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Abstract: Minimization of the cost of drilling an oil well is primarily 

achieved by reducing the operation completion time, which in turn can 

be achieved by increasing the Rate of Penetration (ROP). The ROP is 

the result of a combination of factors, such as lithological formation, 

operational parameters and bit wear. This paper addresses bit wear 

during drilling, using a method that combines a physical equation, 

techniques for risk analysis and data mining to estimate the behavior of 

bit wear per meter drilled. Experiments were conducted with real-world 

data to test the method’s validity and accuracy and the results 

demonstrated the relevancy of this approach. 
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Introduction 

Machine prognostics is an area of engineering 

dedicated to the study of methods for estimating the 

Remaining Useful Life (RUL) of a system, machine, 

or component (Widodo and Yang, 2011). There are 

two main approaches to estimate RUL (Chen et al., 

2012). The first is physical and more complex and 

difficult to perform, but offers more precise results. 

The second option is to construct predictive models 

based on data. An example of this approach is models 

based on neural networks. 

When drilling wells for extraction of petroleum, the 

behavior of bit wear, or the bit’s RUL, is a crucial factor 

in the prediction of the final cost of a drilling operation. 

However, it is not currently possible to measure bit wear 

during drilling (Lin and Ting, 1996). Because of this 

limitation, there are a number of models for estimating 

bit wear during the drilling process available in the 

literature, the majority of which are analytical. 

Analytical models and simulation techniques can 

be combined into a hybrid approach to risk analysis 

for estimating the RUL of the bit, to provide support 

for decision-making (Mostafavi et al., 2011). An 

analytical model can be employed to estimate bit wear 

and the Monte Carlo Method (MCM) can be used to 

calculate the risk (probabilistic) associated with the 

predicted degree of wear. 

While MCM may be the most widely-used method 

for generating scenarios for risk assessment, it is 

important that certain precautions are taken when 

using this method. If the relationships between 

variables are not well studied and dealt with 

inadequately, it is possible that the method will 

produce scenarios that are incompatible with the real-

world system. For instance, it may produce 

incompatible values for two or more input variables. 

Determination of the relationships between 

variables can be a complex task. Certain techniques 

for separating data into clusters, so that each cluster 

contains observations with similarities to each other, 

can minimize the problem of handling relationships 

between variables. 

One important issue related to analytical models for 

predicting bit wear in real time is that the majority of 

them require inclusion of certain coefficients to achieve 

model fit. In general, these coefficients are based on the 

behavior of the variable for bit wear and they are 

identified using historical data. Therefore, if data from 

well P, drilled in the past, are employed as the basis for 

setting the coefficients of a model, this will result in 

good predictions if the well to be drilled has similar 

characteristics to those of well P. 

Using a prognostic method to estimate the degree of 

bit wear has relevance for optimization of the drilling 

process. If the decision to withdraw a bit that has become 
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completely worn is delayed or is taken prematurely, the 

cost of drilling can increase significantly. 

The main objective of this article is to present a 

way for the prediction of bit wear in real time. The 

process employs historical data and its risk analysis 

estimated degree of wear is updated according to data 

from the drilling run in progress. The method 

proposed is a hybrid based on an analytical model for 

predicting bit wear and the MCM.  

This paper is organized as follows: Section 2 a brief 

overview of clustering, random sampling, the MCM and 

risk management; Section 3 discusses related work; 

Section 4 describes the proposed method; Section 5 the 

experiments conducted with the method; and, finally, 

Section 6 contains a discussion of the results as well as a 

conclusion of the study.  

Background 

Clustering 

Clustering is a process for grouping a set of 

observations into several clusters according to a 

similarity function (like Euclidean distance), so that 

similar observations are in the same cluster (Sumathi and 

Sivanandam, 2006). 

Due to its simplicity, k-means is the most popular 

algorithm for clustering. Figure 1 illustrates how this 

algorithm works. It is basically a loop that attributes 

all observations to their nearest cluster and finds the 

centroid of each cluster. The loop only ends when no 

more observations change clusters. There are several 

ways to select k observations to be the initial centroids 

one of which is to select the ones that are most distant 

from each other.  

