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Abstract: Model-Driven Engineering (MDE) supports model evolution and 

refinement by means of model transformations at several abstraction levels. 

Validating these transformations is essential to ensure the quality and 

correctness of such models. However, MDE transformations become more 

complex to validate, for example, when they are implemented in different 

languages. One particular example is the transformation of the SyMPLES 

approach. SyMPLES is a development approach for embedded systems, 

which is based on concepts of both Software Product Lines (SPL) and 

MDE. SyMPLES has a model transformation process which creates 

Simulink models from SysML models. This paper presents a case study 

which applies test case generation based on SPL to validate this model 

transformation. An SPL was used to generate a set of test cases based on 

coverage criteria. The results showed that the test cases generated 

uncovered errors in the transformation of SyMPLES. In addition, a 

comparison with the test case generation based on metamodel is presented, 

in order to analyze the effectiveness of the techniques. The coverage 

criteria made it possible to reduce the number of test cases generated, thus 

minimizing test effort and time. 
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Introduction 

An embedded system is a computer system 

incorporated in a larger product (Marvedel, 2003). The 

development process of these systems is different from 

traditional systems due to their specific nonfunctional 

requirements, such as, power consumption, performance, 

hardware and software integration, real time and cost. 

Therefore, specific approaches are needed to support 

their development process. 
Model-Driven Engineering (MDE) and Software 

Product Lines (SPL) are complementary approaches that 

contribute to improving the embedded systems 

development process. MDE allows the generation of 

applications and models by means of model 

transformations at distinct abstraction levels (Mellor, 

2004) and SPL supports non-opportunistic reuse of 

common artifacts from the same domain to customize 

new applications (Van der Linden et al., 2007). One of 

the goals of MDE is to facilitate the code generation 

from specification models, which can be carried out 

automatically using MDE transformations. 

The SysML-based Product Line approach for 

Embedded Systems (SyMPLES) (Silva et al., 2013; 

Fragal et al., 2013) is an approach to support the 

embedded systems development process, which 

combines both MDE and SPL concepts. SyMPLES is 

composed of activities for both variability management 

and model transformation. It guides the development 

using annotations in SysML models (Friedenthal et al., 

2009) to specify the system. The annotations support the 

variability resolution to configure specific products. 

SyMPLES transforms configured SysML models into 

Simulink models. SysML is a modeling language for the 

specification of dynamic systems, at a high abstraction 

level, whereas MATLAB/Simulink (Mathworks, 2017) 

is an environment which supports modeling, system 

simulation and C/C++ code generation. 

Validation of MDE transformations is important to 

ensure quality (Fleurey et al., 2004). If the models are 
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derived automatically by the MDE transformations, then 

their quality will depend on the correctness of the 

transformation (Küster and Abd-El-Razik, 2006). 

Software testing techniques have been used to 

validate MDE transformations (Küster and Abd-El-Razik, 

2006), but these techniques are significantly different 

from testing traditional software. This is due both to the 

declarative nature of some transformation languages and 

to the complex structure of the specification models, 

which can have different types of elements and 

arrangements between them (Tiso et al., 2012). 

Furthermore, model transformations can be implemented 

by different languages when divided into smaller 

transformation steps, increasing their complexity. Thus, 

validation becomes more difficult as the testing must 

take into consideration all the transformation steps and 

the transformed models (output models). 

Analyzing the model transformation of the SyMPLES 

approach, a need of validation was identified, because: 

 

• It was evaluated in just one application example, 

developed to specify a system to Yapa 2 board, 

responsible for the flight control of an UAV 

(Fragal et al., 2013), in the context of the Brazilian 

National Institute of Science and Technology for 

Critical Embedded Systems (INCT-SEC) 

• Any MDE transformations must be validated to 

analyze whether its execution produces expected 

results 

• SyMPLES model transformation structure was 

designed with two transformation steps, each one 

designed in a different language, using inputs and 

producing output models. This “chain-based” design 

could complicate the validation of the model 

transformation as a whole 

• The input domain (SysML metamodel) for the 

model transformation can produce a big set of test 

cases. It is important to seek alternatives to reduce 

the size of the test cases, for example using 

coverage criteria and generation policies, in the 

context of MDE transformations (Fleurey et al., 

2004; Küster and Abd-El-Razik, 2006) 

 

This paper presents a case study for the validation of 

the SysML to Simulink model transformation. In 

synthesis, the case study involves an MDE validation 

technique using a SPL as input to the test case generation, 

in the context of the embedded systems development. The 

main objective of this paper is to evaluate the test case 

generation using SPL to the validation of the model 

transformation of the SyMPLES approach. 

In a previous published work (Giron et al., 2017), the 

model transformation of the SyMPLES was tested using 

test case generation from the SysML metamodel. Now, 

another objective in this study is to compare the results 

with the previous publication. The same model 

transformation is used to compare the techniques of test 

case generation: From the SysML metamodel (previous 

publication) and the generation from a SPL (this paper). 

