

 © 2018 Aleksei F. Deon and Yulian A. Menyaev. This open access article is distributed under a Creative Commons

Attribution (CC-BY) 3.0 license.

Journal of Computer Science

Original Research Paper

Uniform Twister Plane Generator

1
Aleksei F. Deon and

2
Yulian A. Menyaev

1Department of Information Systems and Computer Science,

 N.E. Bauman Moscow State Technical University, Moscow, Russia
2Winthrop P. Rockefeller Cancer Institute, University of Arkansas for Medical Sciences, Little Rock, AR, USA

Article history

Received: 01-11-2017
Revised: 07-02-2018
Accepted: 22-02-2018

Corresponding Author:
Yulian A. Menyaev
Winthrop P. Rockefeller Cancer
Institute, University of
Arkansas for Medical Sciences,
Little Rock, AR, USA
Email: yamenyaev@uams.edu

Abstract: Random plane generators may use various types of the random

number algorithms to create multidimensional planes. At the same time, the

discrete Descartes random planes have to be uniform. The matter is that

using the concept of the uncontrolled random generation may lead to a

result of weak quality due to initial sequences having either insufficient

uniformity or skipping of the random numbers. This article offers a new

approach for creating the absolute twisting uniform two-dimensional

Descartes planes based on a model of complete twisting sequences of

uniform random variables without repetitions or skipping. The simulation

analyses confirm that the resulted random planes have an absolute

uniformity. Moreover, combining the parameters of the original complete

uniform sequences allows a significant increase in the number of created

planes without using additional random access memory.

Keywords: Pseudorandom Number Generator, Stochastic Sequences,

Congruential Numbers, Twister Generator, Random Plane, Random Field

Introduction

In our previous studies (Deon and Menyaev, 2016a;

2016b; 2017) there were proposed several pseudorandom

number generators, particularly nsDeonYuliTwist32D,

which offers a technique of using no congruential twisting

array. This generator allows the creation of absolutely

complete twister uniform sequences having various lengths.

The direction of Random Plane (RP) Generators
(RPG) employs a stochastic process at the time of
creating the points distributed on N-dimensional plane.
Here we consider a two-Dimensional (2D) plane only.
Other discrete-dimensional planes have the same initial
properties. Each coordinate of RP-generated points may
belong to its own Random Field (RF). An analysis of the
last sources sums up the following selected types of
random fields: Conditional RF (Quattoni et al., 2004;
Sutton and McCallum, 2012), Markov RF (Sarawagi and
Cohen, 2004; Bekkerman et al., 2006), Gaussian RF
(Rimstad and Omre, 2014), uniformed RF (Xiao, 2010)
and others (Qi et al., 2004; Dachian and Nahapetian,
2009). In the application areas the RPGs are often applied
in graphical images (Kumar and Hebert, 2003), phone
systems (Sung and Jurafsky, 2009), advertising
applications, etc. Next, the RPGs are actively used in
fundamental studies, starting from 2D theoretical modeling
(Gnedenko, 1998; Feller, 2008), Monte Carlo plane
simulation (Newman and Barkema, 1996; Spanos and

Zeldin, 1998), factorial development (Kim and Zabih,
2002), realizations for training systems (Sha and Pereira,
2003), etc. and biomedical engineering (Menyaev and
Zharov, 2005; 2006a; 2006b; Menyaev et al., 2013;
2016; Koonce et al., 2017).

The principles of all these studies are based on the

conception of random planes, in which the Descartes

plane features have to satisfy the following properties:

(1) The generation process has to provide the uniqueness

(i.e., no repetitions) of each point on the plane and (2)

the generation process has to keep the completeness (i.e.,

without skipping) for all created points. These properties

should be considered as a ‘natural filter’ for choosing the

random number generator.
Let’s consider two of them in brief. If the generation

uses the twister generator MT19937 (Matsumoto and
Nishimura, 1998; Matsumoto et al., 2006; 2007; Saito and
Matsumoto, 2008), then the result of this attempt is very
discussable since this generator in DieHard Tests (Berger
and Zorn, 2006; Novark and Berger, 2010; Alani, 2010)
demonstrates a uniqueness level of 0.7, which is equivalent
to the level of repeatability 1-0.7 = 0.3. On the other hand,
we may use the twister generator nsDeonYuliTwist32D
(Deon and Menyaev, 2017), which is guaranteed to create
the complete uniform twisting sequences of an arbitrary
size having no repetitions and skipping of elements. Now
the question here is: Would it be possible to observe the
Descartes properties in the current particular task?

Aleksei F. Deon and Yulian A. Menyaev / Journal of Computer Science 2018, 14 (2): 260.272

DOI: 10.3844/jcssp.2018.260.272

261

Let’s consider this issue more in detail. For this, let

us use the aforementioned twister generator, which is

capable of creating complete uniform twisting sequences

of arbitrary size. Below is the program code for

modeling a grid of the discrete Descartes plane U×V.

The program algorithm generates the integer random

numbers independently along the U and V independent

axes. Matrix A is the discrete plane indicator; its cells

a[u, v] ∈ A with indices u and v correspond to the

coordinates of discrete points <u, v> ∈ U×V. The value

of cell a[u, v] ∈ A indicates the quantity of attempts to

create independently the corresponding point < u, v > on

the generated plane. Without loss of generality and in

order to visualize the result, we assign the amount of

discrete coordinates by given sets U = V = {0, 1, 2, 3, 4, 5,

6, 7}, which in the binary representation corresponds to

the length w = 3 bits for each coordinate. According to the

previous studies (Deon and Menyaev, 2016b; 2017), let’s

choose a twister generator nsDeonYuliTwist32D, which

operates on the basis of congruential model xi+1 = (axi + c)

&maskW with constants a = 5, c = 1. The initial values of

the twisting sequences are taken here as x0 = 1 ∈ U and x0

= 4 ∈ V. Any other choice of parameters for generation is

possible; the essence of the obtained results will not be

changed. Program names P040101 and cP040101 are

taken by chance. The chosen programming language is C#

available in Microsoft Visual Studio. The use of other

dialects of the older C versions (i.e., Win32) or C++

(CLR) provides the same results.

using nsDeonYuliTwist32D; // twister uniform generator

namespace P040101

{ class cP040101

 { static void Main(string[] args)
 { uint w = 3; // number bit length
 cDeonYuliTwist32D GU =
 new cDeonYuliTwist32D();

 GU.x0 = 1; // U sequence beginning

 GU.w = w; // number bit length

 GU.Start(); // GU generator starts

 cDeonYuliTwist32D GV =

 new cDeonYuliTwist32D();

 GV.x0 = 4; // V sequence beginning

 GV.w = w; // number bit length

 GV.Start(); // GV generator starts

 int N = 1 << (int)w; // U and V sequences length

 Console.WriteLine("w = {0} N = {1}", w, N);

 uint[] U = new uint[N]; // U sequence

 uint[] V = new uint[N]; // V sequence

 int[,] A = new int[N,N]; // result matrix

 for (int i = 0; i < N; i++)

 for (int j = 0; j < N; j++) A[i, j] = 0;

 for (int i = 0; i < N; i++) // one of the axis

 { Console.Write("i = {0,3} | ", i);

 for (int j = 0; j < N; j++) // another axis

 { uint u = GU.Next(); // u random number

 U[j] = u; // random U sequence

 uint v = GV.Next(); // v random number

 V[j] = v; // random V sequence

 A[u, v]++; // <u,v> point generation counter

 }

 Console.Write("U = ");

 for (int m = 0; m < N; m++)

 Console.Write("{0,4}", U[m]);

