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Abstract: Active learning aims to train an accurate model with minimum 

cost by labeling the most informative instances without compromising the 

model performance. So, choosing an efficient criterion for instance 

selection is the most important step. Sampling stage is the main issue in 

active learning for many problems such as intrusion detection system. 

There are many methods for sampling stage to select the informative 

instances, but what the method should be used to provide the most 

accurate to the Intrusion Detection System (IDS). So, we made a 

comparison between three of these methods, uncertainty sampling, Query 

By Committee (QBC) and expected model change. The contribution of 

this study is analyzing and examining three of common strategies that 

used to select the most informative instances to determine the best one of 

them. The experimental result showed that the expected model change 

method achieved the highest accuracy compared with uncertainty 

sampling and query by committee methods.  

 

Keywords: Active Learning, Expected Model Change, Uncertainty 

Sampling, Query by Committee 

 

Introduction  

Machine learning is a type of artificial intelligence 

that provides computers with the ability to learn without 
being explicitly programmed. Interest in machine 

learning is due to several factors such as growing 
volumes and varieties of available data, computational 

processing that is cheaper and more powerful and 
affordable data storage. Based on these factors, it 

became easy to quickly and automatically produce 

models that have the ability to analyze bigger, more 
complex data and receive faster, more accurate results. 

Therefore, by making accurate models institutions have a 
better chance of specifying profitable chances of 

avoiding unknown risks especially in competitive and 

adversarial environments. The most common type of 
machine learning is supervised learning. In supervised 

learning training data includes both the inputs and the 
desired outputs. The correct outputs (targets) are known 

and are given to the model during the learning process 

(Salah et al., 2011; Qatawneh et al., 20017; Farhan et al., 
2015). This type of learning is usually fast and accurate, 

while this approach is not applied in active learning. In 
active learning, we use the initial labelled samples and 

among the unlabelled samples, we try to find out 
labelling which small number of them will get much 

better performance. But, in supervised learning to 

produce an accurate model big data should be available, 
these labeled data require time-consuming, high cost. 

Large of sensitive institutions require large amounts of 
labeled data to obtain an accurate model such as 

network intrusion detection system. To solve such of 

these problems active learning is used. Active learning 
is a subfield of machine learning and the kind of 

learning. The principle of work for this framework, the 
learner has the freedom and influence to select which 

instances will be added to its training set (Roy and 
McCallum, 2001; Cohn et al., 1994). 

Active learning aims to train an accurate prediction 
model with minimum cost by labeling the most 
informative instances without significantly compromising 
the model performance (Fu et al., 2013). Active learning 
aims at reducing the number of training examples to be 
label by automatically processing the unlabeled 
examples then selecting the most informative ones to 
label. The problem of active learning is to find the best 
selection strategy to quickly reach to high classification 
accuracy (Zhao et al., 2016). So, choosing an efficient 
criterion for instance selection is the most important step 
in active learning. In active learning, there is a small 
number of labeled data (training data) and a large 
number of unlabeled data (rest data). Model is produced 
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by using the training data (initial data) in the learning 
process and uses this classifier to select the most 
informative instances from the rest data to label and add 
these instances to the training data, then remove these 
instances from the rest. After that, the model is learned 
from the updated training set. This process is repeated to 
obtain the information size of training data. The standard 
supervised learning includes the training phase and 
testing phase, but in active learning, there is a sampling 
phase before the training and testing phases (Zhao et al., 
2012). The stage of selection of the sample which will be 
added to the training set is the most important stage in 
active learning; this stage is distinguishing active 
learning from supervised learning. In supervised 
learning, there are two phases learning phase and testing 
phase, but in active learning, there are three phases 
sampling phase, learning phase and testing phase. In case 
we used the supervised learning to improve the accuracy 
for sensitive applications, a large amount of labeled data 
must be provided. This is impractical, time-consuming 
and costly. So, the solution will be using active learning. 
Since the sampling is the most important stage of active 
learning, the accuracy and success of the model will 
depend on the effectiveness and success of this phase. 
The broad development of active learning has led to the 
use of many strategies such as query-by-committee 
(Gilad-Bachrach et al., 2006; Iglesias et al., 2011; 
Bloodgood, 2018), uncertainty sampling (Joshi et al., 
2009; Settles, 2010; Tong and Koller, 2001; Yang et al., 
2015), expected model change (Sznitman and Jedynak, 
2010; Vezhnevets et al., 2012; Long et al., 2015). 
Among these strategies is what meets certain applications 
such as visual recognition (Long et al., 2015; Luo et al., 
2005), foreground-background segmentation 
(Konyushkova et al., 2015), natural language processing 
(Olsson, 2009; Tong and Koller, 2001), preference 
learning (Maystre and Grossglauser, 2015; Singla et al., 
2016). In addition to many applications. 