This paper is organized as follows: Related Work is 

presented in the second section; detailed information of 

the SyMPLES approach and its MDE transformation are 

presented in the third section. The fourth section presents 

concepts on MDE validation; the test case generation 

technique is presented in the fifth section; the sixth 

section presents the application of the technique and its 

results; and conclusions, contributions and future work 

are presented in the seventh section. 

Related Work 

Validation of MDE transformations was 

investigated in many studies. There is a variety of 

techniques for validation as Model-Based Testing, 

formal verification and validation based on common 

software testing techniques. 

Brottier et al. (2006) presented a test case 

generation process based on metamodel. This process 

consists on creating partitions of the metamodel, using 

equivalence classes, aiming to reduce the input 

domain. These partitions are used to create model 

fragments that can be used to generate input models 

for testing. A limitation found is that the scope is 

reduced to the test case generation. Our work focuses 

on the test case generation but other activities are also 

considered (i.e., Run tests activity). 

Tiso et al. (2012) provide a development method for 

MDE transformations and two approaches for testing: 

Static test and dynamic test. However, no technique for 

test case generation is discussed or proposed, thus it is 

assumed the tester already has the input models to the 

test execution. 

Another approach for validation of transformations is 

the Model-Based Testing (Guerra, 2012; Lano et al., 

2015). Differently from common software testing, this 

kind of testing is usually performed with a symbolic 

execution of the models. These models are used to 

specify the desired behavior of the transformation, for 

example, state machine models. 

Lin et al. (2005) proposed a framework and a tool for 

transformation testing. The tool allows the mapping 

verification between input/output models and shows the 

visualization of the differences between these models. 

In this study, validation is based on functional 

testing, mostly because the SysML to Simulink model 

transformation implementation is composed of two 

different languages. SyMPLES does not provide any 

formal model to perform model-based testing of the 

transformation and this kind of testing is out of the 

scope of this paper. The main three activities of 

testing MDE transformations were considered in this 
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study, from test case generation to the execution and 

analysis. In addition, a comparison with previous 

work is performed in this study. 

Test Case Generation based on the SysML Metamodel 

A previous work tackled the validation concern of the 

SyMPLES model transformation using a metamodel-

based test case generation technique (Giron et al., 2017). 

The previous work technique was applied using the 

SysML metamodel, with two generation policies and a 

set of coverage criteria. The generation policies were 

used to define the size of a test case, because the bigger a 

test case is, the more difficult to interpret it (Sen et al., 

2009). In addition, a bigger set of test cases increase the 

test effort and time, therefore, an automated 

environment, an analysis of the SysML metamodel and 

coverage criteria were used. 

The generation policies were applied to define how 

many elements compose a SysML model. Each SysML 

model was used to test the model transformation of the 

SyMPLES approach. With regard to the policies, they 

are described as follows: 

 

• (N to 1) policy: A limited set of SysML elements 

is inserted in the same diagram. Heuristics can be 

applied to define the N value. For example, each 

test case could group at most five of the 

possibilities from one specific type of relationship 

between two elements 

• (1 to 1) policy: One diagram for each new element. 

Using this policy it is easier to find out the cause of 

an error when it occurs, but it could increase the size 

of the set of test cases 

 

With regard to the input domain for the test case 

generation, the coverage criteria determined how 

much of the SysML metamodel was used. Also, in 

order to reduce the test case set, a strategy applied 

was to generate only elements that could be used by 

the transformation rules. For example, certain 

diagrams from the SysML language were not took into 

account in the SyMPLES model transformation. 

Therefore, these diagrams and elements were 

excluded. The result of these strategies was a 

reduction of the number of test cases and avoided to 

generate useless test cases. 

After running tests using the test cases generated 

and comparing the policies used, the effectiveness was 

analyzed. The effectiveness was calculated in terms of 

how many test cases were able to identify an error in 

the model transformation. Comparing the policies 

used, the effectiveness was about 18% (1 to 1) and 

22% (N to 1). 

A characteristic of the test case generation based on 

metamodel is the set of test cases are generic. Each test 

case is composed of a SysML model (and the expected 

result of the transformation), but this model is generic. 

This means it does not represent a real system 

specification, for example. This is not considered to be a 

problem, however, if the test could be more specific to 

the model transformation, it would improve the 

effectiveness of the test case set. 

The SyMPLES Approach 

SyMPLES can be divided into two parts: Domain 

engineering, which contains the SPL related activities, as 

variability management; and application engineering, 

composed of a model transformation. 

SPL in SyMPLES is specified with SysML models 

with stereotypes to variability management and for 

functional blocks. The transformation of SyMPLES can 

be applied on the configured SysML models to obtain 

corresponding Simulink models. 

SyMPLES uses profiling mechanism for creating two 

extension profiles of the SysML language, as follows 

(Silva et al., 2013): 

 

• The SyMPLES Profile for Functional Blocks 

(SyMPLES-ProfileFB) specifies the types of 

functional blocks by means of a set of stereotypes. 