 Console.WriteLine();

 Console.Write(" | V = ");

 for (int m = 0; m < N; m++)

 Console.Write("{0,4}", V[m]);

 Console.WriteLine();

 }

 Console.WriteLine("Matrix A");

 for (int i = 0; i < N; i++)

 {for (int j = 0; j < N; j++)

 Console.Write("{0,4}", A[i, j]);

 Console.WriteLine();

 }

 Console.ReadKey(); // result viewing

 }

 }

}

After this code execution the listing below appears:

w = 3 N = 8

i = 0 | U = 1 6 7 4 5 2 3 0

 V = 4 5 2 3 0 1 6 7

i = 1 | U = 3 5 7 1 2 4 6 0

 V = 1 2 4 6 0 3 5 7

i = 2 | U = 7 3 6 2 5 1 4 0

 V = 2 5 1 4 0 7 3 6

i = 3 | U = 6 7 4 5 2 3 0 1

 V = 5 2 3 0 1 6 7 4

i = 4 | U = 5 7 1 2 4 6 0 3

 V = 2 4 6 0 3 5 7 1

i = 5 | U = 3 6 2 5 1 4 0 7

 V = 5 1 4 0 7 3 6 2

i = 6 | U = 7 4 5 2 3 0 1 6

 V = 2 3 0 1 6 7 4 5

i = 7 | U = 7 1 2 4 6 0 3 5

 V = 4 6 0 3 5 7 1 2

Matrix A

 0 0 0 0 0 0 2 6
 0 0 0 0 3 0 3 2
 3 3 0 0 2 0 0 0
 0 3 0 0 0 2 3 0

 0 0 0 8 0 0 0 0

 5 0 3 0 0 0 0 0

 0 2 0 0 0 6 0 0

 0 0 5 0 3 0 0 0

Aleksei F. Deon and Yulian A. Menyaev / Journal of Computer Science 2018, 14 (2): 260.272

DOI: 10.3844/jcssp.2018.260.272

262

In matrix A the cells with values that differed from 1,

show that the independent generation of coordinates of

the points on the plane doesn’t ensure uniform

distribution of random points <u, v>. Some points are

missed (values 0) and others are present several times

(values > 1).

So, the aim of this article is to find a solution for the

generation of uniform discrete twisting planes, which

possess the Descartes property of a single presence of the

random points in nodes of the discretization grid.

Theory

One of the options to represent the discrete Descartes

plane is an enumeration of all points in the grid nodes,

formed from the values of discretization on the

corresponding axes. If the location of axes is independent,

the grid has a rectangular view. Moreover, if

discretization for both axes is the same and uniform, the

grid has a square view.

Let’s assume that the square grid includes N points of

discretization along each axis. Thus, the total number of

grid points is N×N = N
2
. To set these points in a random

way, an algorithm is required that can provide a random

move from one point to another.

Now would be a good time to point out and

emphasize the following: The plane is random only if

moving from one point to another, while creating the

plane, utilizes the stochastic process.

In this case, the requirement of Descartes axes, which

prescribes a unique representation of each point, has to

be kept. The unambiguity is determined by the

discretization of the axes. Uniqueness is provided by an

appropriate procedure, which does not allow entering

each point of the grid twice or more times. The skipping

of vertices of the grid isn’t allowed either. In other

words, each point is presented once during generation of

all the grid points. In this case, the total enumeration of

the points is N
2
. Following this way, such a grid on the

Descartes plane is called uniform and a random

Descartes plane, which contains uniform grid, is called

uniform Descartes RP.

There are many ways to specify the points on the

grid. Let's name a few of them:

• Rectangular left or right filling of the grid, when one

of the axes is selected and at each location of

discretization of this axis, the points along the discrete

points of the other axis are placed on the grid

• Rectangular top or bottom filling of the grid under

the same conditions

• Diagonal filling of the grid under the same conditions

• The secondary indexing of the discrete points along

the Descartes axes

This is not a whole list of possible techniques. The

options to choose aren’t limited and can be organized by

the designer in any possible way. Note that items (1) –

(3) create ordinary Descartes planes and item (4) allows

obtaining the random Descartes planes, if the secondary

index is a result of the stochastic process.

In this article, an option of secondary indexing of the

discrete marks on the Descartes axes is adopted. Let’s

demonstrate this by an example, in which the

congruential generation of random numbers xi+1 = (axi +

c)&maskW is used as secondary indexing base. In order

to visualize the results, we take the complete uniform

sequences of random numbers x ∈ {0, 1, 2, 3} = {002,

012, 102, 112} having length w = 2 bits. In this case, each

complete sequence contains N = 2
w
 = 2

2
 = 4 elements.

Without loss of generality, let’s assume that

1 [1, 1]a N= ∈ − and 3 [1, 1]c N= ∈ − . In total, four

congruential sequences are possible: <0, 3, 2, 1>, <1, 0,

3, 2>, <2, 1, 0, 3>, <3, 2, 1, 0>. These sequences allow

creating various random tracks on uniform Descartes RP.

If random value x0 = 1 is chosen as an initial value,

then the designated generator GU creates the sequence U

= <1, 0, 3, 2>. From this it follows that the initial random

vertex will be located on the vertical part of the grid with

horizontal discrete mark 1 along the U axis (Fig. 1).

If the second independent generator, which is

designated as GV, uses the initial random value x0 = 3,

then sequence V = <3, 2, 1, 0> is created. From this it’s

obvious that the second coordinate has the value of 1 for

the initial random point <1, 3>. The next vertex has

coordinates <0, 2>. Both obtained vertices are connected

by an arc, forming the beginning of the random track.

Then, vertex <3, 1> will be placed on this track. Finally,

the vertex with coordinates <2, 0> completes the random

track. For clarity, the visual representation of this track is

shown in Fig. 1.

Regarding the random sequence of secondary indices

<1, 0, 3, 2> along the U axis, four sequences along the V

axis are possible:

1) U = <1, 0, 3, 2>

 V = <3, 2, 1, 0>

2) U = <1, 0, 3, 2>

 V = <2, 1, 0, 3>

3) U = <1, 0, 3, 2>

 V = <1, 0, 3, 2>

4) U = <1, 0, 3, 2>

 V = <0, 3, 2, 1>

These sequences V can be interpreted as the left

circular shift (Deon and Menyaev, 2016b) of the original

sequence <3, 2, 1, 0>. Figure 2 shows four tracks of an

interaction of the pairs of sequences on the U and V axes.

These tracks provide an exact one-time generation of

each vertex on a grid of the Descartes RP.

Aleksei F. Deon and Yulian A. Menyaev / Journal of Computer Science 2018, 14 (2): 260.272

DOI: 10.3844/jcssp.2018.260.272

263

Fig. 1: The initial random track

Fig. 2: All the tracks of the random sequences U and V

The program code for this task is presented below, in

which all the vertices are generated on a grid of the

Descartes RP. Random numbers have the length of w = 3

bits. In each sequences U and V there are N = 2
w
 = 2

3
 = 8

random numbers with [0, 1] {0,1,2,3,4,5,6,7}x N∈ − = .

