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Abstract: Bayesian network structure learning is considered a complex 

task as the number of possible structures grows exponentially with the 

number of variables. Two main methods are used for Bayesian network 

structure learning: Conditional independence, a method in which a 

structure is created consistently with independence tests performed on 

data; and the heuristic search method that explores the structure space. 

Hybrid algorithms combine both of the aforementioned methods. In this 

study, we propose the combination of common metrics, used to evaluate 

Bayesian structures, into a fuzzy system. The idea being that different 

metrics evaluate different properties of the structure. The proposed fuzzy 

system is then used as a metric to evaluate Bayesian networks structures 

in a heuristic search algorithm based on Monte Carlo Markov Chains. The 

algorithm was evaluated within the context of synthetic databases through 

comparison with other algorithms and processing time. Results have 

shown that, despite an increase in processing time, the proposed method 

improved the structure learning process. 

 

Keywords: Fuzzy Systems, Bayesian Network Learning, Markov Chain 

Monte Carlo (MCMC) 

 

Introduction 

Bayesian networks are probability models that 
represent knowledge under random uncertainty. They 
are used in several areas, such as in behavior 
predictions, natural language processing, robotics, 
among others (Friedman and Koller, 2003). 

Bayesian networks are composed of two main 
components: Parameters and structure. Parameters 
define the conditional probabilities between the 
variables or nodes. Structure defines the network 
topology, where the connections and the direction of 
such must be determined (Castillo et al., 2012).  

Often domain experts are needed to define 

Bayesian network structures. However, this can be 

costly, complex and time-consuming due to the 

amount of variables, incompleteness of data and the 

difficulty in maintaining the structure, making the 

process impracticable in several cases (Scutari and 

Denis, 2014). Therefore, significant research effort 

has been invested into learning Bayesian networks 

structure from data. Both components can be learned 

from data. The learning of parameter is considered a 

simple task when the structure of the network is well 

defined. On the other hand, structure learningis an 

NP-Hard problem (Chickering, 1996). 

The literature review shows two main methods to 

learn Bayesian network structures. The first method uses 

conditional independence tests on the data to find a 

structure consistent with the observed independence. 

The problem with this approach is the exponential 

number of dependence tests (Margaritis and Thrun, 

1999). The second method defines a function to 

evaluate how well a structure represents the data, 

finding the simplest structure that increases the value of 

this function (Ko and Kim, 2014). Algorithms in this 

method explore the search space, assessing the 

structures score metric functions. A problem with this 

approach is that the search space contains all the 

possible structures (Yan and Cercone, 2010). Some 

algorithms, named hybrid, combine both approaches 

(Margaritis and Thrun, 1999). The most common 

approach in hybrid methods is to use independence tests 

to restrict the search space and then apply a heuristic 

search method (Tsamardinos et al., 2006). 
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The research question posed for this work is: To 

what extent the evaluation of different properties of 

Bayesian networks improve the structure learning 

process in a heuristic search algorithm? To tackle this 

problem, we propose a fuzzy system, which combines 

common evaluation metrics. This approach draws 

inspiration from (Morales et al., 2004). Fuzzy systems 

are flexible tools capable of approximating different 

functions into one through a set of rules (Brooks et al., 

2011). Moreover, fuzzy systems have been widely used 

in many fields, including in the Bayesian networks 

domain, for learning structure (Morales et al., 2004) and 

inference (Yang, 1997). 

The main contribution of this work is the 

development of a fuzzy system that combines different 

common metrics to evaluate Bayesian network 

structures. The metric is then applied to a Markov Chain 

Monte Carlo search algorithm in the process of learning 

Bayesian network structures. Even though this work 

applies the metric to an MCMC algorithm, the metric is 

generic enough to be applied to other search algorithms. 

The proposed approach is evaluated by comparing its 

results to the results of other state-of-the-art algorithms 

in the context of two synthetic databases. 

The article is thus presented as follows: Section II 

presents the related work. Section III presents the 

background knowledge on Bayesian network structure 

learning. Section IV presents the proposed fuzzy metric 

that is applied to a Markov Chain Monte Carlo 

algorithm. Section V presents the evaluation and Section 

VI concludes the article. 