These stereotypes provide additional semantics to 

the SysML blocks. Therefore, this profile helps to 

map SysML blocks to Simulink blocks 

• The SyMPLES Profile for Representation of 

Variability (SyMPLES-ProfileVar): Represents the 

variabilities of an SPL from a set of stereotypes and 

aggregate values to the elements of the SysML 

diagrams. Each product of the SPL is a SysML 

configured model 

 

In this approach two processes are defined to the SPL 

activities, as follows: 

 

• SyMPLES Process for Product Lines (SyMPLES-

ProcessPL) consists of activities related to SPL 

artifacts creation 

• SyMPLES Process for Identification of Variabilities 

(SyMPLES-ProcessVar) is based in the SMarty 

approach (OliveiraJr et al., 2010). It aims to support 

the SPL variability management, from variability 

identification to product configuration 

 

The functional blocks profile was created to support 

the model transformation in SyMPLES approach. This 

model transformation maps SysML elements to Simulink 

blocks. Each SysML model can be transformed to a 

Simulink model, allowing, for example, the simulation 

of embedded system specified. Therefore, Simulink 

models generated from this transformation are closer to 
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the system implementation. In addition, Simulink models 

can be used for code generation, provided by the 

MATLAB/Simulink tool. 

SysML to Simulink Model Transformation 

The model transformation of the SyMPLES 

approach is divided into three steps: (i) Configure a 

SysML model, (ii) run an ATL transformation 

(Jouault and Kurtev, 2005) and (iii) generate 

functional blocks, as shown in Fig. 1. 

Configure a SysML Model 

In this step, a SysML model with SyMPLES 

stereotypes must be configured. The model can be 

composed of four diagrams: Block Definition, Internal 

Block, State Machine and Parametric. The root diagram 

is the Block Definition, used to describe the main blocks 

of the system. The Internal Block represents the internal 

relationship of a block based on block instances, 

therefore one Internal Block diagram can be used for 

each main block specified in the Block Definition. The 

behavior can be specified in the State Machine diagram 

and the Parametric diagram specifies block constraints, 

values and properties. If a block will be used in the 

system, or if it is optional, then these variabilities must 

be resolved to configure the SysML model. 

The variabilities are specified in a Block Definition 

Diagram using variation points, defined in the SyMPLES 

approach. An example of the definition of an SPL for the 

Mini-UAV, used in this study, is presented in Fig. 2. 

In Fig. 2 three variation points are defined: 

Barometer, Servos and Camera. SyMPLES defines the 

variation point stereotype which means that it must be 

one Internal Block Diagram to specify such variability. 

The SysML model with SyMPLES stereotypes can 

be imported to the pure::variants tool (Beuche, 2012), 

which creates a Variant Model Descriptor (VDM). In 

Fig. 3 an example of a configured VDM is shown. The 

Feature Model in Fig. 3 shows three variabilities: Two 

options mutually exclusive for the Barometer sensors; 

two options mutually exclusive for the Camera; and two 

options for the Servos. The variabilities are resolved in 

this model, then, they are automatically reflected in an 

output SysML model. 

 

 
 

Fig. 1: SysML to Simulink model transformation, provided by SyMPLES approach 
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Fig. 2: Block Definition Diagram of the Mini-UAV (Fragal et al., 2013) 

 

 
 
Fig. 3: VDM Model representing the features of the Mini-UAV 

SPL, generated in pure::variants tool 
 

Execute ATL Transformation 

This step uses ATL rules to select relevant information 

about the SysML model, like element attributes, stereotypes 

and graphic data (i.e., element position and size). Each 

element with relevant information is stored in one XMI 

intermediary model. This intermediate transformation using 

an XMI intermediary model makes this process more 

flexible to deal with EMF-based editors. 

Generate Functional Blocks 

This step is implemented in Java and uses the XMI 
model produced in the previous step and the main file of 
the SysML model, known as UML file. The UML file 
must be used because it contains values that are 
referenced by the XMI model and to retrieve the 
SyMPLES stereotypes in the SysML model. In this step, 
a MATLAB script is generated and it represents the 

Simulink model. With its execution, the Simulink model 
can be visualized. 
The SyMPLES transformation process can be 

classified as a Model-to-Model (M2M) transformation, 

receiving as input models the SysML models with 

SyMPLES stereotypes. The SysML configured model is 

used as input to the transformation, producing an 

intermediary file (XMI), which is based on the Simulink 

metamodel (Biehl et al., 2010). The XMI file is an 

intermediate model. The final Simulink model is generated 

only after the “Generate Functional Blocks” step. 

SyMPLES Transformation Example 

An example of input model can be visualized in Fig. 

4. It is composed of a SysML Internal Block Diagram 

and its Block Definition diagram is the same as in Fig. 2. 

The Navigation block from the Block Definition 

Diagram is composed of a block “Yapa2”, which has the 

subsystem stereotype, defined in SyMPLES. This means 

that a Simulink subsystem block will be generated after 

the transformation. 

The obtained result after the execution of the 

transformation is an output model composed of a 

MATLAB script, known as M-File. Then, this script can 

be executed in MATLAB to produce the Simulink 

model. Figure 5 shows the Simulink model. 