Random Sampling  

The Probability Density Function (PDF) for a 

random continuous variable X can be represented by a 

non-negative function f(x), with the area between the x-

axis and the curve equal to 1, which describes the 

probability P that the random variable will take a given 

value of x. The probability of a given interval [a, b] 

occurring is given by the integral of f(x) in the required 

interval ( )
b

a

f x dx∫ .  

Considering the PDF of variable X, a cumulative 

distribution function F(x), which represents the 

probability that a value less than x will occur, i.e., F(x) 

= P(X≤x). To generate a random value x, a random 

number r in the range 0 to 1 is drawn according to a 

uniform distribution, that means P(X≤x) = r. The 

random value x is obtained using the inverse function 

of F(x) written as G(F(x)) = G(p) = x. Figure 2 

illustrates the graphical relationship between F(x) and 

G(F(x)). The example shows that a random number r = 

0.5 corresponds to x ≈ 270.9 (Costa e Lima et al., 

2015). This concept is widely employed in many 

methods for generating samples, such as the MCM. 

The PDF of variable X can be obtained from a 

specialist or (more commonly) by using some type of 

fitting method, such as Chi-Square or K-S method.  

Monte Carlo Method  

The MCM is used to generate values for a 

simulation model. A complete simulation involves 

hundreds or even thousands of scenarios, in each of 

which a sample of each of the model’s random input 

variables is obtained. Using this sampling scheme, for 

each scenario, a value for each output variables is 

calculated and stored. In the end, the distribution of the 

values stored reflects the probability of the outputs that 

are possible in the system being modeled. Figure 3 

illustrates the MCM schematically. 

One of the major advantages of using the MCM is the 

ability to use computational tools to test a wide range of 

scenarios and their respective results.  

 

 
 
Fig. 1: k-means flow diagram 

 

 
 
Fig. 2: Illustration of the relationship between F(x) and G(F(x)) 
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Fig. 3: Schematic illustration of uncertainty propagation by 

MCM 

 

 
 
Fig. 4: Risk analysis, evaluation and management 

 

Risk Management  

Risk management is a continuous process with the 

objective to identify, analyze and assess relevant events 

(critical or beneficial) in a system or related to an 

activity, to decide whether or not the risk of an event 

occurring is tolerable and to identify and introduce risk 

control actions. The elements of risk management are 

illustrated in Fig. 4.  

A commonly used definition for Risk Analysis (RA) 

is “Systematic use of available information to identify 

hazards and to estimate the risk to individuals, property 

and the environment” (IEC 60300-3-9, 1995). RA is 

used to identify the causes of relevant events, to 

determine the possible consequences, to identify actions 

to prevent or favor and to form a basis for deciding 

whether or not the risk related to a system is tolerable. 

RA is carried out to provide answers to the following 

three main questions (Kaplan and Garrick, 1981): 

 

• Q1. What can go wrong? To identify the possible 

relevant events to the system and the uncertainties 

that can trigger them 

• Q2. What is the likelihood of that happening? To 

determine the likelihood of uncertainties identified 

in Q1 that may lead to the relevant event 

• Q3. What are the consequences? To identify the 

consequences of events that were described in Q1 to 

the system and action to prevent or mitigate them 

In the Risk Evaluation (RE), judgments are made on 

the tolerability of the risk on the basis of a RA taking 

into account the consequences and/or some other risk 

acceptance or rejection criteria. Another objective of RE 

is to propose actions to be used in risk control, which 

may involve adjustments in the RA process.  

In Risk Control (RC), the decision to stop or continue 

a particular activity at the current risk level must be 

made. Furthermore, RC can involve modification of 

existing actions or implementation of new ones and 

monitor the effects of these changes.  

Many researchers use MCM to study the uncertainty 

propagation in mathematical models, similar as shown in 

Fig. 3, which consists of choosing probability 

distribution functions that best reflects the uncertainty 

behaviors (for each of the input variables). Afterwards, 

a repeated sampling of values from distributions to use 

as model input to calculate the output values is 

performed. Finally, a large number of output values is 

obtained, that may be plotted as a histogram to identify 

the output distribution shape.  

Related Work 

Drilling an oil well can involve high costs. 

