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Abstract: Random plane generators may use various types of the random 

number algorithms to create multidimensional planes. At the same time, the 

discrete Descartes random planes have to be uniform. The matter is that 

using the concept of the uncontrolled random generation may lead to a 

result of weak quality due to initial sequences having either insufficient 

uniformity or skipping of the random numbers. This article offers a new 

approach for creating the absolute twisting uniform two-dimensional 

Descartes planes based on a model of complete twisting sequences of 

uniform random variables without repetitions or skipping. The simulation 

analyses confirm that the resulted random planes have an absolute 

uniformity. Moreover, combining the parameters of the original complete 

uniform sequences allows a significant increase in the number of created 

planes without using additional random access memory. 
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Introduction  

In our previous studies (Deon and Menyaev, 2016a; 

2016b; 2017) there were proposed several pseudorandom 

number generators, particularly nsDeonYuliTwist32D, 

which offers a technique of using no congruential twisting 

array. This generator allows the creation of absolutely 

complete twister uniform sequences having various lengths. 

The direction of Random Plane (RP) Generators 
(RPG) employs a stochastic process at the time of 
creating the points distributed on N-dimensional plane. 
Here we consider a two-Dimensional (2D) plane only. 
Other discrete-dimensional planes have the same initial 
properties. Each coordinate of RP-generated points may 
belong to its own Random Field (RF). An analysis of the 
last sources sums up the following selected types of 
random fields: Conditional RF (Quattoni et al., 2004; 
Sutton and McCallum, 2012), Markov RF (Sarawagi and 
Cohen, 2004; Bekkerman et al., 2006), Gaussian RF 
(Rimstad and Omre, 2014), uniformed RF (Xiao, 2010) 
and others (Qi et al., 2004; Dachian and Nahapetian, 
2009). In the application areas the RPGs are often applied 
in graphical images (Kumar and Hebert, 2003), phone 
systems (Sung and Jurafsky, 2009), advertising 
applications, etc. Next, the RPGs are actively used in 
fundamental studies, starting from 2D theoretical modeling 
(Gnedenko, 1998; Feller, 2008), Monte Carlo plane 
simulation (Newman and Barkema, 1996; Spanos and 

Zeldin, 1998), factorial development (Kim and Zabih, 
2002), realizations for training systems (Sha and Pereira, 
2003), etc. and biomedical engineering (Menyaev and 
Zharov, 2005; 2006a; 2006b; Menyaev et al., 2013; 
2016; Koonce et al., 2017). 

The principles of all these studies are based on the 

conception of random planes, in which the Descartes 

plane features have to satisfy the following properties: 

(1) The generation process has to provide the uniqueness 

(i.e., no repetitions) of each point on the plane and (2) 

the generation process has to keep the completeness (i.e., 

without skipping) for all created points. These properties 

should be considered as a ‘natural filter’ for choosing the 

random number generator. 
Let’s consider two of them in brief. If the generation 

uses the twister generator MT19937 (Matsumoto and 
Nishimura, 1998; Matsumoto et al., 2006; 2007; Saito and 
Matsumoto, 2008), then the result of this attempt is very 
discussable since this generator in DieHard Tests (Berger 
and Zorn, 2006; Novark and Berger, 2010; Alani, 2010) 
demonstrates a uniqueness level of 0.7, which is equivalent 
to the level of repeatability 1-0.7 = 0.3. On the other hand, 
we may use the twister generator nsDeonYuliTwist32D 
(Deon and Menyaev, 2017), which is guaranteed to create 
the complete uniform twisting sequences of an arbitrary 
size having no repetitions and skipping of elements. Now 
the question here is: Would it be possible to observe the 
Descartes properties in the current particular task? 
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Let’s consider this issue more in detail. For this, let 

us use the aforementioned twister generator, which is 

capable of creating complete uniform twisting sequences 

of arbitrary size. Below is the program code for 

modeling a grid of the discrete Descartes plane  U×V. 

The program algorithm generates the integer random 

numbers independently along the U and V independent 

axes. Matrix A is the discrete plane indicator; its cells 

a[u, v] ∈ A with indices u and v correspond to the 

coordinates of discrete points <u, v> ∈ U×V. The value 

of cell a[u, v] ∈ A  indicates the quantity of attempts to 

create independently the corresponding point  < u, v > on 

the generated plane. Without loss of generality and in 

order to visualize the result, we assign the amount of 

discrete coordinates by given sets U = V = {0, 1, 2, 3, 4, 5, 

6, 7}, which in the binary representation corresponds to 

the length w = 3 bits for each coordinate. According to the 

previous studies (Deon and Menyaev, 2016b; 2017), let’s 

choose a twister generator nsDeonYuliTwist32D, which 

operates on the basis of congruential model xi+1 = (axi + c) 

&maskW  with constants a = 5, c = 1. The initial values of 

the twisting sequences are taken here as x0 = 1 ∈ U and  x0 

= 4 ∈ V. Any other choice of parameters for generation is 

possible; the essence of the obtained results will not be 

changed. Program names P040101 and cP040101 are 

taken by chance. The chosen programming language is C# 

available in Microsoft Visual Studio. The use of other 

dialects of the older C versions (i.e., Win32) or C++ 

(CLR) provides the same results. 

 

using nsDeonYuliTwist32D; // twister uniform generator 

namespace P040101 

{  class cP040101 

   {  static void Main(string[] args) 
      {  uint w = 3;                                // number bit length 
          cDeonYuliTwist32D GU =  
                                    new cDeonYuliTwist32D(); 

          GU.x0 = 1;                        // U sequence beginning 

          GU.w = w;                                // number bit length 

          GU.Start();                             // GU generator starts 

          cDeonYuliTwist32D GV = 

                                     new cDeonYuliTwist32D(); 

          GV.x0 = 4;                        // V sequence beginning 

          GV.w = w;                                // number bit length 

          GV.Start();                             // GV generator starts 

          int N = 1 << (int)w;     // U and V sequences length 

          Console.WriteLine("w = {0}  N = {1}", w, N); 

          uint[] U = new uint[N];                      // U sequence 

          uint[] V = new uint[N];                      // V sequence 

          int[,] A = new int[N,N];                   // result matrix 

          for (int i = 0; i < N; i++) 

             for (int j = 0; j < N; j++) A[i, j] = 0; 

          for (int i = 0; i < N; i++)                // one of the axis 

          {  Console.Write("i = {0,3} |   ", i); 

              for (int j = 0; j < N; j++)                // another axis 

            {  uint u = GU.Next();            // u random number 

                U[j] = u;                          // random U sequence 

                uint v = GV.Next();            // v random number 

                V[j] = v;                          // random V sequence  

                A[u, v]++;     // <u,v> point generation counter 

            } 

            Console.Write("U = "); 

            for (int m = 0; m < N; m++) 

               Console.Write("{0,4}", U[m]); 

            Console.WriteLine(); 