Both sequences U and V are given by a congruential

model xi+1 = (axi + c)&maskW with coefficients a = 5

and c = 1. The first sequence begins with value x0 = 1

and has the form U = <1, 6, 7, 4, 5, 2, 3, 0>. The second

sequence begins with value x0 = 4 and has the form V =

<4, 5, 2, 3, 0, 1, 6, 7>. Each cell of matrix A corresponds

to one vertex on a grid of RP. The value of cell a ∈ A

shows how many times the corresponding vertex is

generated. Program names P040201 and cP040201 are

selected by chance.

namespace P040201
{ class cP040201
 { static void Main(string[] args)
 { uint w = 3; // number bit length
 int N = 1 << (int)w; // U and V sequences length
 Console.WriteLine("w = {0} N = {1}", w, N);
 uint[] U = new uint[8] {1,6,7,4,5,2,3,0};
 uint[] V = new uint[8] {4,5,2,3,0,1,6,7};
 int[,] A = new int[N, N]; // result matrix
 for (int i = 0; i < N; i++)
 for (int j = 0; j < N; j++) A[i, j] = 0;
 for (int i = 0; i < N; i++) // one of the axis
 { Console.Write("i = {0,3} | ", i);
 for (int j = 0; j < N; j++) // another axis
 A[U[j], V[j]]++; // <u,v> generation counter
 Console.Write("U = ");
 for (int m = 0; m < N; m++)
 Console.Write("{0,4}", U[m]);
 Console.WriteLine();
 Console.Write(" | V = ");
 for (int m = 0; m < N; m++)
 Console.Write("{0,4}", V[m]);
 Console.WriteLine();
 uint r = V[0]; // V shift beginning
 for (int m = 1; m < N; m++) V[m - 1] = V[m];
 V[N-1] = r;
 }
 Console.WriteLine("Matrix A");
 for (int i = 0; i < N; i++)
 { for (int j = 0; j < N; j++)
 Console.Write("{0,4}", A[i, j]);
 Console.WriteLine();
 }
 Console.ReadKey(); // result viewing
 }

 }

}

After this code execution the listing below appears:

w = 3 N = 8

i = 0 | U = 1 6 7 4 5 2 3 0

 V = 4 5 2 3 0 1 6 7

i = 1 | U = 1 6 7 4 5 2 3 0

 V = 5 2 3 0 1 6 7 4

i = 2 | U = 1 6 7 4 5 2 3 0

 V = 2 3 0 1 6 7 4 5

i = 3 | U = 1 6 7 4 5 2 3 0

 V = 3 0 1 6 7 4 5 2

i = 4 | U = 1 6 7 4 5 2 3 0

 V = 0 1 6 7 4 5 2 3

i = 5 | U = 1 6 7 4 5 2 3 0

 V = 1 6 7 4 5 2 3 0

i = 6 | U = 1 6 7 4 5 2 3 0

 V = 6 7 4 5 2 3 0 1

i = 7 | U = 1 6 7 4 5 2 3 0
 V = 7 4 5 2 3 0 1 6

Aleksei F. Deon and Yulian A. Menyaev / Journal of Computer Science 2018, 14 (2): 260.272

DOI: 10.3844/jcssp.2018.260.272

264

Matrix A

 1 1 1 1 1 1 1 1

 1 1 1 1 1 1 1 1

 1 1 1 1 1 1 1 1

 1 1 1 1 1 1 1 1

 1 1 1 1 1 1 1 1

 1 1 1 1 1 1 1 1

 1 1 1 1 1 1 1 1

 1 1 1 1 1 1 1 1

The values of 1 in the cells of matrix A show that

each cell was updated once. This result reflects the single

initialization of the corresponding vertices on a grid of

uniform Descartes RP.

Similar tests of creating uniform planes with an

arbitrary bit length w of the random numbers confirm a

uniformity of the received RPs. Replacement of the

congruential sequences by the different corresponding

twisting sequences shows a similar result when

generating the twisting RPs. Thus, the complete uniform

twisting sequences can ensure a creation of the complete

uniform twisting RPs. Now we may proceed to the

generator designing.

Construction and Results

Program P040201, described in the previous section,

utilizes two arrays U and V as initial congruential

sequences. Such arrays can be created using the twister

generator nsDeonYuliTwist28DA (Deon and Menyaev,

2016b). However, this solution will not be perfect for the

case of large planes because it requires a lot of available

Random Access Memory (RAM). For many reasons it

may be unavailable on a computer. This limitation can be

overcome by using the twister generator

nsDeonYuliTwist32D (Deon and Menyaev, 2017), which

doesn’t use arrays of the twisting sequences. However, a

more satisfactory solution is the aforementioned program

P040201, which implies the repeated generation of U and

V, whereas nsDeonYuliTwist32D doesn’t provide this.

Thus, we come to the inference that before performing a

generation of the twisting planes, it is necessary to have

tools for the trivial operations with the twisting sequences.

Simple Twister Generator

Class cDeonYuliSTwist32D, which is presented below,

includes in its name a letter S indicating the meaning of

the word ‘simple’. This class provides elementary

operations with the twisting sequences and it does not use

any arrays. The prototype of class cDeonYuliSTwist32D is

class cDeonYuliTwist32D. They are different in the issue

that automatic setting of the congruential parameters a and

c is excluded in class cDeonYuliSTwist32D. An example

of using this class is presented in this section later, in the

description of the program code P040301.

namespace nsDeonYuliSTwist32D

{ class cDeonYuliSTwist32D

 { public uint w = 16U; // number bit length

 public uint N1 = 0U; // max-number

 public uint x0 = 1U; // sequence beginning

 uint xB = 1U; // twister beginning

 public uint xG = 0U; // created random number

 uint xL = 0U, xR = 1U; // pair numbers

 public uint a = 5U; // congruential constant a

 public uint c = 1U; // congruential constant c

 public uint maskW = 0U; // number mask

 public uint maskU = 0U; // elder bit mask

 public uint maskT = 0U; // twister bits

 public uint nW = 0U; // pair twister number in w

//---

 public cDeonYuliSTwist32D()

 { N1 = 0xFFFFFFFF >> (32 - (int)w);//max-number

 }

//---

 public void StartCong(uint sxB)

 { xB = x0;
 uint sxBe = sxB & maskW;
 for (int i = 0; i < sxBe; i++)
 xB = (a * xB + c) & maskW;// shifted beginning

 xR = xB; // for twister beginning

 }

//---

 public uint NextCong()

 { xL = xR; // pair beginning

 xR = (a * xL + c) & maskW; // end of pair
 xG = xL; // created number
 return xG;
 }
//---
 public void RepeatCong()
 { xR = xB; // repeat track
 }

//---

 public void ShiftCong()

 { xB = (a * xB + c) & maskW; // shifted beginning

 xR = xB; // for twister beginning

 }

//---

 public void StartTwist(uint snW)
 { nW = (uint)snW; // bit shift size
 maskT = maskU; // elder 1 of twister mask
 for (int m = 1; m < nW; m++)
 maskT |= maskU >> m; // twister mask
 xL = xB; // for twister beginning
 xR = (a * xL + c) & maskW; // end of xL,xR pair
 }
//---
 public uint NextTwist()
 { uint g = (xR & maskT) >> (int)(w - nW); // elder
 xG = ((xL << (int)nW) & maskW) | g; // younger

 xL = xR; // next pair beginning

Aleksei F. Deon and Yulian A. Menyaev / Journal of Computer Science 2018, 14 (2): 260.272

DOI: 10.3844/jcssp.2018.260.272

265

 xR = (a * xL + c) & maskW; // end of xL,xR pair
 return xG; // twister of pair
 }
//---
 public void RepeatTwist()
 { xL = xB; // for twister beginning
 xR = (a * xL + c) & maskW; // end of xL,xR pair
 }
//---
 public void ShiftTwist()
 { xB = (a * xB + c) & maskW; // shifted beginning
 xL = xB; // for twister beginning
 xR = (a * xL + c) & maskW; // end of xL,xR pair
 }