Sampling Strategies  

Uncertainty Sampling 

Uncertainty sampling is one of the public strategies 

for measuring the most informative instance (Lewis and 

Gale, 1994). Principle of its work, the most informative 

instance is the instance where the model not uncertain 

how to label it. This framework uses the probabilistic 

models to evaluate the information of instances; the 

predicted results of the instance are represented by a 

vector, whose elements are the posterior probability 

with respect to each class label. For a binary 

classification, the most uncertain instance is the one 

whose posterior probability of being positive is the 

nearest 0.5 (Lewis and Gale, 1994). But, for problems 

with three or more class labels; there are three methods 

according to the number of posterior probabilities to 

select the most informative instance the Least 

Confidence (LC), margin and entropy. 

Query by Committee 

One of the major active learning strategies was 

proposed in (Seung et al., 1992). This framework uses a 

classifier committee constructed from the training set, 

each member of the committee makes a vote on the class 

label of the instance and then the majority vote of the 

committee members is the final prediction. The instance 

with the most disagreement in the prediction is the most 

informative instance. In this strategy, multiple learners 

are generated and then select the instance where the 

learners disagree about label it. For example, suppose 

there are five learners among which three learners 

predict positive and two learners predict negative for an 

instance (xi), while four learners predict positive and one 

learner predict negative for the instance (xj) then these 

learners disagree more on (xi) than on (xj) and therefore 

(xi) will be selected for the query rather than (xj). Two 

points must be taken into consideration to implement 

query by committee: Construct a committee of 

hypothesis representing the different fields of a version 

space and design a measure to evaluate the 

disagreements between committee members. 

According to construct the committee of classifiers, 

there are two methods to do this, the Query by Bagging 

(QBBagging) and Query by Boosting (QBBoosting) 

(Mamitsuka, 1998). The second point to implement 

query by committee strategy, we must design a measure 

to evaluate the disagreements between committee 

members. According to this point, there are two methods 

to do that vote entropy and average Kullback-Leibler 

(KL) divergence. 

Expected Model Change 

Another common active learning strategy is the 

expected model change; it works to choose the instance 

that will lead to a significant change in the current model 

if it is a label was known. An example query on this 

strategy is the “Expected Gradient Length” (EGL) 

approach for discriminating probabilistic model classes. 

This approach was proposed by (Settles et al., 2007) for 

active learning in the multiple-instance setting. The EGL 

strategy utilizing in any learning problem where gradient 

based training is used. This strategy works the formation 

of a committee of models using samples of data labels. 

On the contrary of the QBC, unlabeled data are scored 

on the basis of the difference between the outputs of the 

committee on the one hand and expected outputs of the 

model built on the labeled dataset on the other hand. It 

is measured this disagreement through the absolute 

variance between the current model of the hand and the 

aggregated output of the committee on the other  

(O'Neill et al., 2016). Which characterizes this strategy 
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is that it is able to assess the classification score change 

for whole instances and then choose the instance with 

the highest effect. The main idea of this strategy is the 

instances that have the maximize change in the output 

are the most probable to enhance the model's accuracy. 

Case Study 

The dataset used in our study is KDD CUP 1999 off-

line ID project from the University of California Irvine 

(UCI) machine learning repository. However, in our 

study we used only 5,000 records of the actual dataset 

size which is contained five million of records. 800 

records of them are tested and the 4200 records form the 

whole data. 100 records form the labeled data and the 

remaining form the unlabeled data. Each record of the 

dataset contains 41 of attributes and the label set 

contains 23 various labels 22 attack types and 1 normal. 

But we have converted the dataset to two classes for 

simplification. These attributes represent a midst two 

network hosts and the categorical features are encoded 

using numerical values. These attributes fall under three 

distinct types: Content, traffic and intrinsic. The content 

attributes take the content of the packet in consideration 

to describe the network behavior. The traffic attributes 

measure the number of network events on a number of 

different ports. The intrinsic attributes consist of 

information about the network packet-level. 