            Console.Write("        |   V = "); 

            for (int m = 0; m < N; m++) 

               Console.Write("{0,4}", V[m]); 

            Console.WriteLine(); 

         } 

         Console.WriteLine("Matrix A"); 

         for (int i = 0; i < N; i++) 

         {for (int j = 0; j < N; j++) 

               Console.Write("{0,4}", A[i, j]); 

            Console.WriteLine(); 

         } 

         Console.ReadKey();                        // result viewing 

      } 

   } 

} 

 

After this code execution the listing below appears: 

 

w = 3   N = 8 

i =    0 |   U =   1   6   7   4   5   2   3   0 

               V =   4   5   2   3   0   1   6   7 

i =    1 |   U =   3   5   7   1   2   4   6   0 

               V =   1   2   4   6   0   3   5   7 

i =    2 |   U =   7   3   6   2   5   1   4   0 

               V =   2   5   1   4   0   7   3   6 

i =    3 |   U =   6   7   4   5   2   3   0   1 

               V =   5   2   3   0   1   6   7   4 

i =    4 |   U =   5   7   1   2   4   6   0   3 

               V =   2   4   6   0   3   5   7   1 

i =    5 |   U =   3   6   2   5   1   4   0   7 

               V =   5   1   4   0   7   3   6   2 

i =    6 |   U =   7   4   5   2   3   0   1   6 

               V =   2   3   0   1   6   7   4   5 

i =    7 |   U =   7   1   2   4   6   0   3   5 

               V =   4   6   0   3   5   7   1   2 
 
Matrix A 

   0   0   0   0   0   0   2   6 
   0   0   0   0   3   0   3   2 
   3   3   0   0   2   0   0   0 
   0   3   0   0   0   2   3   0 

   0   0   0   8   0   0   0   0 

   5   0   3   0   0   0   0   0 

   0   2   0   0   0   6   0   0 

   0   0   5   0   3   0   0   0 
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In matrix A the cells with values that differed from 1, 

show that the independent generation of coordinates of 

the points on the plane doesn’t ensure uniform 

distribution of random points <u, v>. Some points are 

missed (values 0) and others are present several times 

(values > 1). 

So, the aim of this article is to find a solution for the 

generation of uniform discrete twisting planes, which 

possess the Descartes property of a single presence of the 

random points in nodes of the discretization grid. 

Theory 

One of the options to represent the discrete Descartes 

plane is an enumeration of all points in the grid nodes, 

formed from the values of discretization on the 

corresponding axes. If the location of axes is independent, 

the grid has a rectangular view. Moreover, if 

discretization for both axes is the same and uniform, the 

grid has a square view. 

Let’s assume that the square grid includes N points of 

discretization along each axis. Thus, the total number of 

grid points is  N×N = N
2
. To set these points in a random 

way, an algorithm is required that can provide a random 

move from one point to another. 

Now would be a good time to point out and 

emphasize the following: The plane is random only if 

moving from one point to another, while creating the 

plane, utilizes the stochastic process. 

In this case, the requirement of Descartes axes, which 

prescribes a unique representation of each point, has to 

be kept. The unambiguity is determined by the 

discretization of the axes. Uniqueness is provided by an 

appropriate procedure, which does not allow entering 

each point of the grid twice or more times. The skipping 

of vertices of the grid isn’t allowed either. In other 

words, each point is presented once during generation of 

all the grid points. In this case, the total enumeration of 

the points is N
2
. Following this way, such a grid on the 

Descartes plane is called uniform and a random 

Descartes plane, which contains uniform grid, is called 

uniform Descartes RP. 

There are many ways to specify the points on the 

grid. Let's name a few of them: 

 

• Rectangular left or right filling of the grid, when one 

of the axes is selected and at each location of 

discretization of this axis, the points along the discrete 

points of the other axis are placed on the grid 

• Rectangular top or bottom filling of the grid under 

the same conditions 

• Diagonal filling of the grid under the same conditions 

• The secondary indexing of the discrete points along 

the Descartes axes 

This is not a whole list of possible techniques. The 

options to choose aren’t limited and can be organized by 

the designer in any possible way. Note that items (1) – 

(3) create ordinary Descartes planes and item (4) allows 

obtaining the random Descartes planes, if the secondary 

index is a result of the stochastic process. 

In this article, an option of secondary indexing of the 

discrete marks on the Descartes axes is adopted. Let’s 

demonstrate this by an example, in which the 

congruential generation of random numbers xi+1 = (axi + 

c)&maskW is used as secondary indexing base. In order 

to visualize the results, we take the complete uniform 

sequences of random numbers x ∈ {0, 1, 2, 3} = {002, 

012, 102, 112} having length w = 2 bits. In this case, each 

complete sequence contains N = 2
w
 = 2

2
 = 4 elements. 

Without loss of generality, let’s assume that 

1 [1, 1]a N= ∈ −  and 3 [1, 1]c N= ∈ − . In total, four 

congruential sequences are possible: <0, 3, 2, 1>, <1, 0, 

3, 2>, <2, 1, 0, 3>, <3, 2, 1, 0>. These sequences allow 

creating various random tracks on uniform Descartes RP. 

If random value x0 = 1 is chosen as an initial value, 

then the designated generator GU creates the sequence U 

= <1, 0, 3, 2>. From this it follows that the initial random 

vertex will be located on the vertical part of the grid with 

horizontal discrete mark 1 along the U axis (Fig. 1). 

If the second independent generator, which is 

designated as GV, uses the initial random value x0 = 3, 

then sequence V = <3, 2, 1, 0> is created. From this it’s 

obvious that the second coordinate has the value of 1 for 

the initial random point <1, 3>. The next vertex has 

coordinates <0, 2>. Both obtained vertices are connected 

by an arc, forming the beginning of the random track. 

Then, vertex <3, 1>  will be placed on this track. Finally, 

the vertex with coordinates <2, 0> completes the random 

track. For clarity, the visual representation of this track is 

shown in Fig. 1. 

Regarding the random sequence of secondary indices 

<1, 0, 3, 2> along the U axis, four sequences along the V 

axis are possible: 

 

1) U = <1, 0, 3, 2> 

 V = <3, 2, 1, 0> 

2) U = <1, 0, 3, 2> 

 V = <2, 1, 0, 3> 

3) U = <1, 0, 3, 2> 

 V = <1, 0, 3, 2> 

4) U = <1, 0, 3, 2> 

 V = <0, 3, 2, 1> 

 

These sequences V can be interpreted as the left 

circular shift (Deon and Menyaev, 2016b) of the original 

sequence <3, 2, 1, 0>. Figure 2 shows four tracks of an 

interaction of the pairs of sequences on the U and V axes. 