Maintaining all drilling parameters in order to minimize 

this cost is a complex task.  
Many researchers have been working on this 

problem, developing equations and mathematical 
models to represent the drilling process, enabling 
drilling teams to make decisions based on the results 
produced by these models. For example, optimizing 
Rate of Penetration (ROP), i.e., achieving the highest 
possible drilling speed, resulting in a lower cost, may 
be one of the objectives of these models.  

Models can also help decide the correct time to 

remove the drill bit due to its wear. The costs involved 

in performing a drill change are great. On the other 

hand, keeping a worn drill can result in even greater 

costs than its replacement. 

One of the most accepted models for estimating ROP 

is the Bourgoyne and Young (BYM) (Bourgoyne Jr. and 

Young Jr., 1974; Bourgoyne et al., 1986). The model 

considers ROP to be the product of eight exponential 

functions (ROP = f1. f2. f3. f4. f5. f6. f7. f8), each of them 

has its own exponent, denoted by a1 through a8, which 

are found through multiple regression from historical 

data. Each exponential represents a factor that affects 

ROP. The seventh function models the drill wear 

( )7

7

a h
f e

−

= , where h is the fractional bit tooth wear. 

However, by observing the term (f7) and simulating 

the drilling of a well with the same h, the wear (f7) 

will have the same effect on ROP throughout the 

drilling, which is not in line with reality, since ROP 

tends to decrease as drill wear increases.  
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Warren (1987) published a model (Equation 1) for 

predicting ROP, which also does not consider that drill 

wear affects the ROP. However, Hareland and Hoberock 

(1993) later addressed this limitation by adding a function 

for bit wear Wf (Equation 2) to the Warren model: 

 
1

2 2

2

b
c

b

b f

jm

a CCS d b
f

RPM WOB RPM d
ROP

c d

F

γ µ

−

  × ×
× +  

× ×  
=  

× × × +
 
 

 (1) 

 

Where:  

ROP = Rate of penetration (m/h)  

a, b, c = Bit coefficients (dimensionless) 

CCS = Rock confined compressive strength (psi) 

db = Bit diameter (in) 

RPM = Bit revolutions (rev/min) 

WOB = Weight on bit (klbf) 

γf = Drilling fluid density (Ib/gal) 

� = Drilling fluid plastic viscosity (cp)  

fc = Chip-hold down function (dimensionless) 

Fjm = Modified jet impact force function (klbf) 

 

( )

1
1

8

f

m

c i i i ii
f

ROP W WarrenROPModel

W WOB RPM Abr CCS
W

=

= ×

× × × ×

= −
∑  (2) 

 

Where:  

Wf = Wear function (dimensionless) 

Wc = Wear coefficient (dimensionless) 

m = Total depth (meter) 

Abr = Abrasiveness (dimensionless) 

 

The function Wf (Equation 2) is formed by the linear 

combination of four parameters that are obtained along 

the drilling and a Wc coefficient. When drilling a well 

with similar characteristics to the well used for fitting the 

model, the same value can be applied to the Wc 

coefficient. When correctly fitted, Wf (Equation 2) will 

produce a value between 0 and 1, where 0 indicates a 

new, unused bit and 1, a completely worn bit. This value 

can be converted and vice-versa, to the IADC Dull Bit 

Grading scale with values from 0 (new) to 8 (worn). The 

Wf (Equation 2) function seems to be more suitable for 

estimating drill wear in real time as it considers all 

drilling data to the desired depth.  

Other researchers have also addressed the wear of the 

drill. Liu et al. (2014) provide for the loss of the cut 

material from the drill cutters. Rashidi et al. (2008) 

presented a method to estimate the wear of the drill bit 

from the combination of BYM and Mechanical Specific 

Energy (MSE), which later used CCS instead of BYM 

(Rashidi et al., 2010).  

Lin and Ting (1996) described an approach that 

employed a neural network, in which the inputs to the 

network are the average thrust force, torque, feedrate, 

diameter and revolutions per minute. The output from 

the network is the average wear (final wear divided by 

the total number of meters drilled). 