Methodology 

In this study, the dependent variable is the class of 

the network traffic instance, normal or attack. The 

normal instances in the dataset are labeled as 0, while the 

attack instances are labeled as 1. The neural network 

model is trained to predict for the dependent variable a 

real number between 0 and 1. The instance in network 

traffic for IDS will be classified as an attack if its value 

greater than 0.5, but if its value less than 0.5 it is classified 

as normal. Active learning procedure is shown in Fig. 1. 

The whole process of the active learning algorithm 

can be shown in algorithm 1. 

 

Algorithm 1. Active learning procedure 

Input: U-unlabeled instance, L-labeled instances, Ni-

number of instances to be selected per iteration, Nitr: 

number of iterations, C-Classifier 

ITR = 0 

For ITR<Nitr 

 Learn classifier C from L 

 Query a set instances Ni{x*}∈U according to 

sampling strategy and label it {(x*,y*)} 

 L←L∪Ni {(x*,y*)} 

 U←U\Ni {x*} 

End 

Uncertainty Sampling 

According to this method and since there are two class 

labels for a binary classification; the most uncertain instance 

is the one whose posterior probability of being positive is 

the nearest 0.5 regardless of the use of any method of 

uncertainty strategy whether it was less confident, margin 

or entropy (Tong and Koller, 2001). The uncertainty 

sampling method scenario is shown in Fig. 2. 

In this method, we consider the first 100 instances are 

the labeled set; the unlabeled data are the rest of the 

whole data (4100). Firstly, will be training the network 

based on the labeled set to obtain the classifier through 

giving random weights. Then will be passing the rest 

data onto the base classifier. After that, the absolute 

value of the difference between 0.5 and the value of 

output for each instance will be found. Then sort the 

instances in the unlabeled set in ascending order 

according to this difference and take the top (Ni) 

instances and their outputs according to the threshold. 

Add the top (Ni) instances to the labeled set and remove 

it from the unlabeled data. 

Query by Committee 

In this technique, a committee (two or more) of different 

classifiers trained on the initial labeled data will be built. In 

this study, it is sufficient to build two hypotheses (NNs). 

The normal instance in the dataset is labeled as 0, while the 

attack instance is labeled as 1. Figure 3 shows the scenario 

for this method as the following: 

 

1. We will build committee consists of two classifiers 

(NN); each classifier will be trained on the parts of 

labeled data, the first classifier trained on the first 50 

instances and the second classifier trained on the 

second 50 instances 

2. Pass the rest of data onto the two classifiers and take 

the difference between the outputs from the two 

classifiers for each instance 

3. Sort the instances in descending order based on the 

difference and take the top Ni instances 

4. Add these instances with its true label to the labeled 

set and remove it from the rest data 

5. The first Ni instances will be used to build a base 

classifier and in each iteration will be retrained the 

committee of classifier and the base classifier on the 

updated labeled data Nitr times 

 

Expected Model Change 

Which characterized this strategy from the previous 

strategy; we will be building the base classifier (NN) by 

the entire labeled data on the hand and create the 

committee of classifiers based on a sample of labeled 

data on the other hand. The scenario of this method is 

shown in Fig. 4. 
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Fig. 1: Active learning procedure 

 

 
 

Fig. 2: Uncertainty sampling in active learning 
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Fig. 3: QBC in Active Learning 

 

 
 

Fig. 4: Expected model change in active learning 
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Will be build the committee of two classifiers (NN) 

trained on the different parts on labeled set, the first 

classifier trained on the first 50 instances and the second 

classifier trained on the second 50 instances: 

 

1. The base classifier trained on all the labeled set (the 

first 100 instances) 

2. Pass the rest of data onto the two classifiers and take 

the difference between the outputs from the two 

classifiers for each instance 

3. Sort the instances in descending order based on the 

difference and take the top Ni instances 

4. Build the new classifier from this committee based 

on these instances 

5. Pass the rest of the data onto both, the new classifier 

and the base classifier that has trained on all data 

6. Take the difference between the output from the 

new classifier and the base classifier for each 

instance, sort the instances in descending order and 

take the top Ni instances 

7. Add these instances on the labeled set and remove it 

from the rest 

8. Build the classifier based on these instances 

 

This process repeated until Nitr times. 

