandwidth network switch in order to investigate the
effect of the network bandwidth. With the network switch
of which bandwidth is 100Mbps that is one tenth of the
1Gbps switch used in the experiments shown in Fig. 3, we
have the result that the write performance decreases as the
number of nodes increases by more than 20% due to the
low bandwidth of the network switch connecting the data
nodes. We speculate that the overhead of communication
between the name node and the data nodes due to
exchanges of heartbeat and various metadata increases as
the number of data nodes increases.

Han-Gyoo Kim / Journal of Computer Science 2018, 14 (3): 304.309

DOI: 10.3844/jcssp.2018.304.309

307

Fig. 2: Write performance by block size

Fig. 3: Write performance by number of data nodes

Fig. 4: Write performance by number of clients

Number of Clients and Performance

Simultaneous writing experiments were conducted
to investigate the HDFS load that occurs when

multiple clients are writing simultaneously. The
experiment was performed by incrementing the client
to 6 data nodes with replication of 3 and the block
size of 128MB.

25

20

15

10

5

0

T
im

e
(s

ec
)

4 8 16 32 64 128 256 512 1024

Block size (MB)

9 Nodes

18 Nodes

27 Nodes

1 2 3 4 5 6 7
 Number of blocks

85

80

75

70

65

60

S
p
ee

d
 (

M
B

/s
ec

)

6 Nodes

12 Nodes

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

 Number of clients

100

80

60

40

20

0

S
p
ee

d
 (

M
B

/s
ec

)

Han-Gyoo Kim / Journal of Computer Science 2018, 14 (3): 304.309

DOI: 10.3844/jcssp.2018.304.309

308

Figure 4 shows that as the client grows, the

transmission time increases. The interesting fact is that

the transfer time does not increase in proportion to the

number of clients. There is a variation depending on the

network environment, but it seems to maintain a constant

speed even when a certain amount of load is applied. It is

considered that this is due to the write policy of the block.

Since two clients replicate three blocks to six data nodes, a

total of six blocks are created when 128MB is transmitted.

Hadoop avoids the concentration of blocks on specific

data nodes through a balancer, but does not divide into

exact number of nodes. This is because the Hadoop

balancer avoids busy data nodes by judging the workload

of the data nodes, but it does not reflect the network flow

in its decision. If we increase the number of nodes enough,

it is expected that we can reduce the load to some extent.

Figure 4 also shows the result of experiment in the

same environment by increasing the number of nodes to

12. The total transmission time is also increased, but the

transmission time is increased at a lower rate than when

the number of nodes is six. The performance gain is up

to about 150% instead of 200% even though we doubled

the number of nods from 6 to 12.

Discussion and Conclusion

Our experimentation study contributes to find a set of

important design parameters, block size, network

bandwidth and number of clients, for Hadoop clusters of

which number of nodes ranges up to several thousands.

Block Size

Experimental results show that the block size from

64MB to 128MB has the most efficient I/O performance.

This seems to be related to the sustained data rate of

1Gbps of the SATA II hard disk drive used in the

experiment. In other words, the size of the block

showing optimal performance seems to be closely related

to the effective bandwidth that the device storing the

block can input/output. If high-speed SATA drives or

SSD storage devices are used, it is estimated that higher

input/output performance will be obtained when the

block is larger than 128 MB.

Network Bandwidth Bottleneck

The result of this experiment shows that the

bandwidth of the network connecting the data nodes

determines the performance of the entire Hadoop cluster.

In other words, the network bandwidth seems to have

more influence on the overall average performance than

the size of the high-speed storage device or the mounted

DRAM. This means that there is a limit to increase the

number of data nodes that can be mounted in a unit rack

considering the performance price ratio. The observation

seems reasonable because the shuffling process of

MapReduce Hadoop framework induces a lot of network

input and output, the bandwidth of the network device

connecting the data nodes influences greatly the

performance of the whole Hadoop application.

Number of Client Processes

As the number of client processes increases, the time
required to perform the whole tasks also increases, but
the time does not increase proportionally. This means
that the resource management and job assignment
functions of YARN are operating properly. As a matter
of course, we can observe that increasing the number of
nodes performing the operation proportionally alleviates
the increase in the task completion time.

Findings and Contribution of Our Study

Firstly, we find that Hadoop block size should

increase in proportion to the effective data transfer

bandwidth of the storage device that contain the block

for high I/O performance. Current default block size of

Hadoop which is set to 128MB is an optimal size for the

storage devices that have 1Gbps od sustained data

transfer rate which is typical for SATA II type of HDD

connected to PCI bus. This means that if a new storage

device is to have 4Gbps of sustained data rate, the block

size would have to increase to 125MB times 4, i.e.,

500MB to have optimal I/O performance.

Secondly, we find that the most important governing

factor for the overall Hadoop cluster performance is the

network bandwidth of the cluster. That is, we must

invest to provide faster network to the cluster than to

faster storage devices.