Many previous studies in the drilling area of the 

petroleum industry have employed a similar approach to 

risk analysis, which consists in generating the inputs for 

an analytical model using MCM: 

 

• One of the experiments conducted by Udegbunam 

(2015) employed an analytical model to estimate 

permissible limits for bottomhole pressure 

• Mostafavi et al. (2011) and Peterson et al. (1993) 

used an analytical model to estimate ROP and 

duration of drilling, respectively 

• Cunha (2004) dealt with the case of bit breakage at 

the well bottom, for which there are two possible 

solutions, the first is to fish for the bit, which will 

take an unknown length of time and the second it 

to drill a sidetrack around the bit; both solutions 

increase the drilling costs. The authors used risk 

analysis in combination with an analytical model 

of costs in order to answer the question of which 

option is more cost-effective 

 

These three studies present their results as 

probability distributions, which makes it possible to 

estimate the likelihood of a given output value falling 

within a given interval. 

Proposed Method  

The proposed method combines an analytical model, 

simulation techniques (MCM) and data mining 

(clustering) to evaluate the bit wear during the drilling of 

an oil well. In contrast with analytical models, there is 

only one output for a given input. This proposal will 

produce many outputs for a single input, along with their 

degrees of uncertainty.  

To estimate the drill wear, the Wf (Equation 2) 

function of Hareland and Hoberock (1993) was 

employed for its simplicity and adequacy to the problem 

since it considers the entire length drilled by the drill. 

Since the available database did not contain information 

on the Abr variable, it was removed from Equation 2. 

The CCS variable was substituted by UCS (Unconfined 

Compressive Strength). We believe that UCS is an 

excellent substitute for the two variables that were 

excluded. Due to these limitations, (Equation 3) was 

adopted in the method: 

 

1
1

8

m

c i i ii
f

W WOB RPM UCS
W

=

× × ×

= −
∑

 (3) 
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where, UCS = unconfined compressive strength (psi); 

All other symbols defined in Equation 2.  

The method is composed of three steps, which are 

described below, whose purpose is to identify 

Probability Density Functions (PDFs) associated to the 

input variables (WOB, RPM and UCS) per cluster and 

the PDFs related to the Wc coefficient per set of 

historical data.  

Step 1 

In this first step, based on historical data files, two 

procedures are performed: (a) Clustering, separating 

all data into k groups, using the k-means technique 

and (b) fitting, where the likely probability 

distributions (PDFs) are identified for each input 

variable (WOB, RPM and UCS) in each group formed. 

For example: With the data obtained in 3 perforations 

d = 3 sets of historical data are obtained. At the end of 

this step, k × 3 distributions (one for each variable) 

are obtained. Figure 5 illustrates this first step. 

Step 2 

The second step is dedicated to the generation of s 

sampled datasets for each historical dataset. The 

greater the s quantity of generated datasets, the better 

the fitting of the distributions that will represent Wc. 

These are generated from a given historical h dataset 

in such a manner that for each i record, a window of 

[i-w, ..., i] records is utilized (where w is the size of 

the window) to seek the C cluster that best represents, 

i.e., the cluster in which the sum of the distances 

between [i-w, i] records and the centroid is the lowest. 

This window was used to smooth the selection of 

clusters when traversing a historical dataset. The 

larger the window size, the smaller the variability of 

the selected clusters.  

After identifying the best C cluster, their PDFs are 

used to generate s new records, each of which is 

associated to the datasets 1, 2, …, s being generated. 

Figure 6 illustrates this step. The example refers to the 

record i = 3 of a historical h dataset, considering w = 2. 

After performing this procedure for all records in h, a 

total of s data sets were generated, as shown in Fig. 7. 

This step is performed for each historical dataset, so 

there will be generated s datasets for each of them.  

Step 3 

The third and final stage is to find the distributions 

that will represent the Wc coefficient of the analytical 

model (Equation 3) in each historical h dataset. For 

each h (Fig. 8), a PDF is obtained using the s values 

for Wc obtained by regression from their generated 

datasets. 

The distributions associated with the inputs (per 

cluster) and the distributions for the Wc coefficient, by 

historical dataset, can be extended to simulate the 

behavior of drill wear during drilling in real time. This 

application is described below.  