Experimental Results 

Parameters Setup 

Active Learning Parameters 

Firstly, we selected three numbers of iterations in 

our study 3, 5 and 7. These numbers of iterations were 

chosen based on the initial experiments that show that 

these numbers fit with the size of the whole data and 

forms the articulated points after trying many of the 

iteration numbers. For the number of instances that 

selected from the whole data in each iteration, we 

used two different numbers of instances (Ni) 50 and 

30. These numbers were chosen also based on the 

experiments that show that these numbers provide 

preference accuracy from others and appropriate to 

make the comparison. Number of classifiers in the 

committee for the QBC method and expected model 

change method was two classifiers. NN was used as 

classifier. The parameters that used in our study are 

given in Table 1. 

 
Table 1: Active learning Parameters 

Number of iterations 3, 5, 7 

Number of instances in each iteration 30, 50 
Size of committee Two classifiers 
Classifier type Neural network 

Neural Network Parameters 

We used the Neural Network (NN) classifier as 

classification algorithm. Many network architectures 

were used of the beginning of our study. NN with three 

hidden layers and one output with different number of 

neurons in the hidden layer such as 20-20-20-1, 40-40-

40-1 and 30-30-30-1. In addition, we also used the 

architecture of one hidden layer and one output such as 

30-1 architecture which denotes one output unit and one 

hidden layer and 20-1, 40-1 architectures. The 30-1 

architecture was adopted in our study; it provided a good 

efficiency in learning. The log-sigmoid transfer function 

was used for hidden layer and output layer. The neural 

network was trained 10000 epochs at each active 

learning iteration. The parameters that used in our study 

are given in Table 2. 

Results on Testing Data 

The performance of the ID models based on the 

sampling methods that use in active learning was 

compared. This was done to evaluate the best of 

sampling approach that provides a good accuracy.  

As shown previous the size of dataset is 5,000 

instances; we selected randomly 100 instances initial 

training data and 800 instances the testing data. We 

made testing for three of sampling methods on six 

different initial samples with size of 100. The ratios for 

presence the normal instances and attack instances 

approximately are equal for these samples; 50% attack 

instances and 50% normal instances. These ratios reflect 

the ratios of the whole dataset. In our experimentation 

we took in consideration the following points to make 

comparison between three of sampling methods: 

 

• We tested three of sampling methods on three 

different numbers of iterations 3, 5 and 7 to know 

the influence of change the number of iterations on 

the performance for these methods 

• We tested these methods in two cases; the first case 

we considered the number of instances that will be 

select in each iteration 50 and in the second case the 

number of instances was 30 

• We are tested the methods on six different initial 

samples with size of 100 to know the influence 

degree for selecting the initial samples on 

performance to these methods 

 
Table 2: NN network parameters 

Number of epochs in network 10000 

Learning rate 0.06 
Number of hidden layers 1 
Number of neurons in hidden 30 
Initial weights Random between (0-1) 
Performance function Mean Square Errors 
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Results 

Results Based Selecting 50 Instances 

Results Based Uncertainty Sampling Method 

The performance of uncertainty sampling method 

for six different initial samples with size of 100 

instances and 50 instances selecting in each iteration is 

shown in Fig. 5. We note that the iterations 5 and 7 

approximately have the same accuracy with slice 

preference to iteration 7 on 5, then the iteration 3. In 

iteration 7, the accuracy of 3 samples was 92% and 

above, one sample with accuracy 96% in iteration 3 and 

one sample with accuracy 95% in iteration 5. In addition, 

we note that the highest accuracy was in two samples; 

the sixth sample in first place and in the second place the 

first sample as shown in Fig. 5. 

Results Based Query by Committee Method 

The performance of the QBC method for six different 

initial samples with size of 100 instances and 50 

instances selecting in each iteration is shown in Fig. 6. 

We note that the accuracy at iteration 3 was better than 

iterations 5 and 7, in the second place comes the iteration 

7 and then comes iteration 5. In iteration 3, the accuracy 

of four of samples was 92-97%, three samples with 

accuracy 91-97% in iteration 7. We note that the highest 

accuracy was in two samples; the sixth sample in first 

place and in the second place the first sample. 

Results Based Expected Model Change Method 

The performance for expected model change for six 

different initial samples with size of 100 instances and 

50 instances selecting in each iteration is shown in 

Fig. 7. We note that the accuracy at iteration number 3 

was the best, iterations 5 and 7 approximately have 

the same accuracy with slice preference to iteration 7 

on 5. In iteration 3, the accuracy of three of samples 

was 91-93%, two samples with accuracy 90% in 

iteration 5 and two samples with accuracy 94-95% in 

iteration 7. We note that the highest accuracy was in 

two samples; the third sample in first place and in the 

second place the sixth sample. 

