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Abstract: Four major design factors of HDFS, the block size, the number 

of data nodes, the number of client processes and replication factor are 

investigated to find out the effects on the I/O performance of HDFS by 

performing experiments in a real physical HDFS infrastructure consisting 

of 64 Hadoop data nodes of Intel i9 based blades. The block size is 

observed to be optimal when it equals to about 1Gb or 128MB that is the 

amount of the data the hard disk drive device can effectively input and 

output for 1 second in most of today’s off-the-shelf computers. 

Sophisticated allocation strategy is required to determine the number of 

mappers and reducers as the number of data nodes increase because the 

overall performance is influenced in complicated manner by the number of 

raw data blocks of the job to be processed, the processing time of the 

blocks for each node and the overhead of shuffling. Experiments shows that 

Hadoop distributes the work properly that the number of clients does not 

have a significant impact as the number of clients increases. There is little 

delay in copying the replica because replication is done in pipelined manner 

although the network is overloaded. 

 

Keywords: Network Integrated Storage, Big Data, Cloud Storage, Scalable 

Storage, Huge Scale I/O 

 

Introduction 

Optimization of HDFS Data Processing 

Hadoop as Operating System for Big Data Processing 

The Hadoop Distributed File System (HDFS) and 

other software systems that make up the Hadoop 

Ecosystem are becoming increasingly valuable as an 

operating system for processing Big Data (OPDi, 2017) 

(Big Data, 2016) (Chaudhari et al., 2018). The 

input/output performance of the HDFS and the 

performance of the MapReduce layer implemented on 

top of the HDFS should be guaranteed to realize high 

performance application that reflects large data 

characteristics with a large size and a relatively short life 

cycle. A lot of researches have been reported to explore the 

I/O performance of HDFS (Park, 2016; Shankar and Lin, 

2017; Dev and Patgiri, 2014; Clemente-Castillo et al., 

2018), but few experimentation studies have been 

reported on the optimal design factors of HDFS system 

such as the block size and minimum number of data 

nodes required. In this study, we have studied the factors 

that determine the input/output performance of HDFS by 

performing the actual performance experiments. To find 

out the optimum design factors of the Hadoop cluster. 

Distributed File System – HDFS 

Although there is performance advantage through 
parallel processing of HDFS, a representative distributed 
file system supporting the Apache open source project 
Hadoop (Apache, 2016), efficient data distribution 
control is the most important design element of 
distributed file system. It must cope with hardware 
failure flexibly and ensure adequate performance 
through proper resource management.  

Features of HDFS 

HDFS divides the file into blocks and the default size of 

the HDFS block is 128MB. A node storing an HDFS block 

is called a data node and usually a Hadoop cluster is 

composed of several tens to thousands of data nodes. HDFS 

distributes the blocks constituting a file to multiple data 

nodes in order to process the file in parallel. The replicas of 

each block are copied to other data nodes to provide the 

reliability. This feature of HDFS is suitable for batch 

operations requiring high data throughput (HDFS, 2017). 

MapReduce 

HDFS is a solution that divides a file into blocks of the 
same size and stores them in data nodes distributed over the 
network. MapReduce is a framework to process in parallel 
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large amount of data stored over the data nodes. The 
Hadoop ecosystem 1.0 has failed to attract many analysts 
and users familiar with relational database analysis systems 
to Hadoop. To solve these problems, Hadoop ecosystem 2.0 
adopted YARN (Yet Another Resource Negotiator) to 
improve scalability and data throughput (YARN, 2017). 

I/O Operations in Hadoop 

Writing and Reading Hadoop Blocks 

Figure 1 (HDFS, 2017) shows the process of storing 

data blocks in HDFS. When a client of a Java Virtual 

Machine (JVM) requests data storage, the data stream 

class asks the name node for a list of data nodes to store 

the blocks. The data stream class receives the returned 

data node list from the name node and sends the blocks 

to the data nodes in the list. HDFS prevents data loss by 

duplicating the requested data block and storing it in 

other data nodes in preparation for hardware failure of 

the data node. When a replica is sent from the client to 

the first data node in streaming mode, the first data node 

receives the data stream and replicates the block and 

transfers it to the second data node. After the block is 

stored, each data node informs the client and the name 

node that it has successfully stored the data.  

Hadoop I/O Operations in MapReduce 

MapReduce,  the data processing framework of 

Hadoop, is a process that causes a lot of data storage 

device I/O and the network I/O. The efficient block 

distribution and shuffling process of Hadoop system 

determines big data processing performance (Anjos et al., 

2014). The shuffle/sort process sends and receives the 

mapping results to the reducers through the network 

connecting the data nodes that stores the intermediate data 

blocks of the <key, value> records. The shuffling/sorting 

process entails network I/O whose amount of time is 

comparable to data block I/O time involved. 