The SyMPLES transformation can be complex to 

validate because its implementation is divided into two 

steps, each one designed in a different language. The first 

one used ATL language and the functional block generation 

was written in Java. In addition, the transformation uses the 

SysML and Simulink metamodels and reads stereotypes 

information from SyMPLES profiles when it transforms the 

input models. Therefore, it is important to take into 

consideration all of these concerns for the validation 

process of the SyMPLES transformation. 
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Fig. 4: Example of input model to the transformation of the SyMPLES approach. Adapted from Fragal et al. (2013) 

 

 
 

Fig. 5: Example of Simulink model generated by the transformation. Adapted from Fragal et al. (2013) 

 

In the previous work, a first attempt to validate the 

model transformation of SyMPLES was performed. The 

test case generation technique was based on the SysML 

metamodel. The test cases generated were generic 

because the only information used was the SysML 

metamodel and SyMPLES stereotypes. 

In this study, an alternative technique to test case 

generation is proposed. As the SyMPLES model 

transformation transforms models from SPL 

specifications, the main idea is to use an SPL to provide 

test cases for the model transformation. The details of 

the proposal evaluated in this case study are explained in 

the next section. 

Validation of MDE Transformations 

Approaches based on software testing are frequently 

used in industry and can be applied to validate MDE 

transformations (Fleurey et al., 2004). Two main types 

of testing can be applied: Black-box testing, or functional 

testing, in which the input models are compared to the 

output models after the transformation; and White-Box 

testing, or structural testing, in which the internal aspects 

of the model transformation are analyzed. 

As previously mentioned, a transformation can be 

written in different languages (e.g., ATL, QVT) and 

even common programming languages. In addition, 

transformations become more difficult to test when the 

same transformation is designed into steps, where each 

one can also be written in different languages, like the 

transformation of the SyMPLES approach. In these 

cases, a functional approach is more appropriate. 

Regardless the testing type, to validate model 

transformations at least three steps must be followed 

(Küster and Abd-El-Razik, 2006): Test Case Generation, 

in which the test case are generated accordingly to a 

coverage criterion; Oracle definition, which defines the 

expected result of a test; and Test Execution, to 

determine and analyze the testing results.  

In the Test Case Generation, two factors must be 

taken into account: The size of one test case and the size 

of the set of test cases. The size of one test case is the 

number of elements of the model. A test case with few 

elements facilitates both its comprehension and an 

efficient diagnostic when an error is found. However, 

decreasing the size of the test case may result in an 

increase of the set of test cases. When the size of the set 

of test cases is too big, the test becomes unfeasible 

(Fawaz et al., 2015). Therefore, reducing the size of the 

set is important to reduce the test time by using coverage 

criteria and generation policies (Fleurey et al., 2004; 

Küster and Abd-El-Razik, 2006). 
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Considering the Test Execution, Tiso et al. (2012) 
define two approaches to transformation testing: 
Checking static properties (static testing) and 
analyzing the execution (dynamic testing). Static 
testing refers to verifying properties in the output 
models, like checking whether certain attributes are 
present in the output model. On the other hand, 
dynamic testing refers to analyze the execution of the 
output model, if it is executable. 
The result analysis process from the execution of the 

tests in model transformations is also important. A 
transformation is usually based on rules that map 
elements from input models to the corresponding one in 
the output models. Thus, a wrong use of the 
transformation rules may lead to errors, classified as 
(Küster and Abd-El-Razik, 2006): 
 

• (Type 1) Metamodel coverage: The transformation 

rules have been implemented, but they are not 

sufficient to map all elements that the metamodel 

possess. An example is when the rules can only be 

applied to certain kinds of elements, thus the other 

kinds of elements are not mapped 

• (Type 2) Syntactically incorrect models: When the 

transformation rule cause generation of an output 

model that does not comply with the output 

metamodel 

• (Type 3) Semantically incorrect models: When the 

transformation rules are applied to an input model 

and the output model is produced syntactically 

correct, but it does not produce a model with the 

expected elements. For example, when an input 

model with elements is transformed but some 

elements are missing in the output model. Therefore, 

the output model is not a correct transformation 

from the input model 

• (Type 4) Ambiguity: The same transformation rule 

produces different results from the same input model 

• (Type 5) Errors due to incorrect coding: Included 

here all the other types of common errors and the 

codification errors. Examples are the incorrect 

primitive types (integer, floating point) and memory 

references out of bounds 
 

Test Case Generation Based on SPL Modeled 

with SyMPLES 

This section presents the test case generation based 

on SPL. The SPL must be modeled with SyMPLES in 

order to generate test cases for the model transformation 

of the SyMPLES. 

Due to the fact that SyMPLES has variability 

management, the possibility of generating test cases 

from the SPL was identified. Each product from a SPL is 

a SysML model with resolved variabilities, so it can be 

used as an input model to test the transformation. 