These tracks provide an exact one-time generation of 

each vertex on a grid of the Descartes RP. 
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Fig. 1: The initial random track 
 

 
 
Fig. 2: All the tracks of the random sequences U and V 
 

The program code for this task is presented below, in 

which all the vertices are generated on a grid of the 

Descartes RP. Random numbers have the length of w = 3 

bits. In each sequences U and V there are N = 2
w
 = 2

3
 = 8 

random numbers with [0, 1] {0,1,2,3,4,5,6,7}x N∈ − = . 

Both sequences U and V are given by a congruential 

model xi+1 = (axi + c)&maskW with coefficients a = 5 

and c = 1. The first sequence begins with value x0 = 1 

and has the form U = <1, 6, 7, 4, 5, 2, 3, 0>.  The second 

sequence begins with value x0 = 4 and has the form V = 

<4, 5, 2, 3, 0, 1, 6, 7>. Each cell of matrix A corresponds 

to one vertex on a grid of RP. The value of cell a ∈ A  

shows how many times the corresponding vertex is 

generated. Program names P040201 and cP040201 are 

selected by chance. 

namespace P040201 
{  class cP040201 
   {  static void Main(string[] args) 
      {  uint w = 3;                                // number bit length 
          int N = 1 << (int)w;     // U and V sequences length 
          Console.WriteLine("w = {0}  N = {1}", w, N); 
          uint[] U = new uint[8] {1,6,7,4,5,2,3,0}; 
          uint[] V = new uint[8] {4,5,2,3,0,1,6,7}; 
          int[,] A = new int[N, N];                  // result matrix 
          for (int i = 0; i < N; i++) 
             for (int j = 0; j < N; j++) A[i, j] = 0; 
          for (int i = 0; i < N; i++)                // one of the axis 
         {  Console.Write("i = {0,3} |   ", i); 
             for (int j = 0; j < N; j++)                 // another axis 
                A[U[j], V[j]]++;     // <u,v> generation counter 
             Console.Write("U = "); 
             for (int m = 0; m < N; m++) 
                Console.Write("{0,4}", U[m]); 
             Console.WriteLine(); 
             Console.Write("        |   V = "); 
             for (int m = 0; m < N; m++) 
                Console.Write("{0,4}", V[m]); 
             Console.WriteLine(); 
             uint r = V[0];                          // V shift beginning 
             for (int m = 1; m < N; m++) V[m - 1] = V[m]; 
             V[N-1] = r; 
         } 
         Console.WriteLine("Matrix A"); 
         for (int i = 0; i < N; i++) 
         {  for (int j = 0; j < N; j++) 
                Console.Write("{0,4}", A[i, j]); 
             Console.WriteLine(); 
         } 
         Console.ReadKey();                        // result viewing 
      } 

   } 

} 
 

After this code execution the listing below appears: 
 
w = 3   N = 8 

i =    0 |   U =   1   6   7   4   5   2   3   0 

               V =   4   5   2   3   0   1   6   7 

i =    1 |   U =   1   6   7   4   5   2   3   0 

               V =   5   2   3   0   1   6   7   4 

i =    2 |   U =   1   6   7   4   5   2   3   0 

               V =   2   3   0   1   6   7   4   5 

i =    3 |   U =   1   6   7   4   5   2   3   0 

               V =   3   0   1   6   7   4   5   2 

i =    4 |   U =   1   6   7   4   5   2   3   0 

               V =   0   1   6   7   4   5   2   3 

i =    5 |   U =   1   6   7   4   5   2   3   0 

               V =   1   6   7   4   5   2   3   0 

i =    6 |   U =   1   6   7   4   5   2   3   0 

               V =   6   7   4   5   2   3   0   1 

i =    7 |   U =   1   6   7   4   5   2   3   0 
               V =   7   4   5   2   3   0   1   6 
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Matrix A 

   1   1   1   1   1   1   1   1 

   1   1   1   1   1   1   1   1 

   1   1   1   1   1   1   1   1 

   1   1   1   1   1   1   1   1 

   1   1   1   1   1   1   1   1 

   1   1   1   1   1   1   1   1 

   1   1   1   1   1   1   1   1 

   1   1   1   1   1   1   1   1 

 

The values of 1 in the cells of matrix A show that 

each cell was updated once. This result reflects the single 

initialization of the corresponding vertices on a grid of 

uniform Descartes RP. 

Similar tests of creating uniform planes with an 

arbitrary bit length w of the random numbers confirm a 

uniformity of the received RPs. Replacement of the 

congruential sequences by the different corresponding 

twisting sequences shows a similar result when 

generating the twisting RPs. Thus, the complete uniform 

twisting sequences can ensure a creation of the complete 

uniform twisting RPs. Now we may proceed to the 

generator designing. 

Construction and Results 

Program P040201, described in the previous section, 

utilizes two arrays U and V as initial congruential 

sequences. Such arrays can be created using the twister 

generator nsDeonYuliTwist28DA (Deon and Menyaev, 

2016b). However, this solution will not be perfect for the 

case of large planes because it requires a lot of available 

Random Access Memory (RAM). For many reasons it 

may be unavailable on a computer. This limitation can be 

overcome by using the twister generator 

nsDeonYuliTwist32D (Deon and Menyaev, 2017), which 

doesn’t use arrays of the twisting sequences. However, a 

more satisfactory solution is the aforementioned program 

P040201, which implies the repeated generation of U and 

V, whereas nsDeonYuliTwist32D doesn’t provide this. 

Thus, we come to the inference that before performing a 

generation of the twisting planes, it is necessary to have 

tools for the trivial operations with the twisting sequences. 

Simple Twister Generator 

Class cDeonYuliSTwist32D, which is presented below, 

includes in its name a letter S indicating the meaning of 

the word ‘simple’. This class provides elementary 

operations with the twisting sequences and it does not use 

any arrays. The prototype of class cDeonYuliSTwist32D is 

class cDeonYuliTwist32D. They are different in the issue 

that automatic setting of the congruential parameters a and 

c is excluded in class cDeonYuliSTwist32D. An example 

of using this class is presented in this section later, in the 

description of the program code P040301. 

namespace nsDeonYuliSTwist32D 

{  class cDeonYuliSTwist32D 

   {  public uint w = 16U;                   // number bit length 

       public uint N1 = 0U;                           // max-number 

       public uint x0 = 1U;                 // sequence beginning 

       uint xB = 1U;                               // twister beginning 

       public uint xG = 0U;          // created random number 

       uint xL = 0U, xR = 1U;                      // pair numbers 

       public uint a = 5U;              // congruential constant a 

       public uint c = 1U;              // congruential constant c 

       public uint maskW = 0U;                   // number mask 

       public uint maskU = 0U;                   // elder bit mask 

       public uint maskT = 0U;                        // twister bits 

       public uint nW = 0U;        // pair twister number in w 

//------------------------------------------------------------------- 

       public cDeonYuliSTwist32D() 

       { N1 = 0xFFFFFFFF >> (32 - (int)w);//max-number 

       } 

//------------------------------------------------------------------- 

       public void StartCong(uint sxB) 