Formula for Data Processing Time of a Hadoop Job 

Hadoop processing involves hashing for mappers and 

shuffling and sorting for reducers as well as inputting 

and outputting of HDFS data blocks. The following 

formula elicits simple but solid model to estimate the job 

completion time for a Hadoop task: 

 

/ /

( )

( )

ElapsedTime Map HashTime Reduce SortTime

Block Input Hashing Output

Shuffle Sorting BlockOutput

= +

= + +

+ + +

 

 

Notice that individual factors in the formula are 

intertwined such that improving a factor in the formula 

often accompanies degenerating other factor. For 

example, reducing the time for inputting the blocks 

usually increases the network traffic for shuffling among 

the nodes thus leading to the increase of shuffle time. 
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HDFS Design Factors that affects the I/O 

Performance of Hadoop Systems 

Factors that influence HDSF I/O performance include 
the size of the block, the number of data nodes, the 
number of clients and how many blocks to replicate. 

Block Size 

Blocks are the units for reading and writing in HDFS. 
A file is divided into blocks, which are usually stored in 
blocks of 64 MB or 128 MB. The smaller the block size, 
the greater the block seek time. Conversely, if the size is 
too large, the degree of parallelism of the data is lowered 
and the efficiency of distributed processing is lowered. 
Therefore, the size of the HDFS block should be set to be 
optimal. Currently the default block size is set to 128MB. 

Number of Data Nodes 

If the number of nodes is increased, sufficient 
performance improvement can be expected due to the 
increase degree of distributed data processing in parallel. 
However, each data node continuously communicates 
with the name node, which causes overhead to increase 
the network load. HDFS manages the nodes on a rack-
by-rack basis using the Rack Awareness function. 

Number of Clients 

Increase in the number of clients increases the load 

on the network, leading to a decrease in performance. 

However, if the node having the block is busy, the load 

is distributed to other nodes having the duplicate copies 

by YARN to balance the overall job processing. 

Number of Replicas 

Because replication is performed in pipelined manner, 

that is, the primary data node sends the replica to the 

secondary node at the same time it stores the block to itself, 

replication does not impose additional time to complete. 

Therefore, there is no delay in copying. However, the 

network load is increased. Hadoop's replication strategy is 

that if the client is a data node, it writes a block to itself and 

copies the replica to the nodes in other rack. If the client is 

not a data node, it is stored in one of the data nodes in the 

client's rack and the replica is stored in the other rack. 

Hadoop I/O Performance Experiments 

Experiments in this study were performed on a HDFS 

cluster with 64 Hadoop data nodes connected by 1Gbps 

Ethernet switch. Each data node is equipped with Intel i9 10 

core 3.3GHz process, 8GB DRAM and SATA II HDD’s. 

Block Size and Performance 

MapReduce jobs can impact overall performance 
depending on the number of mapper and reducer 
processes. Since the data is divided into a larger number 
of blocks of same size, more mapper processes make it 

possible to work faster. Therefore, the performance of 
MapReduce can be improved by increasing the number of 
mapper processes by reducing the block size. However, 
this is different from writing performance measurements 
because it is viewed from the perspective of MapReduce. 
From a writing point of view, SATA II disks used in 
Hadoop cluster nodes in the current experiment generally 
have a sustained data rate of about 130MB/s. It is 
concluded that reading and writing 100MB at a time is the 
most efficient if the average sustained data rate of disk is 
about 100MB/s. It also confirms the result is consistent to 
the conclusion from other papers (Tang, 2016; Shi et al., 
2015; Mirza and Nagori, 2017; Ye et al., 2016; Ouyang 
et al., 2017). Experimental results of this paper showed 
the performance was best when the block size is of 64 ~ 
128MB as given in Fig. 2. 

Number of Data Nodes and Performance 

Figure 3 shows the variation of I/O performance as 

the number of data nodes increases. The nodes are 

connected by 1Gbps Ethernet. In the experiment, all data 

nodes are installed in a single Ethernet switch to 

minimize the performance degradation due to the 

bandwidth limitation of the network.  
The graph in Fig. 3 shows a relatively constant 

input/output speed of about 70 to 80MB/s regardless of 
the number of data nodes. Once the mapping process is 
completed, the resulting blocks are stored on the hard disk 
drives and the stored intermediate blocks are shuffled. In 
this case, blocks are transferred and received between the 
data nodes shuffling through the network. In other words, 
in addition to simply inputting and outputting data blocks, 
a considerable amount of network input/output occurs 
between data nodes. Therefore, depending on the 
bandwidth of the network connecting the data nodes, the 
overall input/output performance is greatly affected. 

Notice in Fig. 3 that the per node average block write 

speed is relatively constant until each data node is 

overloaded by the number of blocks to write. It can be 

seen from the result that the processing speed is not 

lowered when each node writes up to a certain number of 

blocks, but when the number of blocks is increased, the 

processing speed is lowered. That is, there exists a 

minimum number of nodes that can process the total 

number of blocks without slowing down. 