As the model transformation of the SyMPLES needs 

a product from a SPL (i.e., a model) to transform it into a 

Simulink model, a SPL can be used as the “input 

domain” to generate several products to test if the 

transformation can produce the expected results (i.e., the 

Simulink model). 

It is worthy to note that, in this case study, the focus 

is to test the SyMPLES model transformation, not the 

SPL. This paper will not perform any SPL testing 

techniques. A premise used in this case study is that the 

SPL must be modeled with SyMPLES approach and the 

software components of the SPL are already tested. An 

analogy that can be made is that the model 

transformation corresponds to the System Under Test 

(SUT) and the SPL corresponds to the input data domain 

of the SUT. Obviously, it is a reduced domain as it 

discards elements that are not used by the 

transformation. The SPL provides a family of SysML 

models as input to test the model transformation. 

However, the test case generation using SPL for model 

transformations has little research available. Possibly, this 

is due to the fact that this is a particular situation: An 

MDE transformation with specific characteristics needs 

validation and the proposal is to use an SPL as a source of 

test cases, not to perform SPL testing, but to test the MDE 

transformation in the context of the Embedded Systems 

and of the SyMPLES approach. 
According to Lochau et al. (2012), SPL testing has an 

issue about the number of products that can be generated 
from the SPL. This concept is the same when using an 
SPL as input domain to test the model transformation. If 
the SPL has too many products then the test could be 
difficult to manage. To alleviate this problem, a coverage 
criterion can be applied to the SPL to determine the 
maximum number of generated models for testing and 
therefore allowing partitioning the SPL. Other 
approaches can be used as well, for instance optimization 
algorithms (Fleurey et al., 2004) or search-based 
software testing (Anand et al., 2013). 
Therefore, to apply the test case generation based on 

SPL, to test the model transformation of SyMPLES, 

three definitions are made, as follows: 

 

• SPL must be modeled using SyMPLES. This is a 

requirement to the transformation itself, otherwise it 

will not produce any output model 

• Domain definition: The SPL is used to provide the 

test cases, therefore it is needed to perform a Feature 

Analysis in the SPL in order to calculate the 

maximum amount of products available in the SPL. 

This number reflects the size of the set of test cases 

• Coverage criteria: It is also needed to define the 

coverage on the test case set, in terms of the quantity 

of test cases. It is important to highlight that, if 

increasing the size of the test case set, then it could 

increase the test effort and time 
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The main idea of this technique is to generate specific 
test cases, related to the SPL used, because this model 
transformation requires SyMPLES stereotypes. Basically, 
in SyMPLES the specification of an SPL of a system will 
have blocks with stereotypes and its variabilities. The 
stereotypes define which Simulink block will be generated 
at the output model level. Therefore, using a real world 
SPL would be possible to generate specific test cases, to 
test at least the elements used and allowed to be 
transformed. Then, a test case will be created based on one 
product of the SPL. The calculation of the amount of test 
cases for the generation can be performed with the SPL 
Feature Analysis procedures. 

SPL Feature Analysis 

The Feature Analysis can be performed based on the 

Binary Decision Diagram (BDD). Its implementation is 

based on the SPLOT tool, in this study. Comparative 

studies in feature analysis showed that BDD is efficient 

in terms of execution time (Mendonca et al., 2009; 

Benavides et al., 2007). 
BDD uses a logic structure to represent a boolean 

function, composed of decision nodes and terminal nodes (0 
and 1). Each node represents a boolean variable and all the 
paths will lead to the boolean value 1 when the function is 
true. Connections will lead to left or right and correspond to 
the value 0 and 1, respectively. Figure 6 presents an 
example of a BDD and its corresponding Truth Table of a 
boolean function S. The function can be resolved using the 
values in the table to traverse the path in the BDD. 
The feature model of an SPL can be represented with 

a BDD. In an example, in an SPL with two mutually 
exclusive options to configure, the possible 
configurations can be defined equivalently using a BDD 

with an XOR function. Options for SPL features in 
SyMPLES are alternative_OR, alternative_XOR, 
optional and mandatory. In summary, SPL constraints 
are mapped to boolean functions in a BDD. 

Implementation Details 

The SPL-based test case generation was implemented 

in this case study using the Java language and an SPL 

specified using SysML with stereotypes of the 

SyMPLES approach. The test case generator allows two 

types of coverage criteria: Partial and total. They are 

based on the percentage of the maximum amount of 

products from the SPL, calculated using Feature 

Analysis previously presented. 

Figure 7 shows the process of SPL-based test case 

generation and the Test Execution. Initially, the SPL 

definition is taken as input. The SPL definition includes 

models specified according to SyMPLES and an XML 

specification. They are used to generate VDM models, 

allowing the configuration of each product according to 

the coverage criterion. In addition, the specification in 

XML format is used because it is compatible with the 

BDD feature analysis (based on SPLOT tool as 

mentioned before). 
A limitation of this implementation is that the VDM 

configuration must be manual, in the test case 
generation. Other SPL can be used for test case 
generation with the tool implemented in this case study, 
but it must be specified according to SyMPLES, 
otherwise it would need a tool to automate the 
generation of the products. The implementation created 
in this study is specific to the SyMPLES approach, but 
the concept would be the same for other types of SPLs. 