Comparison Results on Three Sampling Methods 

The performance of the active learning procedure 

based on three sampling approaches for six different 

initial samples with size of 100 is show in Fig 8 to 13, 

the points represent the three sampling methods QBC, 

uncertainty sampling and expected model change. 

Figure 8 shows that the QBC method has the highest 

accuracy in two iterations 3 and 7 and the expected 

model change method has the highest accuracy in 

iteration 5. In general, the QBC method has the highest 

total accuracy in the initial sample number 1 and the 

expected model change method in the second place, 

then the uncertainty sampling method. 

Figure 9 shows that the uncertainty sampling 

method has the highest accuracy in two iterations, 5 

and 7. The expected model change method has the 

highest accuracy at iteration number 3. In general, the 

uncertainty sampling method has the highest total 

accuracy in the initial sample number 2, the expected 

model change method comes in the second place and 

then comes the QBC method. 

Figure 10 shows that the expected model change 

method has the highest accuracy in all iterations 3, 5 and 

7. In general, the expected model change method has the 

highest total accuracy in the initial sample number 3, the 

uncertainty sampling method in the second place and 

then the QBC method. 

Figure 11 and 12 show that in sample number 4, the 

QBC method has the highest accuracy in all iterations 3, 

5 and 7. In sample number 5, the QBC method has the 

highest accuracy at iteration number 3, the expected 

model change method has the highest accuracy in 

iteration 5 and the uncertainty sampling method in 

iteration 7. In general, the QBC has the highest total 

accuracy in two samples 4 and 5, the expected model 

change method in second place and then comes the 

uncertainty sampling method. 

Figure 13 shows that the uncertainty sampling 

method has the highest accuracy in two iterations 3 and 7 

and the QBC method has the highest accuracy at 

iteration 5. In general, the uncertainty sampling method 

has the highest total accuracy in the initial sample 

number 6, the QBC method comes in the second place, 

then the expected model change method. We note that 

the results of accuracy were the highest in sample 

number 6 from the other samples. 

Results Based Selecting 30 Instances 

Results Based Uncertainty Sampling Method 

The performance of the uncertainty sampling method 

for six different initial samples with size of 100 and 30 

instances in each iteration is shown in Fig. 14. 

This Figure illustrates that the iterations 5 and 3 

approximately have the same accuracy with slice 

preference to iteration 3 on 5 and then comes iteration 7. 

In iteration 3, the accuracy of four samples was 90-97%. 

In iteration 5, the accuracy of three samples was 93-96%. 

In iteration 7, two samples with accuracy 95-96%. We 

note that the highest accuracy was in two samples; the 

sixth sample in first place and in the second place the 

first sample. In general, we conclude that the accuracy of 

the uncertainty sampling method in the case of 30 

instances in each iteration is better than the case of 50 

instances in each iteration. 
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Fig. 5: Accuracy for uncertainty method based selecting 50 instances 
 

 
 

Fig. 6: Accuracy for QBC method based selecting 50 instances 
 

 
 

Fig. 7: Accuracy for expected model change method based selecting 50 instances 
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Fig. 8: Accuracy for all methods based selecting 50 instances 

 

 
 

Fig. 9: Accuracy for all methods based selecting 50 instances 

 

 
 

Fig. 10: Accuracy for all methods based selecting 50 instances 
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Fig. 11: Accuracy for all methods based selecting 50 instances 

 

 
 

Fig. 12: Accuracy for all methods based selecting 50 instances 
 

 
 

Fig. 13: Accuracy for all methods based selecting 50 instances 
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Fig. 14: Accuracy for uncertainty sampling based selecting 30 instances 

 

 
 

Fig. 15: Accuracy for QBC method based selecting 30 instances 

 

Results Based Query by Committee Method 

The performance of QBC method for six different 

initial samples with size of 100 and 30 instances 

selecting in each iteration is shown in Fig. 15. 

This Figure shows that the accuracy in almost all 

samples is equal, with slice preference to iteration 7 on 

other iterations. Also, shows that the highest accuracy was 

in two samples, the sixth sample in first place and in the 

second place the third sample. In general, we conclude 

that the accuracy for the query by committee method in 

the case of selecting 30 instances in each iteration is 

better than the case of 50 instances in each iteration. 

Results Based Expected Model Change Method 

The performance of expected model change for six 

different initial samples with size of 100 and 30 

instances in each iteration is shown in Fig. 16. 