Related Work 

Bayesian networks are widely used and thus 

automatic learning these networks from data is a very active 

research field (Chickering, 2003; Tsamardinos et al., 2006; 

Friedman and Koller, 2003; Vafaee; 2014; Guo and Li, 

2009). This literature review considered articles published 

in digital libraries. The databases used in this review were 

IEEE Xplore, ACM digital Library, Springer Link and 

ScienceDirect. The selected articles are presented below. 

These were selected based on their importance as well as 

current trends in the field. The review considered papers 

published between 1995 and 2017.The research presented 

in this paper focuses on heuristic search algorithms. 

Therefore, the articles presented in this Section fall under 

the heuristic search approach. 

Table 1 presents a summary of the approaches 

analyzes in this paper. Many of these approaches apply 

genetic and greedy algorithms to learning Bayesian 

network structures. Greedy algorithms find an optimal 

local, hoping that a local optimum also represents the 

global optimum of the problem. Greedy algorithms 

usually have good performance, however, they are highly 

dependent of its initial stage. The K2 (Heckerman et al., 

1995) algorithm is one of the most known greedy 

algorithms in Bayesian structure learning. The main 

drawback of the K2 algorithm is that the order of the nodes 

is required as a parameter. Ko and Kim (2014) proposed an 

algorithm to define this parameter. Chickering (2003) 

proposed the Greedy Equivalence Search (GES) algorithm, 

which has gained many extensions. Nielsen et al. (2002) 

added randomness to this algorithm that attempts to escape 

from local optima. The extension of the GES proposed by 

Alonso-Barba et al. (2011) aimed at improving its 

performance. Scanagatta et al. (2015) proposed a greedy 

algorithm to work on large networks. Genetic algorithms 

are inspired by natural evolution, where the fittest 

individuals are selected in each iteration, to produce the 

next sample population. Examples of such algorithms 

include a genetic algorithm which also uses a fuzzy system 

(Morales et al., 2004). Another genetic algorithm applies 

the K2 scoring function to evaluate the produced structures 

(Faulkner, 2007). There is also a genetic algorithm focused 

on learning large structures (Vafaee, 2014). 

Hybrid algorithms combine heuristic search and 

conditional independence tests to the data. For example, 

in (Zhang et al., 2013), in order to limit the search space, 

the authors proposed the use of conditional 

independence tests to construct an undirected graph. The 

resulting graph is applied as input to a greedy algorithm 

that determines the direction of the relations. See Table 1 

for other algorithms that apply different approaches to 

limit the search space of Bayesian structures. 

 
Table 1: Summary of Bayesian network structure learning methods 

Approach Authors
 

Genetic algorithms Morales et al. (2004) 

 Faulkner (2007) 

 Vafaee (2014) 
Greedy algorithms Heckerman et al. (1995) 

 Chickering (2003) 
 Nielsen et al. (2002) 

 Alonso-Barba et al. (2011) 
 Ko and Kim (2014) 

 Scanagatta et al. (2015) 
Hybrid algorithms Tsamardinos et al. (2006) 
 Gámez et al. (2011) 

 Yuan and Malone (2013) 
 Zhang et al. (2013) 

 Xu and Srihari (2014) 
Markov Blanket algorithms Margaritis and Thrun (1999) 

 Pellet and Elisseeff (2008) 
 Aliferis et al. (2010) 

 Zhu and Yang (2014) 
 Sechidis and Brown (2015) 

MCMC algorithms Friedman and Koller (2003)  
 Grzegorczyk and Husmeier (2008) 
 Guo and Li (2009) 

 Niinimaki et al. (2012) 
 Masegosa and Moral (2013) 

 Su et al. (2014) 
 Su and Borsuk (2016) 
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Markov blanket algorithms use techniques to identify 

the Markov blanket of each possible node. A Markov 

blanket of a given variable X is defined as the subset of 

variables that if observed, make the variable X 

conditionally independent of all other variables 

(Margaritis and Thrun, 1999). These algorithms propose 

different approaches to define the Markov Blanket, 

which is then used to define the Bayesian network 

structure (Margaritis and Thrun, 1999; Aliferis et al., 

2010; Sechidis and Brown, 2015). Existing algorithms 

include the work of Pellet and Elisseeff (2008), which 

proposed the use of feature selection algorithms to define 

Markov blankets. Zhu and Yang (2014) decomposes the 

BN structure using Markov blankets and then defines the 

orientation of the arcs using the K2 scoring function. 