We also performed the same sets of experiments using 
low bandwidth network switch in order to investigate the 
effect of the network bandwidth. With the network switch 
of which bandwidth is 100Mbps that is one tenth of the 
1Gbps switch used in the experiments shown in Fig. 3, we 
have the result that the write performance decreases as the 
number of nodes increases by more than 20% due to the 
low bandwidth of the network switch connecting the data 
nodes. We speculate that the overhead of communication 
between the name node and the data nodes due to 
exchanges of heartbeat and various metadata increases as 
the number of data nodes increases. 
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Fig. 2: Write performance by block size 
 

    

 
Fig. 3: Write performance by number of data nodes 

 

              
 
 

 

Fig. 4: Write performance by number of clients 
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Figure 4 shows that as the client grows, the 

transmission time increases. The interesting fact is that 

the transfer time does not increase in proportion to the 

number of clients. There is a variation depending on the 

network environment, but it seems to maintain a constant 

speed even when a certain amount of load is applied. It is 

considered that this is due to the write policy of the block. 

Since two clients replicate three blocks to six data nodes, a 

total of six blocks are created when 128MB is transmitted. 

Hadoop avoids the concentration of blocks on specific 

data nodes through a balancer, but does not divide into 

exact number of nodes. This is because the Hadoop 

balancer avoids busy data nodes by  judging the workload 

of the data nodes, but it does not reflect the network flow 

in its decision. If we increase the number of nodes enough, 

it is expected that we can reduce the load to some extent. 

Figure 4 also shows the result of experiment in the 

same environment by increasing the number of nodes to 

12. The total transmission time is also increased, but the 

transmission time is increased at a lower rate than when 

the number of nodes is six. The performance gain is up 

to about 150% instead of 200% even though we doubled 

the number of nods from 6 to 12. 

Discussion and Conclusion 

Our experimentation study contributes to find a set of 

important design parameters, block size, network 

bandwidth and number of clients, for Hadoop clusters of 

which number of nodes ranges up to several thousands. 

Block Size 

Experimental results show that the block size from 

64MB to 128MB has the most efficient I/O performance. 

This seems to be related to the sustained data rate of 

1Gbps of the SATA II hard disk drive used in the 

experiment. In other words, the size of the block 

showing optimal performance seems to be closely related 

to the effective bandwidth that the device storing the 

block can input/output. If high-speed SATA drives or 

SSD storage devices are used, it is estimated that higher 

input/output performance will be obtained when the 

block is larger than 128 MB. 

Network Bandwidth Bottleneck 

The result of this experiment shows that the 

bandwidth of the network connecting the data nodes 

determines the performance of the entire Hadoop cluster. 

In other words, the network bandwidth seems to have 

more influence on the overall average performance than 

the size of the high-speed storage device or the mounted 

DRAM. This means that there is a limit to increase the 

number of data nodes that can be mounted in a unit rack 

considering the performance price ratio. The observation 

seems reasonable because the shuffling process of 

MapReduce Hadoop framework induces a lot of network 

input and output, the bandwidth of the network device 

connecting the data nodes influences greatly the 

performance of the whole Hadoop application. 

Number of Client Processes 

As the number of client processes increases, the time 
required to perform the whole tasks also increases, but 
the time does not increase proportionally. This means 
that the resource management and job assignment 
functions of YARN are operating properly. As a matter 
of course, we can observe that increasing the number of 
nodes performing the operation proportionally alleviates 
the increase in the task completion time. 

Findings and Contribution of Our Study 

Firstly, we find that Hadoop block size should 

increase in proportion to the effective data transfer 

bandwidth of the storage device that contain the block 

for high I/O performance. Current default block size of 

Hadoop which is set to 128MB is an optimal size for the 

storage devices that have 1Gbps od sustained data 

transfer rate which is typical for SATA II type of HDD 

connected to PCI bus. This means that if a new storage 

device is to have 4Gbps of sustained data rate, the block 

size would have to increase to 125MB times 4, i.e., 

500MB to have optimal I/O performance. 

Secondly, we find that the most important governing 

factor for the overall Hadoop cluster performance is the 

network bandwidth of the cluster. That is, we must 

invest to provide faster network to the cluster than to 

faster storage devices. 

Further Works 

HDFS has a set of design parameters that affect 

performance and it is far from trivial to determine the 

optimal values of such factors due to the nature of the 

complex distributed system configurations as well as the 

characteristics of individual applications of Big Data 

processing. Especially, since the influence of the 

network bandwidth and the effective data rate of the 

storage device is greater, more extensive 

experimentation study should be performed to find out 

the effects of network bandwidth and the sustained speed 

of storage device on the overall Hadoop systems. We are 

currently preparing larger scale Hadoop cluster with 10G 

and 40Gbps Ethernet topology and with faster storage 

devices including SATA III SSD (Mao et al., 2018) and 

NVMe (Bhimani et al., 2018) storage devices and will 

perform experiments how the design factors including 

block size of HDFS and the number of data nodes are 

affected under various cluster environments. 
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