Real-time Application  

The real-time simulation consists of using the 

PDFs of C cluster and the historical D dataset to 

generate s new record samples for the WOB, RPM and 

UCS variables, with the respective values that the Wc 

coefficient must assume throughout the drilling. The 

C cluster and the D dataset are the ones that best 

represent (the shorter distance) the last records 

observed in real time. 

 

 

 
Fig. 5: First step of the method: Data clustering and fitting of the PDFs for each variable in each cluster 
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Fig. 6: Update of the s generated datasets for a record i = 3 in a historical h dataset 

 

 
 

Fig. 7: Generated datasets from a historical h dataset 
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Fig. 8: The PDF identification step for the W
c
 coefficient for a given historical h dataset 

 

 
 

Fig. 9: Update of generated datasets in the given i meter 
 

 
 

Fig. 10: Application of the generated datasets in the analytical model 
 

For the use in real time simulation, a minor alteration 

was made to Equation 3, so that the Wc coefficient could 

take different values for each drilled meter, as seen in 

Equation 4: 

 

1
1

8

m

ci i i ii
f

W WOB RPM UCS
W

=

× × ×

= −
∑

 (4) 

 

where, Wci is wear coefficient at i meter (dimensionless); all 

other symbols defined in Equation 3.  
As shown in Fig. 9, for each i meter drilled, the 

observed information of WOB, RPM and UCS in meters 

[i-w, i] are used to select the most appropriate C cluster, 
so its PDFs are used in the sampling of s new records. 
Each sampled record is included in its respective 
generated dataset. Similarly, the historical D dataset is 
selected and its PDF, which represent the Wc coefficient, 
is used in the sampling of s values for the Wc coefficient.  

At this point, the s datasets are up to date for the 
current i meter with new records and values for the Wc 
coefficient. Then, as shown in Fig. 10, each of them is 
used as analytical model input (Equation 4) to obtain the 
respective wear. Thus, the s outputs can be presented 
through a histogram, allowing visualization of the 
probable values of the bit wear and their probabilities.  
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Experiments 

This section details the use of the method addressing the 

problem of drill bit wear during drilling of an oil well.  

One issue to be taken into consideration is that the 

IADC Dull Bit Grading scale is a classification code that 

can take any integer from within a set of 9 classes: 0, 1, 

2, 3, 4, 5, 6, 7 and 8. The value of Wf can take infinite 

values within the interval [0, 1]. When it is transformed 

into an IADC Dull Bit Grading scale score, values may 

occur that are not within the set of IADC classes, 

making it necessary to perform adjustments for an 

acceptable classification. When Equation 3 is correctly 

fitted, Wf takes values from 0 to 1. However, 

differences between the well used to fit the Wc 

coefficient and the well in the process of being drilled 

can cause outputs beyond the interval expected for Wf, 

creating difficulties for conversion to the IADC Dull 

Bit Grading scale. A result value greater than 8 

indicates that the bit is completely worn out. 

The method proposed was tested using two 

databases. The first one was used in the experiments I, II 

and III, in which contains drilling data of 35 

Polycrystalline Diamond Compact (PDC) type drill bits 

with a diameter of 8½, ranging from 30 to 446 drilled 

meters and the wear is 1 to 8 on the IADC Dull Grading 

scale. The second one was employed in experiment IV, it 

has data from 21 Impregnated type drill bits with 

diameters of 8½ and 12¼ with drilled meters and final 

bit wear varying respectively from 28 to 467 m and from 

1 to 8 on the IADC Dull Grading scale.  

The drilling data for each drill bit contains: The final 

bit wear, the operational parameters (WOB and RPM) 

and the lithological profiles (UCS) per drilled meter.  

Experiment I  

Of the 35 runs in the dataset, 28 were used to fit the 

PDFs per cluster (inputs) and per historical dataset (Wc) 

and the other 7 were used to test the method.  

The k-means algorithm was used in step 1 to identify 

clusters. The number of clusters was set at k = 6. Figure 

11 shows the clusters obtained and Fig. 12 demonstrates 

the PDFs fitted in three of the clusters.  