 

 
 

Fig. 6: BDD example 
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Fig. 7: SPL-based test case generation and run tests activity 

 

After the VDM generation, feature configuration 

must be performed, then a script must be executed to 

create the SysML models, according to the configured 

VDM. Such script is generated jointly with the VDM. 

Then, the SysML models generated by the script and 

corresponding to each VDM can be used as input to the 

transformation test. Each SysML model represents a 

configuration of the SPL (i.e., Config. 1 in Fig. 7). This 

configuration also the expected results of the 

transformation, but this is not part of the test case 

generator tool. 

In this case study, a table was used to map the input 

and output elements, using the transformation rules 

extracted from the SyMPLES documentation. For 

example, if an input model contains a determined 

element, in the output model a corresponding element 

(or elements) must be present. Therefore, it is possible to 

check if the transformation test has passed or not. 

It is worthy to highlight that if an error in the 

transformation is identified (for example, in the ATL 

step of the model transformation), then the second step 

cannot be tested because there is no output model from 

this step. This scenario is showed in the reports of Fig. 7. 

If an error is detected in the Run Tests activity, the 

transformation will not generate the output model. This 

scenario is not a problem, because the main objective of 

a test case is to find an error in the transformation. 

Static Test 

The static test is basically composed of the execution 

of model transformation using test cases generated and 

analyzing its results. The execution of the tests aims to 

run the transformation in a suitable environment. Then, 

one or more intermediary models or output models can 

be produced, but only if the transformation executes as 

expected, without any execution errors. 
It is important to highlight using proper tools to 

automate the execution tends to decrease the test time 

and facilitate the result analysis. The test case generator 
implemented in this case study also generates an ANT 
script to run the tests automatically. 

Dynamic Test 

Dynamic test can be applied if the output models 

produced by the transformation are buildable or 

executable (Tiso et al., 2012). If the output models do not 

execute correctly, then the transformation was not able to 

generate them as expected. Therefore, the dynamic test 

was included to provide a higher level of validation. 

To automate the dynamic test, a MATLAB script was 

used, developed in previous work. The script executes 

each output model using the feval command. If an error 

occurs, it is stored in a text file with prefix 

logDynamicTest. The following information composes 

the log file: Error number (or count), the name of the 

output model, error message and the line number. This 

information is needed to help to find the cause of the 

error in the model. Finding the cause of an error often 

requires knowledge of its implementation. 

Validation of the SysML to Simulink Model 

Transformation 

In this section, the case study scenario is presented. 

The test case generation based on SPL was applied to the 

model transformation of SyMPLES. 

Hypothesis of this Case Study 

In this case study, the hypothesis is described as follows: 

 

• The test of the model transformation of SyMPLES 

using an SPL modeled with SyMPLES is more 

specialized to find errors compared to a metamodel-

based technique (of test case generation) 
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In other words, an SPL-based technique would allow 

finding more errors in the transformation with fewer test 

cases generated, when compared with a metamodel-

based technique. The activities performed in this case 

study are described as follows. 

Activities Performed 

Three main activities were performed to validate 

the transformation of the SyMPLES approach: Test 

Case Generation, Test Execution (Run Tests) and 

Result Analysis. 

As previously mentioned, for the validation of the 

SyMPLES transformation the Test Case Generation by 

SPL was performed. The SPL used as input to the test 

case generation was the Mini-UAV specification 

presented in Fig. 2 and 3. An analysis is shown in Fig. 

8 related to the variability “Barometer” and “Servos”. 

The first variability shows two mutually exclusive 

options: BPM085 and MS5611, mapped to the BDD as 

a XOR function. The “Camera” variability is also 

mapped as a XOR function and the “Servos” variability 

is mapped as an OR function. In Fig. 8, there are two 

paths that lead to 1-terminal to the XOR structure and 

three to the OR structure. 

The result of the SPL analysis and considering all of 

the variabilities is a maximum amount of twelve possible 

configurations: Two for the Barometer, combined with 

two for the Camera and three for the Servos, as shown in 

Table 1. Therefore, twelve SysML models can be 

generated as products to test the model transformation. 

Table 2 shows the results from generating test cases 

using this Mini-UAV SPL. Using one coverage criteria 

will define how much SPL products (in this case SysML 

models) will be tested in the transformation. The last 

column of Table 2 shows the quantity of errors found 

when the first step (Step 1: ATL transformation) of the 

model transformation was tested. 

Twelve products were generated using the total 

coverage criterion. Each product is a SysML model 

composed of one Block Definition, Internal Block and State 

Machine Diagrams and then used to test the transformation. 

Then, each model associated with the expected result of the 

transformation composes the test case. 

It is worthy to note that the Run tests activity was 

divided into two steps. This is due to the fact that the 

transformation is structured in two steps: ATL 

transformation (Step 1) and the Generation of Functional 

blocks, written in the Java language (Step 2). Table 3 

presents an example report, related to the results of the 

test of Step 1, related to the total coverage criteria. The 

test cases were named variant because each one is a 

variant configuration of the SPL. 