This Figure illustrates that the iterations 7 and 3 
approximately have the same accuracy with slice 
preference to iteration 7 on 3, after that, comes iteration 
5. In iteration 3, the accuracy of three samples was 90-
97%. In iteration 7, the accuracy of three samples was 
95-96%. In iteration 5, two samples with accuracy 
90%. We note that the highest accuracy was in two 
samples, the sixth sample in first place and in the 
second place the first sample. In general, we conclude 
that the accuracy of the expected model change method 
in the case of 50 instances in each iteration was better 
than 30 instances in each iteration. 

Comparison results on three sampling methods 

Figure 17 to 22 show the results in the case of 30 

instances in each iteration for the three sampling 

methods QBC, uncertainty sampling and expected model 

change. Figure 17 illustrates that the uncertainty 
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sampling method has the highest accuracy in two 

iterations, 3 and 5. The uncertainty sampling method and 

the expected model change method having 

approximately the same and highest accuracy in iteration 

7. In general, the uncertainty sampling method has the 

highest total accuracy in the initial sample number 1, 

expected model change method comes in second place, 

then the QBC method. 
 

 
 

Fig. 16: Accuracy for expected model change based selecting 30 instances 

 

 
 

Fig. 17: Accuracy for all methods based selecting 30 instances 

 

 
 

Fig. 18: Accuracy for all methods based selecting 30 instances 
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Fig. 19: Accuracy for all methods based selecting 30 instances 

 

 
 

Fig. 20: Accuracy for all methods based selecting 30 instances 

 

 
 

Fig. 21: Accuracy for all methods based selecting 30 instances 
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Fig. 22: Accuracy for all methods based selecting 30 instances 

 

Figure 18 shows that the uncertainty sampling 

method has the highest accuracy in two iterations 

number 3 and 5. The expected model change method 

has the highest accuracy at iteration number 7. In 

general, the uncertainty sampling method and the 

expected model change method having approximately 

the same total accuracy in the initial sample number 2 

with slice preference to the expected model change 

method on the uncertainty sampling method. After 

that, comes the QBC. 

In Fig. 19, the uncertainty sampling method has 

the highest accuracy in two iterations number 3 and 5. 

The expected model change method has the highest 

accuracy at iteration number 7. In general, the 

uncertainty method has the highest total accuracy in 

the initial sample number 3 and QBC method has the 

least accuracy in this sample. 

Figure 20 and 21 shows that in samples 4 and 5, the 

expected model change method has the highest accuracy 
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method has the highest accuracy at iteration number 5. In 

general, the expected model change method has the 

highest total accuracy in sample number 4, the 

uncertainty sampling method achieves the highest 

accuracy in sample number 5, then the QBC. 

In Fig. 22, the uncertainty sampling method has the 
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method has the highest accuracy in iteration number 5. 

The uncertainty sampling method and the QBC method 
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initial sample number 6, then the expected model change 

method. We note that the results of accuracy were the 

highest in sample number 6. 

Discussion 

Based Selecting 50 Instances 

Looking at results in the previous section. Firstly, 

we will discuss the influence of the number of 

iterations for six different samples in the case of 

selecting 50 instances in each iteration. From the Fig. 

5 to 7, show that in iteration number 3, the query by 

committee has the highest accuracy in three samples 

1, 4 and 5. The expected model change has the highest 

accuracy in two samples 2 and 3. According to sample 

number 6, the uncertainty sampling method has the 

highest value of accuracy. 

In iteration number 5, the expected model change 

method has the highest accuracy in three samples 1, 3 

and 5. The QBC method achieves the highest accuracy 

in two samples 4 and 6. According to sample number 

2, the uncertainty method is achieving the highest 

value of accuracy. 

In iteration number 7, the uncertainty sampling method 

has the highest accuracy in three samples 2, 5 and 6. The 

QBC method has the highest accuracy in two samples 1 

and 4. According to sample number 3, the expected model 

change method has the highest value of accuracy. 

As a result of foregoing, the QBC method was the 

best method in iteration number 3. The expected 

model change method was the best in iteration number 

5. The uncertainty sampling method was the best in 

iteration number 7. 

The values of the accuracy depending on three 

sampling approaches for six different initial samples 

with size 100 appear in Table 3 to 8. 