       {  xB = x0; 
           uint sxBe = sxB & maskW; 
           for (int i = 0; i < sxBe; i++) 
              xB = (a * xB + c) & maskW;// shifted beginning 

           xR = xB;                             // for twister beginning 

       } 

//------------------------------------------------------------------- 

       public uint NextCong() 

       {  xL = xR;                                       // pair beginning 

           xR = (a * xL + c) & maskW;              // end of pair 
           xG = xL;                                      // created number 
           return xG; 
       } 
//------------------------------------------------------------------- 
       public void RepeatCong() 
       {  xR = xB;                                            // repeat track 
       } 

//------------------------------------------------------------------- 

       public void ShiftCong() 

       {  xB = (a * xB + c) & maskW;   // shifted beginning 

           xR = xB;                             // for twister beginning 

       } 

//------------------------------------------------------------------- 

       public void StartTwist(uint snW) 
       {  nW = (uint)snW;                              // bit shift size 
           maskT = maskU;             // elder 1 of twister mask 
           for (int m = 1; m < nW; m++) 
              maskT |= maskU >> m;                // twister mask 
           xL = xB;                             // for twister beginning 
           xR = (a * xL + c) & maskW;  // end of xL,xR pair 
       } 
//------------------------------------------------------------------- 
       public uint NextTwist() 
       {  uint g = (xR & maskT) >> (int)(w - nW);   // elder 
           xG = ((xL << (int)nW) & maskW) | g;   // younger 

           xL = xR;                                // next pair beginning 



Aleksei F. Deon and Yulian A. Menyaev / Journal of Computer Science 2018, 14 (2): 260.272 

DOI: 10.3844/jcssp.2018.260.272 

 

265 

          xR = (a * xL + c) & maskW;   // end of xL,xR pair 
          return xG;                                       // twister of pair 
       } 
//------------------------------------------------------------------- 
       public void RepeatTwist() 
       {  xL = xB;                             // for twister beginning 
           xR = (a * xL + c) & maskW;  // end of xL,xR pair 
       } 
//------------------------------------------------------------------- 
       public void ShiftTwist() 
       {  xB = (a * xB + c) & maskW;   // shifted beginning 
           xL = xB;                             // for twister beginning 
           xR = (a * xL + c) & maskW;  // end of xL,xR pair 
       } 

//------------------------------------------------------------------- 
       public void Start() 
       {  N1 = 0xFFFFFFFF >> (32- (int)w);//max-number 
           maskW = 0xFFFFFFFF >> (32- (int)w); //n. mask 
           maskU = 1U << ((int)w - 1);         // elder bit mask 
           maskT = maskU;                          // first twister bit 
           DeonYuli_PlusA();                                  // a-value 
           DeonYuli_SetC();                                    // с-value 
           x0 &= maskW;                     // sequence beginning 
           StartCong(0);            // for congruential generation 

       } 

//------------------------------------------------------------------- 
       public void TimeStart() 
       {  x0 = (uint)DateTime.Now.Millisecond;// millisecs 
           Start();                                         // generator starts 
       } 

//------------------------------------------------------------------- 
       public void SetW(uint sw) 
       {  w = (uint)Math.Abs(sw);         // number bit length 
           DeonYuli_SetW(); 
       } 

//------------------------------------------------------------------- 

       public void SetW(int sw) 
       {  w = (uint)Math.Abs(sw);         // number bit length 
           DeonYuli_SetW(); 
       } 
//------------------------------------------------------------------- 
       public void DeonYuli_SetW() 
       {  if (w < 3U) w = 3U;                           // min-length 
           else if (w > 32U) w = 32U;               // max-length 
           N1 = 0xFFFFFFFF >> (32- (int)w);//max-number 

           x0 = N1 / 7U;                       // sequence beginning 

       } 

//------------------------------------------------------------------- 

       public void SetA(double sa) 
       {  double ad = Math.Abs(sa); 
           if (ad > 1.0) ad = 1.0; 
           a = (uint)(N1 * ad);                      // related set of a 
       } 
//------------------------------------------------------------------- 
       public void SetA(uint sa) 
       {  a = (uint)Math.Abs(sa); 

           if (a < 1) a = 1;                                     // min-value 

          if (a > N1) a = N1;                               // max-value 

       } 

//------------------------------------------------------------------- 

       void DeonYuli_PlusA() 

       {  if (a < 1U) {a = 1U; return; } 
           uint z = a;                                 // bottom edge for a 
           for (uint i = 0U; i < 3U; i++) 
              if (a % 4U != 0U) a--;           // random condition 
              else break; 
           a++;                               // true value for constant a 
           if (a < z) a += 4U;      // on right from bottom edge 
           if (a >= N1 - 1) a -= 4U;    // on left from top edge 
       } 
//------------------------------------------------------------------- 
       public void SetC(double sc) 
       {  double cd = Math.Abs(sc); 
           if (cd > 1.0) cd = 1.0; 
           c = (uint)(N1 * cd);                      // related set of c 
       } 
//------------------------------------------------------------------- 
       public void SetC(uint sc) 
       {  c = (uint)Math.Abs(sc); 
           if (c < 1) a = 1;                                     // min-value 
           if (c > N1) c = N1;                              // max-value 
       } 
//------------------------------------------------------------------- 
       void DeonYuli_SetC() 
       {  if (c % 2U == 0U) c += 1;                  // only odd c 
           if (c > N1) c = N1;                              // max-value 
       } 
//------------------------------------------------------------------- 
       public void SetX0(double sx) 
       {  double xd = Math.Abs(sx); 

           if (xd > 1.0) xd = 1.0; 

           x0 = (uint)(N1 * xd);            // sequence beginning 

       } 

//------------------------------------------------------------------- 

       public void SetX0(int sx) 

       {  x0 = (uint)sx;                        // sequence beginning 

       } 

//======================================= 

   } 

} 
 

To verify the correct utilization of the presented 
generator nsDeonYuliSTwist32D, let’s use the program 
code P040301, in which the sequences of all twisters of 
the random numbers having length w = 3 bits are 
generated. The total quantity of sequences is w· N = w·2

w
 

= 3·2
3
 = 24. Program names P040301 and cP040301 are 

taken by chance. 
 
using nsDeonYuliSTwist32D;   // s-twister uni-generator  

namespace P040301 

{  class cP040301 

   {  static void Main(string[] args) 

      {  cDeonYuliSTwist32D ST = 
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                                        new cDeonYuliSTwist32D(); 

         ST.SetW(3);                              // number bit length 

         ST.SetA(5);                       // congruential constant a 

         ST.SetC(1);                       // congruential constant c 
         ST.SetX0(1);                          // sequence beginning 
         ST.Start();                                      // generator starts 
         int w = (int)ST.w;                      // random bit length 
         int N = (int)ST.N1 + 1;                // sequence length 
         Console.WriteLine("w = {0}  N = {1}", w, N); 
         Console.WriteLine("a = {0}  c = {1}  x0 = {2}", 