//---
 public void Start()
 { N1 = 0xFFFFFFFF >> (32- (int)w);//max-number
 maskW = 0xFFFFFFFF >> (32- (int)w); //n. mask
 maskU = 1U << ((int)w - 1); // elder bit mask
 maskT = maskU; // first twister bit
 DeonYuli_PlusA(); // a-value
 DeonYuli_SetC(); // с-value
 x0 &= maskW; // sequence beginning
 StartCong(0); // for congruential generation

 }

//---
 public void TimeStart()
 { x0 = (uint)DateTime.Now.Millisecond;// millisecs
 Start(); // generator starts
 }

//---
 public void SetW(uint sw)
 { w = (uint)Math.Abs(sw); // number bit length
 DeonYuli_SetW();
 }

//---

 public void SetW(int sw)
 { w = (uint)Math.Abs(sw); // number bit length
 DeonYuli_SetW();
 }
//---
 public void DeonYuli_SetW()
 { if (w < 3U) w = 3U; // min-length
 else if (w > 32U) w = 32U; // max-length
 N1 = 0xFFFFFFFF >> (32- (int)w);//max-number

 x0 = N1 / 7U; // sequence beginning

 }

//---

 public void SetA(double sa)
 { double ad = Math.Abs(sa);
 if (ad > 1.0) ad = 1.0;
 a = (uint)(N1 * ad); // related set of a
 }
//---
 public void SetA(uint sa)
 { a = (uint)Math.Abs(sa);

 if (a < 1) a = 1; // min-value

 if (a > N1) a = N1; // max-value

 }

//---

 void DeonYuli_PlusA()

 { if (a < 1U) {a = 1U; return; }
 uint z = a; // bottom edge for a
 for (uint i = 0U; i < 3U; i++)
 if (a % 4U != 0U) a--; // random condition
 else break;
 a++; // true value for constant a
 if (a < z) a += 4U; // on right from bottom edge
 if (a >= N1 - 1) a -= 4U; // on left from top edge
 }
//---
 public void SetC(double sc)
 { double cd = Math.Abs(sc);
 if (cd > 1.0) cd = 1.0;
 c = (uint)(N1 * cd); // related set of c
 }
//---
 public void SetC(uint sc)
 { c = (uint)Math.Abs(sc);
 if (c < 1) a = 1; // min-value
 if (c > N1) c = N1; // max-value
 }
//---
 void DeonYuli_SetC()
 { if (c % 2U == 0U) c += 1; // only odd c
 if (c > N1) c = N1; // max-value
 }
//---
 public void SetX0(double sx)
 { double xd = Math.Abs(sx);

 if (xd > 1.0) xd = 1.0;

 x0 = (uint)(N1 * xd); // sequence beginning

 }

//---

 public void SetX0(int sx)

 { x0 = (uint)sx; // sequence beginning

 }

//=======================================

 }

}

To verify the correct utilization of the presented
generator nsDeonYuliSTwist32D, let’s use the program
code P040301, in which the sequences of all twisters of
the random numbers having length w = 3 bits are
generated. The total quantity of sequences is w· N = w·2

w

= 3·2
3
 = 24. Program names P040301 and cP040301 are

taken by chance.

using nsDeonYuliSTwist32D; // s-twister uni-generator

namespace P040301

{ class cP040301

 { static void Main(string[] args)

 { cDeonYuliSTwist32D ST =

Aleksei F. Deon and Yulian A. Menyaev / Journal of Computer Science 2018, 14 (2): 260.272

DOI: 10.3844/jcssp.2018.260.272

266

 new cDeonYuliSTwist32D();

 ST.SetW(3); // number bit length

 ST.SetA(5); // congruential constant a

 ST.SetC(1); // congruential constant c
 ST.SetX0(1); // sequence beginning
 ST.Start(); // generator starts
 int w = (int)ST.w; // random bit length
 int N = (int)ST.N1 + 1; // sequence length
 Console.WriteLine("w = {0} N = {1}", w, N);
 Console.WriteLine("a = {0} c = {1} x0 = {2}",

 ST.a, ST.c, ST.x0);

 int k = 0;
 for (int m = 0; m <= ST.N1; m++)
 { Console.Write("k = {0,3} | Cong = ", k++);
 for (int n = 0; n <= ST.N1; n++)
 { uint z = ST.NextCong(); //congruential number
 Console.Write("{0,4}", z);

 }

 Console.WriteLine();

 for (int nW = 1; nW < ST.w; nW++)

 { Console.Write("k = {0,3} | Twist {1} =",

 k++, nW);

 ST.StartTwist((uint)nW); // twist beginning nW
 for (int n = 0; n <= ST.N1; n++)
 { uint z = ST.NextTwist(); // twister number
 Console.Write("{0,4}", z);
 }

 Console.WriteLine();

 ST.RepeatTwist();

 }

 ST.ShiftCong(); // congruential shift

 }

 Console.ReadKey(); // result viewing

 }

 }

}

After the execution of P040301, the following listing

appears on the monitor:

w = 3 N = 8

a = 5 c = 1 x0 = 1

k = 0 | Cong = 1 6 7 4 5 2 3 0

k = 1 | Twist 1 = 3 5 7 1 2 4 6 0

k = 2 | Twist 2 = 7 3 6 2 5 1 4 0

k = 3 | Cong = 6 7 4 5 2 3 0 1
k = 4 | Twist 1 = 5 7 1 2 4 6 0 3
k = 5 | Twist 2 = 3 6 2 5 1 4 0 7

k = 6 | Cong = 7 4 5 2 3 0 1 6
k = 7 | Twist 1 = 7 1 2 4 6 0 3 5
k = 8 | Twist 2 = 6 2 5 1 4 0 7 3

k = 9 | Cong = 4 5 2 3 0 1 6 7
k = 10 | Twist 1 = 1 2 4 6 0 3 5 7
k = 11 | Twist 2 = 2 5 1 4 0 7 3 6

k = 12 | Cong = 5 2 3 0 1 6 7 4
k = 13 | Twist 1 = 2 4 6 0 3 5 7 1

k = 14 | Twist 2 = 5 1 4 0 7 3 6 2
k = 15 | Cong = 2 3 0 1 6 7 4 5
k = 16 | Twist 1 = 4 6 0 3 5 7 1 2
k = 17 | Twist 2 = 1 4 0 7 3 6 2 5
k = 18 | Cong = 3 0 1 6 7 4 5 2
k = 19 | Twist 1 = 6 0 3 5 7 1 2 4
k = 20 | Twist 2 = 4 0 7 3 6 2 5 1
k = 21 | Cong = 0 1 6 7 4 5 2 3
k = 22 | Twist 1 = 0 3 5 7 1 2 4 6
k = 23 | Twist 2 = 0 7 3 6 2 5 1 4

These congruential twisting sequences coincide with
the result of tests of our previously developed twister
generator nsDeonYuliTwist28DA utilizing a technique of
the congruential twisting array.

Running the program P040301 with other values of
the bit length w of the random numbers confirms a
completeness of the generated sequences. This is
sufficient to ensure the development of programs for
generating the Descartes uniform twisting RPs.