In sample 1, the optimal Performance was for the 

QBC method and iteration 7.  
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Table 3: Comparative performance for all methods in first sample 

Active learning iterations Expected change model QBC Uncertainty sampling 

3 0.8863 0.9575 0.8863 
5 0.8963 0.8925 0.8900 
7 0.8513 0.9625 0.9238 

 
Table 4: Comparative performance for all methods in second sample 

Active learning iterations Expected change model QBC Uncertainty sampling 

3 0.8050 0.7475 0.7600 
5 0.7913 0.7263 0.7938 
7 0.8063 0.7513 0.9275 

 
Table 5: Comparative performance for all methods in third sample 

Active learning iterations Expected change model QBC Uncertainty sampling 

3 0.9338 0.7513 0.8050 
5 0.8950 0.7025 0.8388 
7 0.9363 0.7175 0.8225 

 
Table 6: Comparative performance for all methods in fourth sample 

Active learning iterations Expected change model QBC Uncertainty sampling 

3 0.8625 0.9263 0.7638 
5 0.8300  0.8563 0.8513 
7 0.8375 0.9100 0.7725 

 
Table 7: Comparative performance for all methods in fifth sample 

Active learning iterations Expected change model QBC Uncertainty sampling 

3 0.9138 0.920 0.7600 
5 0.8663 0.840 0.7600 
7 0.8100 0.841 0.8513 

 
Table 8: Comparative performance for all methods in sixth sample 

Active learning iterations Expected change model QBC Uncertainty sampling 

3 0.9125 0.9550 0.9663 
5 0.8863 0.9588 0.9550 
7 0.9488 0.9550 0.9625 

 

In sample 2, the optimal Performance was for the 

uncertainty sampling method and iteration 7.  

In sample 3, the optimal Performance was for the 

expected change model method and iteration 3.  

In sample 4, the optimal Performance was for the 

QBC method and iteration 3. 

In sample 5, the optimal Performance was for the 

QBC method and iteration 3. 

In sample 6, the optimal Performance was for the 

uncertainty sampling method and iteration 7. 

From previous tables we note that the highest 

accuracy was in the first place, in sample 6. In the 

second place, sample 1. In the third place, sample 5. In 

the fourth place, sample 4. In the fifth place, sample 3. In 

the sixth place, sample 2. We conclude that the samples 

6 and 1 involve of informative instances more than other 

initial samples. Therefore, choosing a good initial 

sample containing informative instances will be lead to 

increases in accuracy. 

Based Selecting 30 Instances 

Now we will discuss the influence of the number of 

iterations for six different samples in the case of selecting 

30 instances in each iteration. From the Fig. 14 to 16 show 

that in iteration number 3, the uncertainty sampling 

method has the highest accuracy in three samples 1, 2 and 

3. The expected model change method has the highest 

accuracy in two iterations 4 and 5. In sample number 6, 

the uncertainty sampling method and the expected model 

change method have the same accuracy. 

In iteration number 5, the uncertainty sampling 

achieves the highest accuracy in the first five samples, in 

the second place comes the QBC method achieves the 

highest accuracy in sample 6, then comes the expected 

model change method achieves the least accuracy.  

In iteration number 7, the expected model change 

method has the highest accuracy in four samples 2, 3, 4 

and 5. The uncertainty sampling method has the highest 

accuracy in sample numbers 6. The expected model 
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change method and the uncertainty sampling method 

have the same accuracy in sample 1. 

As a result of foregoing, the uncertainty sampling 

method was the best method in iterations number 3 and 

5, the expected model change in iteration number 7. 

The values of the accuracy depending on three 

sampling approaches for six different initial samples 

with size 100 appear in Table 9 to 14. 

In sample 1, the optimal Performance was for the 

uncertainty sampling method and iteration 7. 

In sample 2, the optimal Performance was for the 

uncertainty sampling method and iteration 3. 

In sample 3, the optimal Performance was for the 

expected change model method and iteration 3. 

In sample 4, the optimal Performance was for the 

expected change model method and iteration 3. 

In sample 5, the optimal Performance was for the 

uncertainty sampling method and iteration 3. 

In sample 6, the optimal Performance was for the 

uncertainty sampling method and iteration 3. 

From previous tables we note that the highest 

accuracy was in the first place, in sample 6. In the 

second place, sample 1. In the third place, sample 3. In 

the fourth place, sample 5. In the fifth place, sample 2. In 

the sixth place, sample 4. Therefore, we conclude that 

the samples 6 and 1 involve of informative instances 

more than other initial samples. 