Further Works

HDFS has a set of design parameters that affect

performance and it is far from trivial to determine the

optimal values of such factors due to the nature of the

complex distributed system configurations as well as the

characteristics of individual applications of Big Data

processing. Especially, since the influence of the

network bandwidth and the effective data rate of the

storage device is greater, more extensive

experimentation study should be performed to find out

the effects of network bandwidth and the sustained speed

of storage device on the overall Hadoop systems. We are

currently preparing larger scale Hadoop cluster with 10G

and 40Gbps Ethernet topology and with faster storage

devices including SATA III SSD (Mao et al., 2018) and

NVMe (Bhimani et al., 2018) storage devices and will

perform experiments how the design factors including

block size of HDFS and the number of data nodes are

affected under various cluster environments.

Han-Gyoo Kim / Journal of Computer Science 2018, 14 (3): 304.309

DOI: 10.3844/jcssp.2018.304.309

309

Acknowledgement

The research is financed by 2015 Hongik University

Research Fund.

Ethics

This article is original and contains unpublished
material. The corresponding author confirms that he has
read and approved the manuscript and there are no
ethical issues involved.

References

Anjos, J., B.R. Filho, J.F. Barros and U. Matte, 2014.
Genetic mapping of diseases through big data
techniques. Proceedings of the International
Conference on Enterprise Information Systems,
(EIS’ 14) Barcelona, Spain.

 DOI: 10.5220/0005365402790286
Apache, H., 2016. Apache hadoop.

https://en.wikipedia.org/wiki/Apache_Hadoop
Bhimani, J., Z. Yang, N. Mi, J. Yang and Q. Xu et al.,

2018. Docker container scheduler for I/O intensive
applications running on NVMe SSDs. IEEE Trans.
Multi-Scale Comput. Syst.

 DOI: 10.1109/TMSCS.2018.2801281
Big Data Forum, 2016. http://www.big-dataforum.com
Chaudhari, R., G.S. Aujla, N. Kumar and J.J.P.C.

Rodrigues, 2018. Optimized big data management
across multi-cloud data centers: Software-defined-
network-based analysis. IEEE Commun. Magazine,
56: 118-126. DOI: 10.1109/MCOM.2018.1700211

Clemente-Castillo, J.F., B. Nicolae, R. Mayo and J.C.
Fernandez, 2018. Performance model of
mapreduce iterative applications for hybrid cloud
bursting. IEEE Trans. Parallel Distributed Syst.
DOI: 10.1109/TPDS.2018.2802932

Dev, D. and R. Patgiri, 2014. Performance evaluation
of HDFS in big data management. Proceedings of
the International Conference on High
Performance Computing and Applications, Dec.
22-24, IEEE Xplore Press, Bhubaneswar.

 DOI: 10.1109/ICHPCA.2014.7045330
HDFS, 2017. Architecture guid.

https://www.guru99.com/learn-hdfs-a-beginners-
guide.html

Mao, B., S. Wu and L. Duan, 2018. Improving the SSD
performance by exploiting request characteristics
and internal parallelism. IEEE Trans. Computer-
Aided Design Integrated Circuits Syst., 37: 472-484.
DOI: 10.1109/TCAD.2017.2697961

Mirza, M. and M. Nagori, 2017. Optimizing task
assignment in hadoop using an efficient job size-
based scheduler. Proceedings of the International
Conference on Intelligent Computing and Control
Systems, Jun. 15-16, IEEE Xplore Press, Madurai,
India, pp: 1287-1292.

 DOI: 10.1109/ICCONS.2017.8250676

OPDi, 2017. https://www.odpi.org/

Ouyang, X., H. Zhou, S. Clement, P. Townend and J.

Xu, 2017. Mitigate data skew caused stragglers

through ImKP partition in MapReduce. Proceedings

of the IEEE 36th International Performance

Computing and Communications Conference, Dec.

10-12 San Diego.

Park, J., 2016. Improving the performance of HDFS by

reducing I/O using adaptable I/O system.

Proceedings of the International Conference on

Electrical, Electronics and Optimization Techniques,

Mar. 3-5, IEEE Xplore Press, Chennai, India, pp:

3139-3144. DOI: 10.1109/ICEEOT.2016.7755280

Shankar, V. and R. Lin, 2017. Performance study of CEPH

storage with intel cache acceleration software:

Decoupling hadoop MapReduce and HDFS over Ceph

storage. Proceedings of the IEEE 4th International

Conference on Cyber Security and Cloud Computing

(SCC’ 7), New York, USA, pp: 10-13.

Shi, J., Y. Qiu, U.F. Minhas, L. Jiao and C. Wang et al.,

2015. Clash of the titans: MapReduce Vs. spark

for large scale data analytics. 41st International

Conference on Very Large Data Bases, Kohala

Coast, Hawaii, pp: 2110-2121.

 DOI: 10.14778/2831360.2831365

Tang, X., 2016. Evaluating HDFS I/o performance on

virtualized systems. University of Wisconsin-

Madison.

YARN, 2017.

https://hadoop.apache.org/docs/r2.7.2/hadoop-

yarn/hadoop-yarn-site/YARN.html

Ye, M., J. Wang, J. Yin and X. Zhang, 2016. Accelerating

I/O performance of SVM on HDFS. Proceedings of the

IEEE International Conference on Cluster Computing,

Sept. 12-16, IEEE Xplore Press, Taipei, Taiwan, pp:

132-133. DOI: 10.1109/CLUSTER.2016.71