                            ST.a, ST.c, ST.x0); 

         int k = 0; 
         for (int m = 0; m <= ST.N1; m++) 
         {  Console.Write("k = {0,3}  |  Cong =   ", k++); 
             for (int n = 0; n <= ST.N1; n++) 
            {  uint z = ST.NextCong(); //congruential number 
                Console.Write("{0,4}", z); 

            } 

            Console.WriteLine(); 

            for (int nW = 1; nW < ST.w; nW++) 

            {  Console.Write("k = {0,3}  |  Twist {1} =", 

                                          k++, nW); 

               ST.StartTwist((uint)nW); // twist beginning nW 
               for (int n = 0; n <= ST.N1; n++) 
               {  uint z = ST.NextTwist();      // twister number 
                   Console.Write("{0,4}", z); 
               } 

               Console.WriteLine(); 

               ST.RepeatTwist(); 

            } 

            ST.ShiftCong();                      // congruential shift 

         } 

         Console.ReadKey();                        // result viewing 

      } 

   } 

} 

 

After the execution of P040301, the following listing 

appears on the monitor: 

 

w = 3  N = 8 

a = 5  c = 1  x0 = 1 

k =   0  |  Cong =      1  6  7  4  5  2  3  0 

k =   1  |  Twist 1 =   3  5  7  1  2  4  6  0 

k =   2  |  Twist 2 =   7  3  6  2  5  1  4  0 

k =   3  |  Cong =      6  7  4  5  2  3  0  1 
k =   4  |  Twist 1 =   5  7  1  2  4  6  0  3 
k =   5  |  Twist 2 =   3  6  2  5  1  4  0  7 

k =   6  |  Cong =      7  4  5  2  3  0  1  6 
k =   7  |  Twist 1 =   7  1  2  4  6  0  3  5 
k =   8  |  Twist 2 =   6  2  5  1  4  0  7  3 

k =   9  |  Cong =       4  5  2  3  0  1  6  7 
k =  10  |  Twist 1 =   1  2  4  6  0  3  5  7 
k =  11  |  Twist 2 =   2  5  1  4  0  7  3  6 

k =  12  |  Cong =      5  2  3  0  1  6  7  4 
k =  13  |  Twist 1 =   2  4  6  0  3  5  7  1 

k =  14  |  Twist 2 =   5  1  4  0  7  3  6  2 
k =  15  |  Cong =      2  3  0  1  6  7  4  5 
k =  16  |  Twist 1 =   4  6  0  3  5  7  1  2 
k =  17  |  Twist 2 =   1  4  0  7  3  6  2  5 
k =  18  |  Cong =      3  0  1  6  7  4  5  2 
k =  19  |  Twist 1 =   6  0  3  5  7  1  2  4 
k =  20  |  Twist 2 =   4  0  7  3  6  2  5  1 
k =  21  |  Cong =      0  1  6  7  4  5  2  3 
k =  22  |  Twist 1 =   0  3  5  7  1  2  4  6 
k =  23  |  Twist 2 =   0  7  3  6  2  5  1  4 
 

These congruential twisting sequences coincide with 
the result of tests of our previously developed twister 
generator nsDeonYuliTwist28DA utilizing a technique of 
the congruential twisting array. 

Running the program P040301 with other values of 
the bit length w of the random numbers confirms a 
completeness of the generated sequences. This is 
sufficient to ensure the development of programs for 
generating the Descartes uniform twisting RPs. 

Twister Generator of Uniform Planes 

When constructing a complete generator of uniform 

twisting planes, let’s use two uniform complete generators 

GU and GV of the aforementioned instrumental class 

cDeonYuliSTwist32D. It allows organizing the next class 

nsDeonYuliPlaneTwist32D for the generation of all points 

on a grid of the twisting plane. By default, the initial track 

takes a diagonal of the grid points from the left-bottom 

position to the right-top one, although this may be 

changed by setting the independent beginnings for the 

internal generators GU and GV. An example use of class 

cDeonYuliPlaneTwist32D is presented in this section later, 

located in the description of the program code P040302. 
 
using nsDeonYuliSTwist32D;   // s-twister uni-generator 

namespace nsDeonYuliPlaneTwist32D 

{  class cDeonYuliPlaneTwist32D 
   {  public uint w = 16;        // uniform number bit length 
       public uint N1 = 0;                 // max-number in track 
       public uint a = 5U;              // congruential constant a 
       public uint c = 1U;              // congruential constant c 
       public uint x0 = 1U;     // constant of track beginning 
       public cDeonYuliSTwist32D GU;        // generator 1 
       public cDeonYuliSTwist32D GV;        // generator 2 
       public uint nWU = 0;    // twister shift number in GU 

       public uint nRU = 0;         // ring shift number in GU 
       public uint nWV = 0;    // twister shift number in GV 
       public uint nRV = 0;         // ring shift number in GV 
       public uint nG = 0; // elements in GU and GV tracks 
//------------------------------------------------------------------- 
       public cDeonYuliPlaneTwist32D() 
       {  GU = new cDeonYuliSTwist32D();  // generator 1 
           GV = new cDeonYuliSTwist32D();  // generator 2 
       } 

//------------------------------------------------------------------- 

       public void SetW(int sw) 
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       {  w = (uint)sw;              // random number bit length 

           DeonYuli_SetWN1ACX(); 

       } 

//------------------------------------------------------------------- 

       public void SetW(uint sw) 

       {  w = sw;                       // random number bit length 

           DeonYuli_SetWN1ACX(); 

       } 

//------------------------------------------------------------------- 

       void DeonYuli_SetWN1ACX() 

       {  N1 = 0xFFFFFFFF >> (32- (int)w);//max-number 

           a = (uint)((double)N1*0.39);//congruential const a 

           c = a / 2;                               // congruential const c 

           x0 = N1 / 2U;           // constant of track beginning 

       } 

//------------------------------------------------------------------- 

       void DeonYuli_SetN1ACX()   

       {  GU.w = w;       // random number bit length in GU 

           GU.a = a;            // congruential constant a for GU 

           GU.c = c;            // congruential constant c for GU 

           GU.x0 = x0;              // sequence beginning in GU 

           GV.w = w;       // random number bit length in GV 

           GV.a = a;            // congruential constant a for GV 
           GV.c = c;            // congruential constant c for GV 
           GV.x0 = x0;             // sequential beginning in GV 

       } 

//------------------------------------------------------------------- 
       public void Start() 
       {  DeonYuli_SetN1ACX(); // congruential constants 
           GU.Start();                            // GU generator starts 
           GV.Start();                            // GV generator starts 
           a = GU.a;                        // congruential constant a 
           c = GU.c;                        // congruential constant c 

           x0 = GU.x0;     // beginning of U and V sequences 

           nWU = 0;  // twister shift number in GU generator 
           nRU = 0;       // ring shift number in GU generator 
           nWV = 0;  // twister shift number in GV generator 
           nRV = 0;       // ring shift number in GV generator 
           nG = 0;  // elements number in GU and GV tracks 
          GU.StartCong(0);//for congruential GU generation 