Twister Generator of Uniform Planes

When constructing a complete generator of uniform

twisting planes, let’s use two uniform complete generators

GU and GV of the aforementioned instrumental class

cDeonYuliSTwist32D. It allows organizing the next class

nsDeonYuliPlaneTwist32D for the generation of all points

on a grid of the twisting plane. By default, the initial track

takes a diagonal of the grid points from the left-bottom

position to the right-top one, although this may be

changed by setting the independent beginnings for the

internal generators GU and GV. An example use of class

cDeonYuliPlaneTwist32D is presented in this section later,

located in the description of the program code P040302.

using nsDeonYuliSTwist32D; // s-twister uni-generator

namespace nsDeonYuliPlaneTwist32D

{ class cDeonYuliPlaneTwist32D
 { public uint w = 16; // uniform number bit length
 public uint N1 = 0; // max-number in track
 public uint a = 5U; // congruential constant a
 public uint c = 1U; // congruential constant c
 public uint x0 = 1U; // constant of track beginning
 public cDeonYuliSTwist32D GU; // generator 1
 public cDeonYuliSTwist32D GV; // generator 2
 public uint nWU = 0; // twister shift number in GU

 public uint nRU = 0; // ring shift number in GU
 public uint nWV = 0; // twister shift number in GV
 public uint nRV = 0; // ring shift number in GV
 public uint nG = 0; // elements in GU and GV tracks
//---
 public cDeonYuliPlaneTwist32D()
 { GU = new cDeonYuliSTwist32D(); // generator 1
 GV = new cDeonYuliSTwist32D(); // generator 2
 }

//---

 public void SetW(int sw)

Aleksei F. Deon and Yulian A. Menyaev / Journal of Computer Science 2018, 14 (2): 260.272

DOI: 10.3844/jcssp.2018.260.272

267

 { w = (uint)sw; // random number bit length

 DeonYuli_SetWN1ACX();

 }

//---

 public void SetW(uint sw)

 { w = sw; // random number bit length

 DeonYuli_SetWN1ACX();

 }

//---

 void DeonYuli_SetWN1ACX()

 { N1 = 0xFFFFFFFF >> (32- (int)w);//max-number

 a = (uint)((double)N1*0.39);//congruential const a

 c = a / 2; // congruential const c

 x0 = N1 / 2U; // constant of track beginning

 }

//---

 void DeonYuli_SetN1ACX()

 { GU.w = w; // random number bit length in GU

 GU.a = a; // congruential constant a for GU

 GU.c = c; // congruential constant c for GU

 GU.x0 = x0; // sequence beginning in GU

 GV.w = w; // random number bit length in GV

 GV.a = a; // congruential constant a for GV
 GV.c = c; // congruential constant c for GV
 GV.x0 = x0; // sequential beginning in GV

 }

//---
 public void Start()
 { DeonYuli_SetN1ACX(); // congruential constants
 GU.Start(); // GU generator starts
 GV.Start(); // GV generator starts
 a = GU.a; // congruential constant a
 c = GU.c; // congruential constant c

 x0 = GU.x0; // beginning of U and V sequences

 nWU = 0; // twister shift number in GU generator
 nRU = 0; // ring shift number in GU generator
 nWV = 0; // twister shift number in GV generator
 nRV = 0; // ring shift number in GV generator
 nG = 0; // elements number in GU and GV tracks
 GU.StartCong(0);//for congruential GU generation

 GV.StartCong(0);//for congruential GV generation

 }

//---

 public void Next(ref uint u, ref uint v)
 { if (nWU == 0) GU.NextCong();
 else GU.NextTwist();
 if (nWV == 0) GV.NextCong();
 else GV.NextTwist();
 u = GU.xG; // <u,v> point coordinates
 v = GV.xG;
 if (nG < N1) {nG++; return; } // inside track
 nG = 0; // regular track beginning
 if (DeonYuli_RingCongGV()) return;// inside GV

 if (DeonYuli_RingTwistGV()) return;// inside GV

 if (DeonYuli_RingCongGU()) return;// inside GU

 DeonYuli_RingTwistGU(); // inside GU

 }

//---

 bool DeonYuli_RingCongGV()

 { if (nWV != 0) return false; // no congruential ring

 if (nWU == 0) GU.RepeatCong();

 else GU.RepeatTwist();

 if (nRV < N1)//congruent. ring opportunity in GV

 { GV.ShiftCong(); // congruential shift in GV

 nRV++; // next ring number

 return true; // inside congruential track in GV

 }

 nRV = 0; // first ring in GV

 nWV = 1; // first twister in GV

 GV.StartTwist(nWV); // twister starts in GV

 return true; // inside GV

 }

//---

 bool DeonYuli_RingTwistGV()

 { if (nWV == 0) return false; // no twister ring

 if (nWU == 0) GU.RepeatCong();

 else GU.RepeatTwist();

 if (nRV < N1) // twister ring opportunity in GV

 { GV.ShiftTwist(); // twister shift in GV

 nRV++; // next ring number

 return true; // inside twister track in GV

 }

 nRV = 0; // new ring in GV

 if (nWV < w - 1) // continue twisters

 { nWV++; // next bit twister in GV

 GV.StartTwist(nWV); // twister starts in GV

 return true; // inside twister regime in GV

 }

 nRV = 0; // new ring in GV

 nWV = 0;//congruent. beginning (twister 0) in GV

 GV.StartCong(nWV); // GV generator starts

 return false; // rings R2 and W2 are over in GV

 }
//---
 bool DeonYuli_RingCongGU()
 { if (nWU != 0) return false; // no congruential ring
 if (nRU < N1)//congruent. ring opportunity in GU
 { GU.ShiftCong(); // congruential shift in GU
 nRU++; // next ring number
 return true; // inside congruential track in GU
 }
 nRU = 0; // first ring in GU
 nWU = 1; // first twister in GU
 GU.StartTwist(nWU); // twister starts in GU
 return true; // inside GU
 }
//---
 bool DeonYuli_RingTwistGU()
 { if (nWU == 0) return false; // no twister ring
 if (nRU < N1) // twister ring opportunity in GU

 { GU.ShiftTwist(); // twister shift in GU

 nRU++; // next ring number

Aleksei F. Deon and Yulian A. Menyaev / Journal of Computer Science 2018, 14 (2): 260.272

DOI: 10.3844/jcssp.2018.260.272

268

 return true; // inside twist track in GU

 }

 nRU = 0; // new ring in GU

 if (nWU < w - 1) // continue twisters

 { nWU++; // next bit twister in GU

 GU.StartTwist(nWU); // twister starts in GU

 return true; // inside twister regime in GU

 }

 nRU = 0; // new ring in GU

 nWU = 0; // congruent. beginning (twister 0) in GU

 GU.StartCong(nWU); // GU generator beginning

 return false;//all planes created; common beginning

 }

//=======================================

 }

}

To test an operation of the presented generator

nsDeonYuliPlaneTwist32D, let’s use the program code

P040302 shown below, in which the points of the initial

twisting plane of the random numbers having length w =

3 bits are generated. By default, the initial track of

generation is a diagonal of the grid points from the left-

bottom position to the right-top one. The uniformity of

points on a plane would be confirmed by matrix A, in

which the cell values are the counters of generation of

the corresponding points <u, v> on RP. Program names

P040302 and cP040302 are taken by chance.

using nsDeonYuliPlaneTwist32D;//twist-plane generator

namespace P040302

{ class cP040302

 { static void Main(string[] args)

 { cDeonYuliPlaneTwist32D TP =

 new cDeonYuliPlaneTwist32D();

 int w = 3; // random number bit length

 int N = 1 << w; // track length

 TP.SetW(w);

 TP.Start(); // generator starts

 Console.WriteLine("w = {0} N = {1}", w, N);