 
Table 1: Total amount of possible configurations of the SPL 

Variability Function Possible configurations 

Barometer BPM085 XOR MS5611 2 

Camera RGB XOR Infrared 2 

Servos Aileron OR Rudder 3 

Total (Combined) - 12 

 
Table 2: Coverage criteria compared in the test case generation 

Coverage Number of generated products Percentage of SPL products covered (%) Errors found 

Total 12 100 11 

Partitioned 9 75 8 

Partitioned 6 50 5 

Partitioned 3 25 2 

 

Table 3: Results of the test of Step 1 of the transformation, after the execution of the test cases from the Total coverage criteria 

Test case Result Error found 

Variant0 Error org.eclipse.emf.ecore.xmi.UnresolvedReferenceException 

Variant1 Error org.eclipse.emf.ecore.xmi.UnresolvedReferenceException 

Variant2 Pass - 

Variant3 Error org.eclipse.emf.ecore.xmi.UnresolvedReferenceException 

Variant4 Error org.eclipse.emf.ecore.xmi.UnresolvedReferenceException 

Variant5 Error org.eclipse.emf.ecore.xmi.UnresolvedReferenceException 

Variant6 Error org.eclipse.emf.ecore.xmi.UnresolvedReferenceException 

Variant7 Error org.eclipse.emf.ecore.xmi.UnresolvedReferenceException 

Variant8 Error org.eclipse.emf.ecore.xmi.UnresolvedReferenceException 

Variant9 Error org.eclipse.emf.ecore.xmi.UnresolvedReferenceException 

Variant10 Error org.eclipse.emf.ecore.xmi.UnresolvedReferenceException 

Variant11 Error org.eclipse.emf.ecore.xmi.UnresolvedReferenceException 
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Fig. 8: Analysis of “Barometer” and “Servos” variability 

 

 

 
Fig. 9: Results in test execution considering step 1 of the 

transformation of SyMPLES 

 

Several test cases showed the presence of errors, in 

the tests of Step 1 of the transformation. Figure 9 

presents a comparison between the coverage criteria 

and provides an analysis of the type of error found. 

The error rate is calculated based on the amount of 

errors found divided by the amount of test cases. The 

error rate by type is calculated based on the quantity 

of error types divided by the amount of test cases. 

Increasing the number of test cases resulted in a 

gain in the number of errors found (upper curve in the 

graph, Fig. 9). In other words, the blue curve 

represents the variation of the number of test cases 

that showed an error between the coverage criteria. 

The coverage criteria applied, showed in Fig. 9, was 

the types classified as partitioned or total. For an 

example, in the “Partitioned 25” almost 70% of the 

test cases showed an error. 

Although the results showed a high error rate, only 

one type of error was detected. The type of error 

identified was the Type 5 of the classification presented 

in the Fourth section. This is showed by the bottom 

curve in the graph. Increasing the number of test cases 

did not result in the detection of other types of errors 

(Fourth section, Validation of Model Transformations). 

Therefore, in this case, the “Partitioned 25” criterion is 

more efficient because its error rate by different type is 

higher than others, about 33%. 

All the errors identified are related to unresolved 

references of elements in the input models 

(UnresolvedReferenceException). Therefore, they 

were classified as type 5: Common coding errors. 

Only after the correction of the errors, the test was 

executed again and no error was found in the 

transformation. Without errors, the intermediary 

models were successfully generated. 

With the intermediary models generated by the 

transformation, the test of the second step of the 

transformation (Step 2: Generate Functional Blocks) was 

performed, but no error was detected, which means that 

all of the output models were generated. 

Then, the validation proceeds with the dynamic 

test. Each output model was executed with the 

dynamic test script and no error was identified, 

allowing the visualization of the Simulink models, 

ending the Run test activity. 

Comparing Results 

Summarizing the results from this case study, the 

proportion of errors found by test case generated 

obtained was about 92%, considering total coverage of 

the SPL. This means the effectiveness of the test case 

set: 11 from 12 test cases were useful to find errors. 

However, these errors are related to common coding 

problems. No error was found in the dynamic test. In 

addition, errors of Type 1-4 (Fourth section), which are 

specific of the MDE context, could not be found. 

Due to the specific nature of this case study, which 

involves the test of model transformation of the 

SyMPLES approach and test case generation from an 

SPL specified with SyMPLES, it is hard to compare 

results to evaluate the generation technique. 
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However, despite the differences in the techniques, 

some concepts are similar when generating test cases. 

Sen et al. (2009), for an example, presented a test case 

generation algorithm based on the metamodel. Using a 

metamodel-based technique, the test case set generated 

is more generic, normally bigger and they also applied 

coverage criteria to minimize the test size, but 

including mutation factors and other strategies. The 

mutation factors refer to how much distinguish are the 

test cases in the test case set. A higher mutation factor 

could increase the probability of the test case find an 

error (Sen et al., 2009). 