          GV.StartCong(0);//for congruential GV generation 

       } 

//------------------------------------------------------------------- 

       public void Next(ref uint u, ref uint v) 
       {  if (nWU == 0) GU.NextCong();  
               else GU.NextTwist(); 
           if (nWV == 0) GV.NextCong();  
               else GV.NextTwist(); 
           u = GU.xG;                    // <u,v> point coordinates 
           v = GV.xG; 
           if (nG < N1) {nG++; return; }          // inside track 
           nG = 0;                            // regular track beginning 
           if (DeonYuli_RingCongGV()) return;// inside GV 

           if (DeonYuli_RingTwistGV()) return;// inside GV 

           if (DeonYuli_RingCongGU()) return;// inside GU 

           DeonYuli_RingTwistGU();                 // inside GU 

       } 

//------------------------------------------------------------------- 

       bool DeonYuli_RingCongGV() 

       {  if (nWV != 0) return false;  // no congruential ring 

           if (nWU == 0) GU.RepeatCong();  

                else GU.RepeatTwist(); 

           if (nRV < N1)//congruent. ring opportunity in GV 

           {  GV.ShiftCong();       // congruential shift in GV 

               nRV++;                                // next ring number 

               return true;     // inside congruential track in GV 

           } 

           nRV = 0;                                     // first ring in GV 

           nWV = 1;                                // first twister in GV 

           GV.StartTwist(nWV);          // twister starts in GV 

           return true;                                           // inside GV 

       } 

//------------------------------------------------------------------- 

       bool DeonYuli_RingTwistGV() 

       {  if (nWV == 0) return false;          // no twister ring 

           if (nWU == 0) GU.RepeatCong();  

                else GU.RepeatTwist(); 

           if (nRV < N1)     // twister ring opportunity in GV 

           {  GV.ShiftTwist();                // twister shift in GV 

               nRV++;                                // next ring number 

               return true;              // inside twister track in GV 

           } 

           nRV = 0;                                     // new ring in GV 

           if (nWV < w - 1)                       // continue twisters 

           {  nWV++;                        // next bit twister in GV 

               GV.StartTwist(nWV);      // twister starts in GV 

               return true;           // inside twister regime in GV 

           } 

           nRV = 0;                                     // new ring in GV 

           nWV = 0;//congruent. beginning (twister 0) in GV 

           GV.StartCong(nWV);          // GV generator starts 

           return false;     // rings R2 and W2 are over in GV 

       } 
//------------------------------------------------------------------- 
       bool DeonYuli_RingCongGU() 
       {  if (nWU != 0) return false;  // no congruential ring 
           if (nRU < N1)//congruent. ring opportunity in GU 
           {  GU.ShiftCong();       // congruential shift in GU 
               nRU++;                                // next ring number 
               return true;     // inside congruential track in GU 
           } 
           nRU = 0;                                     // first ring in GU 
           nWU = 1;                                // first twister in GU 
           GU.StartTwist(nWU);          // twister starts in GU 
           return true;                                           // inside GU 
       } 
//------------------------------------------------------------------- 
       bool DeonYuli_RingTwistGU() 
       {  if (nWU == 0) return false;          // no twister ring 
           if (nRU < N1)     // twister ring opportunity in GU 

           {  GU.ShiftTwist();                // twister shift in GU  

            nRU++;                                   // next ring number 
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            return true;                    // inside twist track in GU 

         } 

         nRU = 0;                                       // new ring in GU 

         if (nWU < w - 1)                         // continue twisters 

         {  nWU++;                          // next bit twister in GU 

            GU.StartTwist(nWU);         // twister starts in GU 

            return true;              // inside twister regime in GU 

         } 

         nRU = 0;                                       // new ring in GU 

         nWU = 0; // congruent. beginning (twister 0) in GU 

         GU.StartCong(nWU);     // GU generator beginning 

         return false;//all planes created; common beginning 

      } 

//======================================= 

   } 

} 
 

To test an operation of the presented generator 

nsDeonYuliPlaneTwist32D, let’s use the program code 

P040302 shown below, in which the points of the initial 

twisting plane of the random numbers having length w = 

3 bits are generated. By default, the initial track of 

generation is a diagonal of the grid points from the left-

bottom position to the right-top one. The uniformity of 

points on a plane would be confirmed by matrix A, in 

which the cell values are the counters of generation of 

the corresponding points <u, v> on RP. Program names 

P040302 and cP040302 are taken by chance. 
 
using nsDeonYuliPlaneTwist32D;//twist-plane generator 

namespace P040302 

{  class cP040302 

   {  static void Main(string[] args) 

      {  cDeonYuliPlaneTwist32D TP = 

                             new cDeonYuliPlaneTwist32D(); 

          int w = 3;                     // random number bit length 

          int N = 1 << w;                                  // track length 

          TP.SetW(w); 

          TP.Start();                                     // generator starts 

          Console.WriteLine("w = {0}   N = {1}", w, N); 

          Console.WriteLine("a = {0}   c = {1}   x0 = {2}", 

                            TP.a, TP.c, TP.x0); 

          uint[] u = new uint[N];    // point u-coords on track 

          uint[] v = new uint[N];    // point v-coords on track 

          int[,] A = new int[N, N];                  // result matrix 

          for (int i = 0; i < N; i++) 
             for (int j = 0; j < N; j++) A[i, j] = 0; 
          uint uu = 0;           // point job coordinates on plane 
          uint vv = 0; 
          for (int i = 0; i < N; i++)     // track values on plane 
         {  Console.Write("i = {0,4}   ", i); 
             Console.Write(" nWU = {0,3}", TP.nWU); 
             Console.Write(" nRU = {0,3}", TP.nRU); 
             Console.Write(" nWV = {0,3}", TP.nWV); 

             Console.Write(" nRV = {0,3}", TP.nRV); 

             Console.WriteLine(); 

            for (int j = 0; j < N; j++) 

            {  TP.Next(ref uu, ref vv);             // point on grid 

               u[j] = uu; 

               v[j] = vv; 

               A[uu, vv]++;      // generation counter for <u,v> 

            } 

            Console.Write("            U = "); 

            for (int j = 0; j < N; j++) 

               Console.Write("{0,4}", u[j]); 

            Console.WriteLine(); 

            Console.Write("            V = "); 

            for (int j = 0; j < N; j++) 

               Console.Write("{0,4}", v[j]); 

            Console.WriteLine(); 

         } 

         Console.WriteLine("Matrix A"); 

         for (int i = 0; i < N; i++) 

         {  for (int j = 0; j < N; j++) 

                Console.Write("{0,4}", A[i, j]); 

             Console.WriteLine(); 