From the histograms of clusters 2 and 6 in Fig. 12, 

it is possible to observe that RPM has a behavior 

inversely proportional to WOB. This situation was 

detected due to the use of clusters. This implies that 

the data generated by the PDFs of these clusters will 

not contain scenarios in which WOB and RPM are 

incompatible, i.e., WOB and RPM elevated at the 

same time. 

In step 2, a total of s = 3000 sampled datasets (or 

simulated runs) were generated using the MMC. The 

window size of w = 5 m was used to identify the most 

representative cluster and historical run.  

The Wc histograms and their respective fitted 

distribution for some of the runs (step 3) are showed in 

Fig. 13. The observed differences in Wc results are due to 

the observed variations in input variables such as: 

Length drilled by the bit and final wear.  

The objective of experiment 1 is to compare the real 

final wear with the one predicted by the proposed 

method, using the remaining 7 runs that have not yet 

been used and were reserved for this test. The median of 

the simulated results for the last drilled meter is taken as 

an estimate of final bit wear. The RMSE (Root-Mean- 

Square Error) was used as an indicator of the accuracy, 

measuring the mean difference on the same scale 

between the real result and the predicted one; lower 

RMSE scores indicate better accuracy.  

The real and estimated final wear for each test run 

are shown in Fig. 14. The RMSE obtained for the 7 

test runs was 1.03 in IADC Dull Bit Grading scale. 

This value is equivalent to approximately 12.5% of 

the wear scale used.  

However, the obtained error disregards the response 

of the method as not punctual, but presented in the form 

of a histogram, with probabilities associated with 

possible values in an interval. Thus, even if the point 

estimate is not precise, the value of the real final wear 

may be, with a greater or lesser probability, among the 

possible wear values predicted by the histogram. 

Figure 15 illustrates the behavior of the median 

values for wear per drilled meter. The test run selected 

had a drilling depth of 254 m and the final bit wear was 

class 5 in IADC Dull Bit Grading scale. 

Figure 16 illustrates histograms from simulations for 

meters 64, 128, 192 and 254. The final wear score 

estimated for this run was 4.82 in IADC Dull Bit 

Grading scale, whereas the real wear score was 5. The 

histogram for the last meter in Fig. 16 (254 m) shows 

that there was a probability of a wear score of 5. We 

know that the estimate does not provide a fixed value 

and even though 4.82 was the most common wear score, 

in some of the simulations wear was closer to 5.  

With the 28 runs used to fit the PDFs per cluster 

(inputs) and by historical dataset (Wc), the performance 

was slightly smaller when compared to the test runs, 

since the RMSE obtained was 1.64 on the IADC Dull 

Grading scale. The real and estimated final wear for each 

run used to fit the PDFs are shown in Fig. 17.  

Experiment II  

The previous experiment evaluated the method with 

28 runs selected for fitting the PDFs and another 7 for 

testing. In this experiment, the three steps of the method 

were performed 1000 times. Each time, 28 runs (80%) 

were randomly selected for fitting and the remaining 7 

(20%) were used for testing. The RMSE obtained by 

each execution were stored.  
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Fig. 11: Clusters obtained in step 1 

 

 
 

Fig. 12: Fitted PDFs to three clusters 

 

 
 

Fig. 13: PDFs identified for the W
c
 coefficient in three historical runs 
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Fig. 14: Comparisons between real wear and predicted wear 

 

 
 

Fig. 15: Median value of the simulated wear per drilled meter 

 

 
 

Fig. 16: Histograms for simulations of 64, 128, 192 and 254 m 

 

 
 

Fig. 17: Comparisons between real wear and predicted wear for runs used to fit the PDFs 
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Fig. 18: RMSE obtained in 1000 executions of the proposed method with different runs for fitting and testing 

 

 
 

Fig. 19: RMSE obtained in 1000 neural networks with different training and test runs 

 
Through sensitivity analysis, the total k clusters to be 

formed in step 1 and the size of the window of record w 
used in step 2 where the best results obtained were k = 8 
and w = 6, respectively. In order to reduce the 
computational time, in each execution s = 400 runs are 
generated in step 2 to carry out the fitting process of the 
PDF that represents Wc coefficient in step 3.  