Markov Chain Monte Carlo (MCMC) algorithms are 

methods that explore the search space by sampling from 

a probability distribution. MCMC methods apply 

correlated random sampling to move around the chain 

(Friedman and Koller, 2003). Examples of MCMC 

algorithms include its use to find the order of the nodes 

as a first step, then its application to search for the 

structure of the network using the order found previously 

(Friedman and Koller, 2003). Grzegorczyk and 

Husmeier (2008) proposed the remove arc modification 

operation into the MCMC method. Guo and Li (2009) 

combined the Expectation–Maximization algorithm to 

the MCMC algorithm. Niinimaki et al. (2012) proposed 

another algorithm over the order of the nodes, similar to 

the one proposed by Friedman and Koller (2003). 

Masegosa and Moral (2013) combines stochastic search 

and MCMC sampling. Su et al. (2014) proposed the 

incorporation of external knowledge into the MCMC 

algorithm. Su and Borsuk (2016) used Markov blanket 

resampling as a step of the MCMC algorithm. 

As mentioned before, Table 1 summarizes the main 

approaches applied in Bayesian network structure 

learning. The table also shows how the MCMC method 

is being used in recent and relevant studies for the task 

of Bayesian network structure learning. 

As mentioned before, the proposed fuzzy metric 
draws inspiration from a genetic algorithm proposed by 
Morales et al. (2004), which also uses a fuzzy metric to 
evaluate the structures. In this work, we propose a 

similar fuzzy metric applied to an MCMC heuristic 
search algorithm in the process of learning Bayesian 
network structures from data. 

Bayesian Network Structure Learning 

Bayesian networks can be modeled by domain 

experts or learned from data. As mentioned before, the 

model of Bayesian networks by experts can be costly, 

complex and time-consuming due to the number of 

variables, incompleteness of the data, amongst others. 

Structure learning generates a structure based on 

evidence found in the data. There are two main 

approaches in Bayesian network structure learning. 

The method based on conditional independence treats 

each and every variable independently of its non-

descendants, conditioned to their parents. This means 

that each and every Bayesian network represents a 

function of density and unique probability that can be 

factored (Carvalho and Chiann, 2013). 

The second most common method found in the 

literature review applies heuristic search methods to 

generate a structure that best represents the data based on 

a score metric criteria (Daly et al., 2011). K2 is an 

example of an algorithm that applies heuristic search in 

the process of learning Bayesian structures from data. 

Some of the main metrics used in algorithms that apply 

heuristic search methods are: AIC, MDL and BDe. 

The Akaike Information Criterion (AIC) is based on 

two terms: One term controlling entropy, based on 

conditional entropy and another one controlling 

complexity of the structure. In Information Theory, 

entropy is a non-negative value that measures 

uncertainty, tending to zero when knowledge is high. 

The AIC metrics is given by (Akaike, 1974): 

 

( ),AIC H G D K= +  

 

Considering that: 
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The Minimum Description Length (MDL) metrics 

uses the same terms of the AIC metric with a small 

difference in the second term. This metrics is known 

for finding Bayesian network structures that are 

simpler than through AIC. The MDL metrics is given 

by (Bouckaert, 1993): 

 

( ) ( ), , log
2

K
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The Bayesian Dirichlet equivalence (BDe) 

maximizes structure likelihood according to the data - 

that is, the metric uses the conditional likelihood of each 

variable in the network. The BDe metrics is given by 

(Heckerman et al., 1995): 
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The AIC metric analyzes network information. The 

MDL metric analyzes complexity, while the BDe is 

based on probability. 
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Fuzzy Metric 

In this section, a fuzzy metric that combines different 

common metrics for structural learning of Bayesian 

network is proposed. The proposed score fuzzy metric is 

applied to a heuristic search Markov Chain Monte Carlo 

method, which is being called MCMC-Fuzzy. The 

membership functions and fuzzy rules were based on the 

properties of the metrics being used by the fuzzy system 

and by attempting different configurations. These were 

also based on the work of Morales et al. (2004). 