 Console.WriteLine("a = {0} c = {1} x0 = {2}",

 TP.a, TP.c, TP.x0);

 uint[] u = new uint[N]; // point u-coords on track

 uint[] v = new uint[N]; // point v-coords on track

 int[,] A = new int[N, N]; // result matrix

 for (int i = 0; i < N; i++)
 for (int j = 0; j < N; j++) A[i, j] = 0;
 uint uu = 0; // point job coordinates on plane
 uint vv = 0;
 for (int i = 0; i < N; i++) // track values on plane
 { Console.Write("i = {0,4} ", i);
 Console.Write(" nWU = {0,3}", TP.nWU);
 Console.Write(" nRU = {0,3}", TP.nRU);
 Console.Write(" nWV = {0,3}", TP.nWV);

 Console.Write(" nRV = {0,3}", TP.nRV);

 Console.WriteLine();

 for (int j = 0; j < N; j++)

 { TP.Next(ref uu, ref vv); // point on grid

 u[j] = uu;

 v[j] = vv;

 A[uu, vv]++; // generation counter for <u,v>

 }

 Console.Write(" U = ");

 for (int j = 0; j < N; j++)

 Console.Write("{0,4}", u[j]);

 Console.WriteLine();

 Console.Write(" V = ");

 for (int j = 0; j < N; j++)

 Console.Write("{0,4}", v[j]);

 Console.WriteLine();

 }

 Console.WriteLine("Matrix A");

 for (int i = 0; i < N; i++)

 { for (int j = 0; j < N; j++)

 Console.Write("{0,4}", A[i, j]);

 Console.WriteLine();

 }

 Console.ReadKey(); // result viewing

 }

 }

}

After the execution of P040302 code, the listing

below appears. To reduce the listing size, we skipped

some strings, which are indicated by a dashed line.

w = 3 N = 8

a = 5 c = 1 x0 = 3

i = 0 nWU = 0 nRU = 0 nWV = 0 nRV = 0

 U = 3 0 1 6 7 4 5 2

 V = 3 0 1 6 7 4 5 2

i = 1 nWU = 0 nRU = 0 nWV = 0 nRV = 1

 U = 3 0 1 6 7 4 5 2

 V = 0 1 6 7 4 5 2 3

i = 2 nWU = 0 nRU = 0 nWV = 0 nRV = 2

 U = 3 0 1 6 7 4 5 2

 V = 1 6 7 4 5 2 3 0

- - - - -

i = 7 nWU = 0 nRU = 0 nWV = 0 nRV = 7

 U = 3 0 1 6 7 4 5 2

 V = 2 3 0 1 6 7 4 5

Matrix A

1 1 1 1 1 1 1 1

1 1 1 1 1 1 1 1

1 1 1 1 1 1 1 1

1 1 1 1 1 1 1 1

1 1 1 1 1 1 1 1

1 1 1 1 1 1 1 1

1 1 1 1 1 1 1 1

1 1 1 1 1 1 1 1

In this listing, indicator nWU shows the number of a

Aleksei F. Deon and Yulian A. Menyaev / Journal of Computer Science 2018, 14 (2): 260.272

DOI: 10.3844/jcssp.2018.260.272

269

twister on axis U and indicator nRU is pointed to the

circular shift number on this axis U. The values nWU = 0

and nRU = 0 correspond to the congruential initial sequence

on axis U. Similar values of indicators nWV and nRV show

the circular shift of the initial sequence on axis V.

The listing of results for the singular matrix A confirms

that each random point <u, v> is created once. The same

results are valid for other w ≤ 32. This corresponds to a

concept of the Descartes uniform RP. Thus, generator

nsDeonYuliPlaneTwist32D is ready for implementation.

Discussion

Twister generator nsDeonYuliPlaneTwist32D is

capable creating a set of uniform twisting RPs for each

pair of the congruential constants

, [1, 1] [1,2 1]
w

a c N∈ − = − in the sequences of random

numbers having w bit length. All the initial values

0
[0,2 1]

w

x ∈ − are automatically presented in circles of

the twisters (Deon and Menyaev, 2016b). However, the

question is how many twisting planes could be obtained

for each pair of parameters a and c?

In the previous section, it has been determined that

when creating the initial RP U×V, two random sequences

U and V can be taken, which are created by the

corresponding twisting generators. It is known that

twister 0 is the initial uniform congruential sequence.

Let’s denote it as U0. Another sequence V0 could be

chosen arbitrarily but on the condition that it is also

uniform. If the sizes or quantity of elements in the initial

sequences are the same card (U0) = card (V0), then it can

be stated that among all the possible tracks of the

random uniform plane there has to be a track that creates

points on the second diagonal (from the left-bottom

position to the right-top one) of the corresponding square

discrete grid. This is somewhat reminiscent of the idea of

a central abstract element and specifically in our case

this second diagonal track is the central track of the

discrete grid. In generator nsDeonYuliPlaneTwist32D

this is exactly what is done, shown at the beginning of

the listing of results for the previous program P0040302.

U0 = 3 0 1 6 7 4 5 2

V0 = 3 0 1 6 7 4 5 2

This is not the only solution because as the central

track, one could take the main diagonal (from the left-top

position to the right-bottom one) of a grid. But since the

initial sequences U and V are random, the order of the

vertex passage <3, 3>,<0, 0>, <1, 1>, <6, 6>, <7, 7>, <4,

4>, <5, 5>, <2, 2> is also random.

Now let’s fix the sequence U while the sequence V is

shifted to the left by the circular technique by one position.

U0 = 3 0 1 6 7 4 5 2

V1 = 0 1 6 7 4 5 2 3

This combination of pairs gives the points of the first

track <3, 0>, <0, 1>, <1,6>, <6, 7>, <7, 4>, <4, 5>, <5,

2>, <2, 3> on RP. None of these points can appear on the

reverse main diagonal of a grid, since sequences U0 and V1

are uniform. Their uniformity follows from the

determined properties of the complete twisting sequences

(Deon and Menyaev, 2016b). Shifting of sequence V,

provided that sequence U0 is fixed, could be continued and

so the second track on a grid might be obtained.

U0 = 3 0 1 6 7 4 5 2

V2 = 1 6 7 4 5 2 3 0

The second track contains the points, which also

cannot occur on track 1 and track 0 of the reverse diagonal

and again that is because of the properties of the complete

uniform twisting sequences. In this example, only 8

options to present sequence V are possible since the 9
th

shift repeats the initial variation V8 = V0.

So, the shift operations for sequences comply with

the corresponding varieties of the twisting sequences. In

the presented example, the shifts of the congruential

sequence, which comply with the congruential

generation from the corresponding initial values, are

considered. Thus, the congruential initial generation of

sequences U0 and V0 initiates the creation of one RP

using the complete sequence of shifts of one of the

original sequences Vj while another sequence U0 is fixed.

By analyzing the result of the previous program

P040301, it’s easy to see that among all sequences

[0,23]k
V

∈

 there are all 8 congruential shifts Vk = 0, Vk = 3, Vk

= 6, Vk = 9, Vk = 12, Vk = 15, Vk = 18, Vk = 21 in amount of N = 2
w

= 2
3
 = 8 random numbers having length of 3 bits in the

complete sequence. As a result, it turns out that tracks

<U0, Vj> = <U0, VK> form the initial plane L0.

Similar arguments apply to plane L1. If we refer again

to the result of the previous program P040301, this

example shows that plane L1 is created using the

congruential twisting tracks <Uk = 0, Vk∈[1, 4, 7, 10, 13, 16, 19,

22]>. Plane L2 is created by using shifts of the next twister

<Uk = 0, Vk∈[2, 5, 8, 11, 14, 17, 20, 23]>. Next is plane L3, but to

create it we need to perform the congruential circular

shift of sequence U0 by one random step to the left,

which leads to obtaining the new distribution of the

random values Uk = 3 along the axis U. Then, the next

plane L3, which can be obtained with the help of tracks

<Uk = 3, Vk∈[0, 3, 6, 9, 12, 15, 18, 21]>.