For the simulations of the fitting and testing runs, the 
same parameters w = 6 and s = 400 were used. Figure 18 
shows the two histograms for the sample of 1000 RMSE 
obtained. The mean RMSE and standard deviation obtained 
for the fitting runs were 1.09 and 0.1, respectively (IADC 
Dull Bit Grading). Whereas for the testing runs, it reached 
an average RMSE and standard deviation of 1.95 and 0.57, 
respectively (IADC Dull Bit Grading). 

Experiment III  

A comparative experiment was carried out using an 
approach similar to that of Lin and Ting (1996), which 
uses the mean values of the run variables as input and 
the average wear output per meter.  

In this experiment, similar to the previous one, 1000 
neural networks were trained and tested with 80% and 
20% of the randomly selected runs at each execution for 
training and testing, respectively.  

The neural network used was Cascade-forward with 

15 neurons in the hidden layer and the training function 

was Levenberg-Marquardt. The average runs of the same 

WOB, RPM and UCS variables of the previous 

experiments were used as input to the network.  

In the 1000 executions, the final wear predicted by 

simulating the training and testing runs per meter were 

stored and compared to the real wear through the RMSE, 

which are shown in Fig. 19.  

On average, the RMSE is 2.16 and 2.47 with standard 

deviation 0.47 and 0.76 on the IADC Dull Bit Grading 

scale for the training and testing runs, respectively.  

Even the neural network for the training runs (80%) 

had difficulties in estimating wear, since the proposed 

method had a lower RMSE average and lower standard 

deviation for both, runs used for fitting the PDFs (80%) 

and for the testing runs (20%).  

Experiment IV  

Similar to experiment II, but using data from 

Impregnated type drill bits. The method was executed 

500 times. Each time, 16 (≈76%) and 5 (≈24%) runs are 

randomly selected to fit the PDFs and test the method 

respectively.  
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Fig. 20: RMSE obtained in 500 executions of the proposed method with different runs for fitting and testing, using data from 

Impregnated type drill bit 
 

The parameters used for step 1 was k = 4 and in step 
2 were w = 8 and s = 500. The same values for the 
parameters w and s were used when simulating fitting 
runs and testing runs. Figure 20 shows the two 
histograms for the sample of 500 RMSE obtained.  

The standard deviations obtained in this experiment 
were close to those obtained in experiment II. However, the 
mean values for RMSE for the fitting and testing runs were 
slightly better, reaching 0.86 and 1.81 respectively. 

Conclusion  

The results of the conducted experiments show that 
the proposed simulation technique was capable of 
producing estimates of bit wear that were close to the 
real final wear. Since the method’s output is a 
distribution of wear, it is possible that the true value falls 
within the distribution at a certain level of probability.  

One of the objectives in the drilling process is to 
maximize ROP, so that the cost of drilling is reduced. Bit 
wear has a direct influence on ROP and the method 
described here provides support for decision-making in 
situations in which the decision-maker needs to know 
whether or not the bit should be pulled because of wear.  

One of the advantages of the method proposed here is 

that it does not offer the decision-maker a single value 

for estimated wear at each meter drilled. Rather, it 

provides a histogram illustrating the risk of accepting or 

rejecting the predicted bit wear value for that depth.  

Another advantage of the proposed method is that 

there is no need to provide the coefficients for the 

analytical model during its use in real time. The 

historical data provide these coefficients, selected on the 

basis of similarity. Furthermore, the proposed method 

here is not dependent on the analytical model of wear 

employed. The engine of the simulation model in this 

study were Equations 3 and 4, for bit wear, but this could 

easily be substituted with a different wear equation. It 

should also be pointed out that combining the MCM 

with clusterization reduces the likelihood that scenarios 

incompatible with the drilling process will occur.  

The criterion used to select the historical run in the 

real-time simulation during drilling, which is then 
used to draw values for the Wc coefficient creates 
considerable difficulty and has a very significant 
effect on the results of the experiments in the 
presented method. 

This study estimates the behavior of bit wear in real 

time during the drilling process by combining analytical 

models, risk analysis techniques and data mining. 

Analysis of the results of the simulations conducted 

using real drilling data to test the method supports the 

conclusion that in the majority of cases, the results are 

compatible with the results in the real-world data, as 

shown by the RMSE achieved in the experiments. 
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