         } 

         Console.ReadKey();                        // result viewing 

      } 

   } 

} 
 

After the execution of P040302 code, the listing 

below appears. To reduce the listing size, we skipped 

some strings, which are indicated by a dashed line. 
 
w = 3   N = 8 

a = 5   c = 1   x0 = 3 

i =    0    nWU =   0 nRU =   0 nWV =   0 nRV = 0 

              U =    3   0   1   6   7   4   5   2 

              V =    3   0   1   6   7   4   5   2 

i =    1    nWU =   0 nRU =   0 nWV =   0 nRV = 1 

              U =    3   0   1   6   7   4   5   2 

              V =    0   1   6   7   4   5   2   3 

i =    2    nWU =   0 nRU =   0 nWV =   0 nRV = 2 

              U =    3   0   1   6   7   4   5   2 

              V =    1   6   7   4   5   2   3   0 

- - - - - 

i =    7    nWU =   0 nRU =   0 nWV =   0 nRV = 7 

              U =    3   0   1   6   7   4   5   2 

              V =    2   3   0   1   6   7   4   5 
 
Matrix A 

1   1   1   1   1   1   1   1 

1   1   1   1   1   1   1   1 

1   1   1   1   1   1   1   1 

1   1   1   1   1   1   1   1 

1   1   1   1   1   1   1   1 

1   1   1   1   1   1   1   1 

1   1   1   1   1   1   1   1 

1   1   1   1   1   1   1   1 
 

In this listing, indicator nWU shows the number of a 
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twister on axis U and indicator nRU is pointed to the 

circular shift number on this axis U. The values nWU = 0 

and nRU = 0 correspond to the congruential initial sequence 

on axis U. Similar values of indicators nWV and nRV  show 

the circular shift of the initial sequence on axis V. 

The listing of results for the singular matrix A confirms 

that each random point <u, v> is created once. The same 

results are valid for other w ≤ 32. This corresponds to a 

concept of the Descartes uniform RP. Thus, generator 

nsDeonYuliPlaneTwist32D is ready for implementation. 

Discussion 

Twister generator nsDeonYuliPlaneTwist32D is 

capable creating a set of uniform twisting RPs for each 

pair of the congruential constants 

, [1, 1] [1,2 1]
w

a c N∈ − = − in the sequences of random 

numbers having w bit length. All the initial values 

0
[0,2 1]

w

x ∈ −  are automatically presented in circles of 

the twisters (Deon and Menyaev, 2016b). However, the 

question is how many twisting planes could be obtained 

for each pair of parameters a and c? 

In the previous section, it has been determined that 

when creating the initial RP U×V, two random sequences 

U and V can be taken, which are created by the 

corresponding twisting generators. It is known that 

twister 0 is the initial uniform congruential sequence. 

Let’s denote it as U0. Another sequence V0 could be 

chosen arbitrarily but on the condition that it is also 

uniform. If the sizes or quantity of elements in the initial 

sequences are the same card (U0) = card (V0), then it can 

be stated that among all the possible tracks of the 

random uniform plane there has to be a track that creates 

points on the second diagonal (from the left-bottom 

position to the right-top one) of the corresponding square 

discrete grid. This is somewhat reminiscent of the idea of 

a central abstract element and specifically in our case 

this second diagonal track is the central track of the 

discrete grid. In generator nsDeonYuliPlaneTwist32D 

this is exactly what is done, shown at the beginning of 

the listing of results for the previous program P0040302. 

 

U0 =    3   0   1   6   7   4   5   2 

V0 =    3   0   1   6   7   4   5   2 

 

This is not the only solution because as the central 

track, one could take the main diagonal (from the left-top 

position to the right-bottom one) of a grid. But since the 

initial sequences U and V are random, the order of the 

vertex passage <3, 3>,<0, 0>, <1, 1>, <6, 6>, <7, 7>, <4, 

4>, <5, 5>, <2, 2> is also random. 

Now let’s fix the sequence U while the sequence V is 

shifted to the left by the circular technique by one position. 

U0 =    3   0   1   6   7   4   5   2 

V1 =    0   1   6   7   4   5   2   3 

 

This combination of pairs gives the points of the first 

track <3, 0>, <0, 1>, <1,6>, <6, 7>, <7, 4>, <4, 5>, <5, 

2>, <2, 3> on RP. None of these points can appear on the 

reverse main diagonal of a grid, since sequences U0 and V1 

are uniform. Their uniformity follows from the 

determined properties of the complete twisting sequences 

(Deon and Menyaev, 2016b). Shifting of sequence V, 

provided that sequence U0 is fixed, could be continued and 

so the second track on a grid might be obtained. 
 
U0 =    3   0   1   6   7   4   5   2 

V2 =    1   6   7   4   5   2   3   0 
 

The second track contains the points, which also 

cannot occur on track 1 and track 0 of the reverse diagonal 

and again that is because of the properties of the complete 

uniform twisting sequences. In this example, only 8 

options to present sequence V are possible since the 9
th
 

shift repeats the initial variation  V8 = V0. 

So, the shift operations for sequences comply with 

the corresponding varieties of the twisting sequences. In 

the presented example, the shifts of the congruential 

sequence, which comply with the congruential 

generation from the corresponding initial values, are 

considered. Thus, the congruential initial generation of 

sequences U0 and V0 initiates the creation of one RP 

using the complete sequence of shifts of one of the 

original sequences Vj while another sequence U0 is fixed. 

By analyzing the result of the previous program 

P040301, it’s easy to see that among all sequences 

[0,23]k
V

∈

 there are all 8 congruential shifts  Vk = 0, Vk = 3,  Vk 

= 6, Vk = 9, Vk = 12, Vk = 15, Vk = 18, Vk = 21 in amount of N = 2
w
 

= 2
3
 = 8 random numbers having length of 3 bits in the 

complete sequence. As a result, it turns out that tracks 

<U0, Vj> = <U0, VK> form the initial plane L0. 

Similar arguments apply to plane L1. If we refer again 

to the result of the previous program P040301, this 

example shows that plane L1 is created using the 

congruential twisting tracks <Uk = 0, Vk∈[1, 4, 7, 10, 13, 16, 19, 

22]>. Plane L2 is created by using shifts of the next twister 

<Uk = 0, Vk∈[2, 5, 8, 11, 14, 17, 20, 23]>. Next is plane L3, but to 

create it we need to perform the congruential circular 

shift of sequence U0 by one random step to the left, 

which leads to obtaining the new distribution of the 

random values Uk = 3 along the axis U. Then, the next 

plane L3, which can be obtained with the help of tracks 

<Uk = 3, Vk∈[0, 3, 6, 9, 12, 15, 18, 21]>. 