In general, the method that achieves the highest 

accuracy in the case of selecting 50 instances in each 

iteration, the expected model change. In the second 

place, comes the QBC method. In the third place, comes 

the uncertainty sampling method. According to the case 

of selecting 30 instances in each iteration, the uncertainty 

method achieves the highest accuracy. In the second 

place, the expected model change method. After that, 

comes the QBC method. 

 
Table 9: Comparative performance for all methods in first sample 

Active learning iterations Expected change model QBC Uncertainty sampling 

3 0.9338 0.7688 0.9550 
5 0.8938 0.7600 0.9588 
7 0.9550 0.7863 0.9550 

 
Table 10: Comparative Performance for all Methods in Second Sample 

Active learning iterations Expected change model QBC Uncertainty sampling 

3 0.8125 0.7688 0.9050 
5 0.7838 0.7600 0.7875 
7 0.8175 0.7688 0.7600 

 
Table 11: Comparative performance for all methods in third sample 

Active learning iterations Expected change model QBC Uncertainty sampling 

3 0.9000 0.8325 0.9413 
5 0.8238 0.7913 0.9325 
7 0.9500 0.8513 0.7850 

 
Table 12: Comparative performance for all methods in fourth sample 

Active learning iterations Expected change model QBC Uncertainty sampling 

3 0.8350 0.7600 0.7975 
5 0.7188 0.7188 0.7863 
7 0.8263 0.7563 0.7288 

 
Table 13: Comparative performance for all methods in fifth sample 

Active learning iterations Expected change model QBC Uncertainty sampling 

3 0.8563 0.7913 0.8200 
5 0.7925 0.7800 0.8913 
7 0.8363 0.7800 0.7900 

 
Table 14: Comparative Performance for all Methods in Sixth Sample 

Active learning iterations Expected change model QBC Uncertainty sampling 

3 0.9650 0.9550 0.9650 
5 0.8950 0.9638 0.9550 
7 0.9563 0.9550 0.9575 
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Finally, we conclude from all previous results that 

the total accuracy in all iterations is the highest in the 

case of selecting 50 instances in each iteration. The 

expected model change method achieves the highest 

total accuracy than other methods. Sample 6 was the 

best initial sample for starting active learning 

procedure for all methods. The iterations 3 and 7 have 

the highest accuracy. 

Summary 

In this study, we made a comparison study from 

more than one side for three of sampling methods- the 

QBC method, the uncertainty sampling method and the 

expected model change method. We used three 

different numbers of iterations, two different numbers 

of instances that are selecting in each iteration and six 

different initial samples to study the effect of changing 

these factors on the effectiveness of the methods used 

in the sampling phase of active learning in general, we 

found the total accuracy over all iterations was the 

highest in the case of selecting 50 instances in each 

iteration. The sample 6 was the best initial sample for 

starting active learning procedure for all methods. The 

iterations 3 and 7 have the highest accuracy. The 

expected model change method achieves the highest total 

accuracy than other methods. 

Conclusion and Future Work 

The main goal of the active learning is selecting of 

the most informative instances from unlabeled data set 

to obtain an accurate model, this process falls under 

the sampling stage which forms the main issue in the 

active learning, so the focus of our study was on this 

phase. The most important characteristic of this paper 

from previous studies is that we implemented more 

than one strategy to select most informative instances 

in NIDS to determine the best strategy through 

making a comparison study in detail from more than 

one side for these sampling methods. We used three 

different numbers of iterations, two different numbers 

of instances that are selecting in each iteration and six 

different initial samples to know the effect of 

changing these factors on the effectiveness of the 

methods used in the sampling phase of active 

learning. Thus identifying the most appropriate 

method for NIDS in all cases. We selected the 

intrusion detection project to apply these sampling 

methods to active learning based neural network and 

the KDDCUP 1999 from UCI repository. A small 

number of labeled data used as initial training set, this 

set used to build the base classifier. In each iteration, 

in an active way, the new instances were selected 

based on the method that used. After that, the new 

instances added to the initial training data.  

Our experiments showed that when comparing the 

three sampling methods QBC, expected model change 

and uncertainty sampling. The expected model change 

method achieves the highest accuracy, the uncertainty 

sampling method in the second place and then comes the 

QBC method.  

The reason for this superiority of the expected model 

change method is that it is able to assess the 

classification score change for whole instances and then 

choose the instance with the highest effect. 

In future research we will study the comparisons in 

more details, to know influence the selecting each 

parameter in active learning and apply these methods to 

other datasets. 
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