A summary of all the points obtained leads us to the

conclusion that number card (L) of the complete set of

RPs is defined by multiplication of two things. The first

is card(UCT) = w·N = w·2
w
, which is a quantity of the

different options of the congruential twisting forms of

Aleksei F. Deon and Yulian A. Menyaev / Journal of Computer Science 2018, 14 (2): 260.272

DOI: 10.3844/jcssp.2018.260.272

270

sequence U; the second is card(VT) = w, which is a

quantity of the various twisters in sequence V including

the congruential twister 0, i.e.,: card(L) = card(UCT).

card(VT) = wN·w = w
2
N.

Below is the program code P040101, in which the

uniformity of all the random twisting planes L(w = 3) is

checked. Matrix A is helpful for this task. Since in the

uniform RPs each vertex is created once, after the full

enumeration of all the RPs the quantity of generations of

each vertex has to be equal to the amount of planes. In

other words, the counters of cells of matrix A have to

have the same values and moreover, they have to be

equal to the quantity of the generated RPs. To clarify, the

program below uses the random numbers with a bit

length w = 3. The names P040401 and cP040401 are

selected by chance.

using nsDeonYuliPlaneTwist32D;//twist-plane generator

namespace P040401

{ class cP040401

 { static void Main(string[] args)

 { cDeonYuliPlaneTwist32D TP =

 new cDeonYuliPlaneTwist32D();

 int w = 3; // random number bit length

 int N = 1 << w; // track length

 TP.SetW(w);

 TP.Start(); // generator starts

 Console.WriteLine("w = {0} N = {1}", w, N);

 Console.WriteLine("a = {0} c = {1} x0 = {2}",

 TP.a, TP.c, TP.x0);

 uint[] u = new uint[N]; // point u-coords on track

 uint[] v = new uint[N]; // point v-coords on track

 uint[,] A = new uint[N, N];

 for (int i = 0; i < N; i++)

 for (int j = 0; j < N; j++) A[i, j] = 0;

 uint uu = 0; // point job coordinates on plane

 uint vv = 0;

 int plane = 0; // plane number

 int k = 0; // track number

 while (true)

 { uint nWU = TP.nWU, nRU = TP.nRU;

 uint nWV = TP.nRV, nRV = TP.nRV;

 for (int j = 0; j < N; j++)

 { TP.Next(ref uu, ref vv); // point on grid
 u[j] = uu;
 v[j] = vv;
 A[uu, vv]++;

 }

 if (k % N == 0) plane++; // plane number

 Console.WriteLine("plane = {0}", plane);

 k++; // next track
// if (k < 569) continue;
 Console.Write("k = {0,4} ", k);
 Console.Write("nWU = {0,3} ", nWU);
 Console.Write("nRU = {0,3} ", nRU);

 Console.Write("nWV = {0,3} ", nWV);

 Console.Write("nRV = {0,3} ", nRV);

 Console.WriteLine();

 Console.Write(" U = ");

 for (int j = 0; j < N; j++)

 Console.Write("{0,4}", u[j]);

 Console.WriteLine();

 Console.Write(" V = ");

 for (int j = 0; j < N; j++)

 Console.Write("{0,4}", v[j]);

 Console.WriteLine();

 if (k % N == 0)

 { Console.WriteLine("Matrix A");

 for (int i = 0; i < N; i++)

 { for (int j = 0; j < N; j++)

 Console.Write("{0,4}", A[i,j]);

 Console.WriteLine();

 }

 }

 Console.ReadKey(); // regular result viewing

 }

 }

 }

}

After executing the program P040401, the following

listing below appears on the monitor. The skipped

strings are indicated by a dashed line.

w = 3 N = 8

a = 5 c = 1 x0 = 3

plane = 1

k = 1 nWU = 0 nRU = 0 nWV = 0 nRV = 0

 U = 3 0 1 6 7 4 5 2

 V = 3 0 1 6 7 4 5 2

plane = 1

k = 2 nWU = 0 nRU = 0 nWV = 1 nRV = 1

 U = 3 0 1 6 7 4 5 2

 V = 0 1 6 7 4 5 2 3

- - - - -

plane = 1

k = 8 nWU = 0 nRU = 0 nWV = 7 nRV = 7

 U = 3 0 1 6 7 4 5 2

 V = 2 3 0 1 6 7 4 5

Matrix A

 1 1 1 1 1 1 1 1

 1 1 1 1 1 1 1 1

 1 1 1 1 1 1 1 1

 1 1 1 1 1 1 1 1

 1 1 1 1 1 1 1 1

 1 1 1 1 1 1 1 1

 1 1 1 1 1 1 1 1

 1 1 1 1 1 1 1 1

- - - - -

plane = 72

Aleksei F. Deon and Yulian A. Menyaev / Journal of Computer Science 2018, 14 (2): 260.272

DOI: 10.3844/jcssp.2018.260.272

271

k = 575 nWU = 2 nRU = 7 nWV = 6 nRV = 6

 U = 2 5 1 4 0 7 3 6

 V = 6 2 5 1 4 0 7 3

plane = 72

k = 576 nWU = 2 nRU = 7 nWV = 7 nRV = 7

 U = 2 5 1 4 0 7 3 6

 V = 2 5 1 4 0 7 3 6

Matrix A

 72 72 72 72 72 72 72 72

 72 72 72 72 72 72 72 72

 72 72 72 72 72 72 72 72

 72 72 72 72 72 72 72 72

 72 72 72 72 72 72 72 72

 72 72 72 72 72 72 72 72

 72 72 72 72 72 72 72 72

 72 72 72 72 72 72 72 72

So, the values of the elements of matrix A confirm

the analytical calculations for card(L) = w
2
N and for

arbitrary w ≤ 32. Generator nsDeonYuliPlaneTwist32D

creates a complete set of uniform twisting RPs, which is

considered as the primary task of this article.

Conclusion

Analysis of the sources indicates that algorithms of the

generators of uniform planes do not take into account the

potential of the sequences having absolutely uniform

distribution. Techniques of those generating algorithms do

not guarantee the absolute uniformity of the complete

random planes. To overcome this limitation, we proposed

here the generators of the complete uniform sequences,

which include unique twisting techniques described in our

previous works. However, their direct application for the

described task is hampered by the required properties of

Descartes uniform planes. To satisfy this requirement, a

new class nsDeonYuliStwist32D was constructed and now

with its help it is possible to create the dynamic objects of

the simplest twisters without using congruential arrays.

Applying secondary indexing technique allows for getting

a generator of Descartes twisting random planes, which

ensures the completeness and uniqueness of all the

random variables on a grid of the Descartes plane. The

performed tests confirm the absolute uniform distribution

of the generated random values on a plane. In addition, a

variety of the initial twisting sequences allows getting a

set of the twisting planes for each pair of the congruential

constants. In perspective, the obtained results can be

used in a large number of applied tasks, which use the

spatial plane distributions.

Acknowledgment

The authors are thankful to Matthew Vandenberg,

Jacqueline Nolan, Julia Alex Watts and Walter

Harrington (University of Arkansas for Medical

Sciences, Little Rock, AR, USA) for the proofreading.

Author’s Contributions

Both authors equally contributed to this work.

Funding Information

The authors have no support or funding to report.

Ethics

This article is original and contains unpublished

material. The corresponding author confirms that all of

the other authors have read and approved the manuscript.

No ethical issues were involved and the authors have no

conflict of interest to disclose.