Monte Carlo via Markov Chains (MCMC) is a 

method that uses approximation by sampling. The goal is 

to generate a Markov chain limited by a desired 

distribution. The method obtains random probability 

distribution samples that are considered difficult to 

sample directly. Starting from any point, as the number 

of samples increases, it is said that the chain is closer to 

its balance distribution (Brooks et al., 2011).  

The workflow of the MCMC-Fuzzy algorithm is 

presented in Fig. 1. 

 

 
 
Fig. 1: MCMC algorithm workflow 

Given a set of data, the first stage of the algorithm 

generates a random Bayesian networks structure, which 

is used as the initial state of the Markov chain. In the 

next step, two variables are randomly sampled from the 

set of variables from the dataset. To select a structure 

modification, a random number is generated from a 

uniform distribution. The structure modifications can be: 

Adding, removing, or inverting an arc, between the two 

sampled variables. Since a Bayesian network structure 

cannot have cycles, before evaluating the structure, the 

algorithm validates that. 

Usually, Bayesian network structures are evaluated 

using a single metric, which is the case of the EM-

MCMC algorithm. It is known that score metrics 

evaluate Bayesian structures differently, for example, 

some metrics favor more complex structures, while 

others prefer structures with less parameters (Su and 

Borsuk, 2016). In this work, we present an approach 

that combines known metrics through a fuzzy system 

to evaluate Bayesian networks structure. This metric 

can be used to evaluate the structures being induced 

by any algorithm that have an evaluation step. 

Fuzzy logic provides a way of combining such 

distinct metrics into one. The metrics used in the 

proposed fuzzy system are: AIC, MDL and BDe. The 

fuzzy metric will thus have four variables: 3 inputs and 

an output variable, named Quality (Table 2). 

Each set is defined as a membership function. 

Membership functions were defined by using the highest 

value among all metrics, considering a network structure 

completely connected and the same structure when 

completely disconnected. All sets were defined 

uniformly in the [0,1] interval. 

Figure 2 presents the membership function for the 

metrics, in which x represents the value of metrics and 

µ(x) its membership. 

The membership function for the Quality variable is 

presented in Fig. 3. 

The following step of the fuzzy system was the 

definition of the fuzzy rules. The MDL and BDe metrics 

are minimized and AIC is maximized. Thus, the BDe 

metric influences the Poor, Average and Good fuzzy sets 

of the Quality variable. MDL and AIC metrics influence 

the Average, Good and Excellent fuzzy sets of the same 

output variable. Figure 4 presents the rules used in the 

proposed fuzzy metric. 

 
Table 2: Fuzzy sets 

Variables Sets 

AIC Low, Moderate, High 

MDL Low, Moderate, High 

BDe Low, Moderate, High 

Quality Poor, Average, Good, Excellent 

Create random initial state 

Modify structure 

Evaluate structure 

Accept/Reject 

No 

Finished? 

Yes 

End 
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Fig. 2: Membership function for the distinct metrics 

 

 
 

Fig. 3: Membership functions for the output variable Quality 

 

The metrics are aggregated to the Quality variable by 

truncation. The final part is to defuzzify the Quality 

output variable. The proposed approach uses the centroid 

method for defuzzification. The algorithm continues 

until the amount of iterations is met. The algorithm 

pseudocode, which is based on the MCMC Metropolis-

Hastings algorithm (Chib and Greenberg, 1995), is 

presented in Fig. 5. 
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Fig. 4: Rules for the fuzzy metric 

 

 
 

Fig. 5: MCMC-Fuzzy algorithm pseudocode 

 

The algorithm starts by generating a random 

structure. Line 3 calculates the initial network score 

using the proposed fuzzy metric. Line 4 stores this value 

as the best score. Then, the iterative process starts. 

Lines 6 and 7 select 2 nodes randomly. Line 8 

specifies one of the possible modifications (add, remove, 

or invert arcs). The modification is performed in Line 9. 