A summary of all the points obtained leads us to the 

conclusion that number card (L) of the complete set of 

RPs is defined by multiplication of two things. The first 

is card(UCT) = w·N = w·2
w
, which is a quantity of the 

different options of the congruential twisting forms of 
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sequence U; the second is card(VT) = w, which is a 

quantity of the various twisters in sequence V including 

the congruential twister 0, i.e.,: card(L) = card(UCT). 

card(VT) = wN·w = w
2
N. 

Below is the program code P040101, in which the 

uniformity of all the random twisting planes L(w = 3) is 

checked. Matrix A is helpful for this task. Since in the 

uniform RPs each vertex is created once, after the full 

enumeration of all the RPs the quantity of generations of 

each vertex has to be equal to the amount of planes. In 

other words, the counters of cells of matrix A have to 

have the same values and moreover, they have to be 

equal to the quantity of the generated RPs. To clarify, the 

program below uses the random numbers with a bit 

length w = 3. The names P040401 and cP040401 are 

selected by chance. 
 
using nsDeonYuliPlaneTwist32D;//twist-plane generator 

namespace P040401 

{  class cP040401 

   {  static void Main(string[] args) 

      {  cDeonYuliPlaneTwist32D TP = 

                             new cDeonYuliPlaneTwist32D(); 

          int w = 3;                     // random number bit length 

          int N = 1 << w;                                  // track length 

          TP.SetW(w); 

          TP.Start();                                     // generator starts 

          Console.WriteLine("w = {0}   N = {1}", w, N); 

          Console.WriteLine("a = {0}   c = {1}   x0 = {2}", 

                            TP.a, TP.c, TP.x0); 

          uint[] u = new uint[N];    // point u-coords on track 

          uint[] v = new uint[N];    // point v-coords on track 

          uint[,] A = new uint[N, N]; 

          for (int i = 0; i < N; i++) 

              for (int j = 0; j < N; j++) A[i, j] = 0; 

          uint uu = 0;           // point job coordinates on plane 

          uint vv = 0; 

          int plane = 0;                                   // plane number 

          int k = 0;                                          // track number 

          while (true) 

          {  uint nWU = TP.nWU, nRU = TP.nRU; 

              uint nWV = TP.nRV, nRV = TP.nRV;  

              for (int j = 0; j < N; j++) 

              {  TP.Next(ref uu, ref vv);           // point on grid  
                  u[j] = uu; 
                  v[j] = vv; 
                  A[uu, vv]++; 

              } 

              if (k % N == 0) plane++;            // plane number 

                 Console.WriteLine("plane = {0}", plane); 

              k++;                                                   // next track  
//            if (k < 569) continue; 
              Console.Write("k = {0,4}  ", k); 
              Console.Write("nWU = {0,3}  ", nWU); 
              Console.Write("nRU = {0,3}  ", nRU); 

            Console.Write("nWV = {0,3}  ", nWV); 

            Console.Write("nRV = {0,3}  ", nRV); 

            Console.WriteLine(); 

            Console.Write(" U = "); 

            for (int j = 0; j < N; j++) 

               Console.Write("{0,4}", u[j]); 

            Console.WriteLine(); 

            Console.Write(" V = "); 

            for (int j = 0; j < N; j++) 

               Console.Write("{0,4}", v[j]); 

            Console.WriteLine(); 

            if (k % N == 0) 

            {  Console.WriteLine("Matrix A"); 

                for (int i = 0; i < N; i++) 

                {  for (int j = 0; j < N; j++) 

                        Console.Write("{0,4}", A[i,j]); 

                    Console.WriteLine(); 

                } 

            } 

            Console.ReadKey();        // regular result viewing 

         } 

      } 

   } 

} 
 

After executing the program P040401, the following 

listing below appears on the monitor. The skipped 

strings are indicated by a dashed line. 
 
w = 3   N = 8 

a = 5   c = 1   x0 = 3 

plane = 1 

k =    1   nWU =  0 nRU =   0 nWV =    0 nRV =   0 

             U =    3   0   1   6   7   4   5   2 

             V =    3   0   1   6   7   4   5   2 

plane = 1 

k =    2   nWU =  0 nRU =   0 nWV =    1 nRV =   1 

             U =    3   0   1   6   7   4   5   2 

             V =    0   1   6   7   4   5   2   3 

- - - - - 

plane = 1 

k =    8   nWU =  0 nRU =   0 nWV =    7 nRV =   7 

             U =    3   0   1   6   7   4   5   2 

             V =    2   3   0   1   6   7   4   5 
 
Matrix A 

   1   1   1   1   1   1   1   1 

   1   1   1   1   1   1   1   1 

   1   1   1   1   1   1   1   1 

   1   1   1   1   1   1   1   1 

   1   1   1   1   1   1   1   1 

   1   1   1   1   1   1   1   1 

   1   1   1   1   1   1   1   1 

   1   1   1   1   1   1   1   1 

- - - - - 

plane = 72 
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k =  575   nWU =  2 nRU =   7 nWV =    6 nRV =   6 

             U =    2   5   1   4   0   7   3   6 

             V =    6   2   5   1   4   0   7   3 

plane = 72 

k =  576   nWU =  2 nRU =   7 nWV =    7 nRV =   7 

             U =    2   5   1   4   0   7   3   6 

             V =    2   5   1   4   0   7   3   6 
 
Matrix A 

  72  72  72  72  72  72  72  72 

  72  72  72  72  72  72  72  72 

  72  72  72  72  72  72  72  72 

  72  72  72  72  72  72  72  72 

  72  72  72  72  72  72  72  72 

  72  72  72  72  72  72  72  72 

  72  72  72  72  72  72  72  72 

  72  72  72  72  72  72  72  72 
 

So, the values of the elements of matrix A confirm 

the analytical calculations for card(L) = w
2
N and for 

arbitrary w ≤ 32. Generator nsDeonYuliPlaneTwist32D 

creates a complete set of uniform twisting RPs, which is 

considered as the primary task of this article. 

Conclusion 

Analysis of the sources indicates that algorithms of the 

generators of uniform planes do not take into account the 

potential of the sequences having absolutely uniform 

distribution. Techniques of those generating algorithms do 

not guarantee the absolute uniformity of the complete 

random planes. To overcome this limitation, we proposed 

here the generators of the complete uniform sequences, 

which include unique twisting techniques described in our 

previous works. However, their direct application for the 

described task is hampered by the required properties of 

Descartes uniform planes. To satisfy this requirement, a 

new class nsDeonYuliStwist32D was constructed and now 

with its help it is possible to create the dynamic objects of 

the simplest twisters without using congruential arrays. 

Applying secondary indexing technique allows for getting 

a generator of Descartes twisting random planes, which 

ensures the completeness and uniqueness of all the 

random variables on a grid of the Descartes plane. The 

performed tests confirm the absolute uniform distribution 

of the generated random values on a plane. In addition, a 

variety of the initial twisting sequences allows getting a 

set of the twisting planes for each pair of the congruential 

constants. In perspective, the obtained results can be 

used in a large number of applied tasks, which use the 

spatial plane distributions. 
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