References

Alani, M.M., 2010. Testing randomness in ciphertext of

block-ciphers using diehard Tests. Int. J. Comput.

Sci. Netw. Secur., 10: 53-57.

Bekkerman, R., M. Sahami and E. Learned-Miller, 2006.

Combinatorial Markov random fields. Proceedings

of the 17th European Conference on Machine

Learning, (CML’ 06:), pp: 30-41.

 DOI: 10.1007/11871842_8

Berger, E.D. and B.G. Zorn, 2006. DieHard:

Probabilistic memory safety for unsafe languages.

Proceedings of the 27th ACM SIGPLAN

Conference on Programming Language Design and

Implementation, (LDI’ 06), pp:158-168.

 DOI: 10.1145/1133255.1134000

Dachian, S. and B.S. Nahapetia, 2009. On gibbsianness of

random fields. Markov Process. Relat., 15: 81-104.

Deon, A.F. and Y.A. Menyaev, 2016a. The complete set

simulation of stochastic sequences without repeated

and skipped elements. J. Univers. Comput. Sci., 22:

1023-1047. DOI: 10.3217/jucs-022-08-1023

Deon, A.F. and Y.A. Menyaev, 2016b. Parametrical

tuning of twisting generators. J. Comput. Sci., 12:

363-378. DOI: 10.3844/jcssp.2016.363.378

Deon, A.F. and Y.A. Menyaev, 2017. Twister generator

of arbitrary uniform sequences. J. Univers. Comput.

Sci., 23: 353-384.

Feller, W., 2008. An Introduction to Probability Theory

and Its Applications. 3rd Edn., WSE Press,

 ISBN-10: 8126518057, pp: 509.

Gnedenko, B., 1998. Theory of Probability. 6th Edn.,

CRC Press, ISBN-10: 9056995855, pp: 520.

Kim, J. and R. Zabih., 2002. Factorial Markov random

fields. Proceedings of the European Conference on

Computer Vision, (CCV’ 02), pp: 321-334.

 DOI: 10.1007/3-540-47977-5_21

Aleksei F. Deon and Yulian A. Menyaev / Journal of Computer Science 2018, 14 (2): 260.272

DOI: 10.3844/jcssp.2018.260.272

272

Koonce, N.A., M.A. Juratli, C. Cai, M. Sarimollaoglu

and Y.A. Menyaev et al., 2017. Real-time

monitoring of Circulating Tumor Cell (CTC) release

after nanodrug or tumor radiotherapy using in vivo

flow cytometry. Biochem. Biophys. Res. Commun.,

492: 507-512. DOI: 10.1016/j.bbrc.2017.08.053

Kumar, S. and M. Hebert, 2003. Discriminative

random fields: A discriminative framework for

contextual interaction in Classification.

Proceedings of the 9th IEEE International

Conference on Computer Vision, (CCV’ 03), pp:

1150-1157. DOI: 10.1109/ICCV.2003.1238478

Matsumoto, M. and T. Nishimura, 1998. Mersenne

twister: A 623-dimensionally equidistributed

uniform pseudorandom number generator. ACM

TOMACS, 8: 3-30. DOI: 10.1145/272991.272995

Matsumoto, M., M. Saito, H. Haramoto and T. Nishimura,

2006. Pseudorandom number generation: Impossibility

and compromise. J. Univers. Comput. Sci., 12:

672-690. DOI: 10.3217/jucs-012-06-0672

Matsumoto, M., I. Wada, A. Kuramoto and H. Ashihara,

2007. Common defects in initialization of

pseudorandom number generators. ACM TOMACS.

DOI: 10.1145/1276927.1276928

Menyaev, Y.A. and V.P. Zharov, 2005. Phototherapeutic

technologies for oncology. Proceedings of SPIE,

5973:271-278. DOI: 10.1117/12.640217

Menyaev, Y.A. and V.P. Zharov, 2006a. Experience

in development of therapeutic photomatrix

equipment. Biomed. Eng., 40: 57-63.

 DOI: 10.1007/s10527-006-0042-6

Menyaev, Y.A. and V.P. Zharov, 2006b. Experience in the

use of therapeutic photomatrix equipment. Biomed.

Eng., 40: 144-147. DOI: 10.1007/s10527-006-0064-0

Menyaev, Y.A., D.A. Nedosekin, M. Sarimollaoglu, M.A.

Juratli and E.I. Galanzha et al., 2013. Optical clearing

in photoacoustic flowcytometry. Biomed. Opt.

Express, 4: 3030-41. DOI: 10.1364/BOE.4.003030

Menyaev, Y.A., K.A. Carey, D.A. Nedosekin, M.

Sarimollaoglu and E.I. Galanzha et al., 2016.

Preclinical photoacoustic models: Application for

ultrasensitive single cell malaria diagnosis in large

vein and artery. Biomed. Opt. Express, 7: 3643-58.

DOI: 10.1364/BOE.7.003643

Newman, M.E.J. and G.T. Barkema, 1996. Monte carlo

study of the random-field ising model. Phys. Rev.

E., 53: 393-404. DOI: 10.1103/PhysRevE.53.393

Novark, G. and E.D. Berger, 2010. DieHarder: Securing the

heap. Proceedings of the 17th ACM Conference on

Computer and Communications Security, (CCS’10),

pp: 573-584. DOI: 10.1145/1866307.1866371

Qi, Y., M. Szummer and T.P. Minka, 2004. Bayesian

conditional random fields. Proceedings of the 10th

International Workshop on Artificial Intelligence

and Statistics, (ATS’05), pp: 1-8.

Quattoni, A., M. Collins and T. Darrell, 2004.

Conditional random fields for object recognition.

Proceedings of the Advances in Neural Information

Processing Systems, (NIPS’ 04), pp: 1-8.

Rimstad, K. and H. Omre, 2014. Skew-gaussian

random fields. Spat. Stat., 10: 43-62.

 DOI: 10.1016/j.spasta.2014.08.001

Saito, M. and M. Matsumoto, 2008. SIMD-Oriented Fast

Mersenne Twister: A 128-Bit Pseudorandom Number

Generator. In: Monte Carlo and Quasi-Monte Carlo

Methods, Keller, A., S. Heinrich and H. Niederreiter,

(Eds.), Springer Science and Business Media, Berlin,

ISBN-10: 3642041078, pp: 672.

Sarawagi, S. and W.W. Cohen, 2004. Semi-Markov

conditional random fields for information extraction.

Proceedings of the Advances in Neural Information

Processing Systems, (NIPS’ 04), pp: 9-18.

Sha, F. and F. Pereira, 2003. Shallow parsing with

conditional random fields. Proceedings of the

Conference of the North American Chapter of the

Association for Computational Linguistics on Human

Language Technology, (ACL’03), pp:134-141.

DOI: 10.3115/1073445.1073473

Spanos, P.D. and B.A. Zeldin, 1998. Monte carlo treatment

of random fields: A broad perspective. Applid Mech.

Rev., 51: 219-237. DOI: 10.1115/1.3098999

Sung, Y.H. and D. Jurafsky, 2009. Hidden conditional

random fields for phone recognition. Proceedings of

the IEEE Workshop on Automatic Speech

Recognition and Understanding, (SRU’ 09), pp:

107-112. DOI: 10.1109/ASRU.2009.5373329

Sutton, C. and A. McCallum, 2012. An introduction to

conditional random fields. Found. Trends Mach.

Learn., 4: 267-373. DOI: 10.1561/2200000013

Xiao, Y., 2010. Uniform modulus of continuity of

random fields. Monatsh. Math., 159: 163-184.

DOI: 10.1007/s00605-009-0133-z