Line 10 calculates the score for the new network with the 

random modification. Line 11 verifies if a random 

number of a uniform distribution is smaller than the 

minimum between 1 and the exponential difference 

between the scores. If it is, the structure is accepted as 

the new best structure sample. 

The test presented in Line 11 represents the 

probability of chain acceptance according to the equation 

presented below (Friedman and Koller, 2003): 

 

( )
( ) ( )

( ) ( )

|
, min 1,

|

x q x x
P x x

x q x x

π

π

 ′ ′
′ =   ′ 

 

If MDL is low then quality is excellent 

If MDL is medium then quality is good 

If MDL is high then quality is regular 

MDL 

If AIC is low then quality is regular 

If AIC is medium then quality is good 

If AIC is high then quality is excellent 

AIC Quality 

If BDe is low then quality is good 

If BDe is medium then quality is regular 

If BDe is high then quality is bad 

BDe 
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Evaluation 

The MCMC-Fuzzy was applied to two synthetic 

databases. These synthetic databases are commonly used 

in evaluating Bayesian networks learning algorithms, 

which makes a comparison between methods possible. 

The databases are also freely available.  

The first synthetic database, called Asia, represents 

patient diagnosis in a hospital emergency room. The 

Asia dataset has 5000 rows. The Asia gold standard 

network has 8 nodes, 8 arcs and 18 parameters. The 

second database is called Alarm. The Alarm dataset has 

20000 rows. The Alarm gold standard network has 37 

nodes, 46 arcs and 509 parameters. Both datasets are 

composed of categorial data, which iscommon for 

Bayesian networks. We refer the reader to Scutari and 

Denis (2014), for a full description of these databases. 

The evaluation conducted compared the structures 

learned and the processing time from the proposed method 

to the EM-MCMC, MMHC and K2 algorithms. EM-

MCMC is used in this experiment for being an MCMC 

method, easily comparable to the proposed Fuzzy-MCMC 

algorithm. MMHC and K2 are used for widely known and 

used algorithms for learning Bayesian network structures. 

Network Structure Comparison 

In this section, we present a comparison of the 

Bayesian network structures learned from the proposed 

MCMC-Fuzzy algorithm, to the EM-MCMC, MMHC and 

K2 algorithms. The algorithms used for comparison were 

selected due to popularity, efficiency and broad utilization. 

Figure 6 presents the structure learned from 

applying the MCMC-Fuzzy algorithm for the Asia 

database. The outlined arcs represent arcs correctly 

identified by the algorithm. 

Figure 7 presents the Bayesian network learned by 

the MCMC-Fuzzy algorithm for the Alarm database. 

Tables 3 and 4 present the results found by the K2, 

MMHC, EM-MCMC as well as by the MCMC-Fuzzy 

algorithm for the Asia and Alarm databases. The EM-

MCMC and MCMC-Fuzzy have the number of iterations 

as their stop condition. Therefore, tests were performed 

using different values for this parameter. The gold 

standard presents the correct Bayesian network settings 

for the database. 

The K2 algorithm is widely known for having good 

results in several databases. This is due to the input 

parameter defining the order of variables in the Bayesian 

network. The definition of this parameter is considered a 

complex task (Friedman and Koller, 2003). Moreover, 

structure learning is commonly done when there is little or 

no information about the data. The remaining algorithms 

learn the network structure without the need of additional 

parameters, which makes learning process more difficult. 

The MMHC algorithm is used in several applications 

particularly because it can be scaled, with proper run times 

even when working with a high number of variables. 

When applied to the Asia and Alarm databases, the 

algorithm identified 4 correct arcs for Asia and 18 for 

Alarm. The MMHC results show certain equivalence with 

EM-MCMC results, identifying nearly the same amounts 

of correct, extra and missing arcs in both databases. 