On the other hand, using an SPL-based technique the 

generation is specific to the possible configurations of the 

products. Therefore, the mutation between the test cases is 

limited to the quantity of the variabilities in the SPL. 

A simple approach to analyze the mutation score 

between the test cases, in this context, can be done as 

follows: divide the sum of the variations by the sum of 

the core elements of the SPL. Considering the SPL 

specification, composed of a set of diagrams (including 

the diagram presented in Fig. 2), the sum of core 

elements in this case study is 7 blocks (in the block 

definition diagram) plus 21 blocks (in internal diagrams) 

(Fragal et al., 2013). 

From such 28 blocks obtained from the specification, 

the variabilities are located on only 6 blocks and thus the 

mutation score in this context would be about 21%. In 

addition, as the XOR variabilities require one block only 

in each product, the changes fall, in practice, to 4 blocks 

with ~14% mutation score. Comparing to the metamodel-

based technique (Sen et al., 2009), the mutation score 

achieved is up to 87%. This can be explained due to the 

generic and big test case set in this technique. 

Previous Work 

Before presenting the comparison with the previous 

work, it is worthy to mention that the same version of the 

SyMPLES transformation was used. Table 4 shows a 

summary of the results compared with previous work 

results. The coverage criterion compared is the total 

coverage, in both techniques. The errors of Type 5 were 

found applying the test case generation based on the SPL 

and errors of Type 3 were found using generation based 

on the SysML metamodel. 

In order to compare the effectiveness of the test case 

sets in both techniques, the graph in Fig. 10 is presented. 

The graph leads to the conclusion that the generation 

based on SPL was more efficient in the validation of the 

transformation. However, only errors of Type 5 were 

found, which are classified as common coding errors. 

On the other hand, the generation based on 

metamodel was capable to find errors of Type 3, which 

are more related to the development of the MDE 

transformations. In this case study, the test case set 

effectiveness is higher with the SPL-based technique, but 

the quantity of errors found is higher with the metamodel 

based technique. 

It is worthy to highlight that errors of Type 4 

(Ambiguity) are difficult to find using black-box testing 

approach and errors of Type 2 require information from the 

output metamodel, although they can be detected using 

dynamic testing when applicable (Tiso et al., 2012). 

Threats to Validity 

A threat to validity identified is that the SPL used 

was relatively small (only 12 potential products) in 

this case study and domain specific, related to the 

Embedded Systems context. Using total coverage on 

the SPL was possible, but this coverage could be 

difficult to apply. For instance, an SPL with n features 

can yield up to 2n individual systems (or products) 

(Classen et al., 2011). Examples of bigger SPLs 

include: Linux 2.6.32.2 kernel, with 6052 features 

(Peng et al., 2013) and Eclipse SPL, 1024 features 

(Johansen et al., 2012). 

 

 
 
Fig. 10: Comparison between SPL-based and metamodel-

based techniques, regarding the effectiveness of the 

test case set generated 

 
Table 4: Comparison of results with the previous work (Giron et al., 2017) 

Generation technique Generation policy Maximum amount of test cases Type of error found Errors found 

SPL-based - 12 Type 5 11 

Metamodel based 1 to 1 184 Type 3 33 

 N to 1 46 Type 3 10 

18% 
  
22% 

  

92% 

  

Metamodel 

(1 to 1) 
  

Metamodel 

(N to 1) 
SPL 
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Conclusions, Contributions and Future 

Work 

The validation of MDE transformations is required 

for quality assurance. In this study, a case study for 

validation based on the functional test of a model 

transformation was presented. An SPL-based technique 

was used for test case generation and made it possible 

to identify errors in the transformation, in a systematic 

way, contributing to the quality of the transformation. 

The main contribution of this case study is to 

provide an evaluation of the technique of the SPL-

based test case generation, in the context of MDE 

transformations. A motivation to the case study was 

the fact the test cases generated would be more related 

to the transformation of the SyMPLES approach, 

which uses SPL concepts. The hypothesis suggested 

that test would produce better results, compared to 

other test case generation techniques, like the 

metamodel-based. However, with specific test cases 

generated, it was only identified one type of error 

(Type 5). Although this technique obtained a higher 

rate of errors identified in the transformation, 

supporting the hypothesis proposed, more evidence 

would be necessary to compare and evaluate SPL-

based and Metamodel-based techniques. 

Another contribution is the validation of the 

SyMPLES model transformation. The provided 

information and the tools developed helped to improve 

the model transformation. 

The tools developed in this study aimed to automate 

the validation activities; however, they are specific to the 

transformation under test. For example, the test case 

generation tool can be applied to SPL specified with 

SyMPLES stereotypes. In general, the concepts are 

generic but the tools developed are specific to the 

transformation under test. The high variety of 

technologies related to MDE transformations can make it 

difficult to reuse such tools. 

Directions for future work would include the 

investigation of methods of structural testing in the 

validation of the transformation of the SyMPLES 

approach. Combining with structural testing the 

validation level could be higher. 
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