 

 
 

Fig. 6: MCMC-Fuzzy structure for the Asia database 
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Fig. 7: MCMC-Fuzzy structure for the Alarm database 
 
Table 3: Results for the Asia Network 

  Correct Extra Missing 
Algorithm Total arcs arcs arcs 

K2 8 7 1 1 
MMHC 6 4 2 4 
EM-MCMC 8 4 4 4 
MCMC-Fuzzy 8 6 2 2 
Gold standard 8 8 0 0 

 
Table 4: Results for the alarm network 

  Correct Extra Missing 
Algorithm Total arcs arcs arcs 

K2 46 45 1 1 
MMHC 35 18 17 28 
EM-MCMC 36 19 17 27 
MCMC-Fuzzy 46 26 20 20 
Gold standard 46 46 0 0 

 

The MCMC-Fuzzy algorithm yielded good results for 

both databases. When applied to the Asia database, it 

identified 6 correct arcs, which is compatible to the 

results for K2 with the advantage of not requiring 

additional parameters. 

For the Alarm database, MCMC-Fuzzy found the 

largest number of correct arcs and the smallest number 

of missing arcs. However, these results are still inferior 

when compared to K2. MCMC-Fuzzy also identified 

more extra arcs than any other method. 

Processing Time 

The processing time tests were performed on a 

computer with an Intel Core i7 chipset and 8GB RAM 

memory, running MAC OS X 10.9. Table 5 shows the 

time in seconds per algorithm in each of the 

databases. EM-MCMC and MCMC-Fuzzy have the 

number of iterations as stop criteria. The number of 

iterations were 5,000 for the Asia database and 10,000 

for the Alarm database. 

PMB MVS 

DISC VMCH PAP PVS 

VALV PCWP FIO2 SHNT VTUB 

INT ECO2 LVV SAO2 PRSS 

VLNG MINV ACO2 HYP LVF CVP KINK 

ERCA HR STKV HIST ANES 

HRSA HREK HRBP CO APL CCHL 

ERLO TPR 

BP 
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Table 5: Processing time in seconds 

Algorithms Asia Alarm 

K2 1.5456 3.6432 
MMHC 0.0385 1.2232 
EM-MCMC 2.9568 15.1015 
MCMC-Fuzzy 5.0924 27.7940 

 

MMHC is known for optimal processing times and is 

widely used in large databases. By observing the 

processing time of the algorithms, one can note that the 

improvement in the structure had a cost, which is still 

acceptable. Since, structure learning only needs to be 

redone when there are changes in the data. In addition, 

the number of iteration for the MCMC methods 

influence directly upon their processing times. 

K2 had the best results regarding processing times. 

However, the algorithm depends on previous knowledge 

over the database since the order or variables must be 

informed as an input parameter. The MCMC-Fuzzy method 

was proven efficient, yielding the best results in structure 

learning among the algorithms that learn Bayesian networks 

only from data. Furthermore, processing time could be 

improved by optimizations in the code. 

Conclusions and Future Work 

In this study, a fuzzy metric that combines distinct 

common metrics applied to Bayesian network structure 

learning is proposed. This metric was applied to a MCMC 

heuristic search algorithm, which is called Fuzzy-MCMC 

and evaluated using two synthetic databases. 

The combination of different metrics resulted in a 

fuzzy system capable of evaluating different properties 

of Bayesian networks simultaneously. The modeled 

metric is also generic enough to be applied to other 

heuristic based search algorithms. 

The proposed algorithm, Fuzzy-MCMC, has 

comparable results with the K2 algorithm for the Asia 

dataset. K2 has the best results for the Alarm dataset, with 

Fuzzy-MCMC having the second best results. However, 

the K2 algorithm requires as a parameter the order of the 

variables, which is often complex to determine. 

Considering algorithms that do not require additional 

parameters, the proposed MCMC-Fuzzy algorithm had the 

most accurate Bayesian network structure for both 

datasets. However, MCMC-Fuzzy algorithm also 

identified many extra arcs in comparison with other 

methods, hence, it obtained a more complex network 

structure. In relation to processing time, the MMHC 

algorithm had the best results. However, code 

optimizations can be performed to MCMC-Fuzzy in order 

to improve time performance. We believe that the 

MCMC-Fuzzy algorithm can be used when not much 

information is available about the dataset and when the 

extra processing time is not an issue. 

Future work includes more experimentation with the 

fuzzy metrics’ rules system, which can affect the accuracy 

of the structures learned as well as their running time. 

Future work also includes applying the proposed fuzzy 

metric to other heuristic search algorithms. 
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