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Abstract: The finite element method is a very reliable and precise technique 
for solving partial differential equations in three-dimensional domains, with 
relevant applications in several areas. However, 3D simulations by FEM 
require computer programs for solid modeling and automatic mesh generation 
and there are few examples of open source codes available and dedicated to 
these tasks. Unfortunately, these open source codes are not usually conceived to 
operate together in an integrated fashion, showing distinct life cycles and 
different origins, which may result in contradictory specifications. In this study, 
a method is proposed to integrate solid modeling and automatic mesh 
generation with focus on open source codes and how the quality of FEM 
simulations can be improved by the improvement of the mesh. The method was 
structured in desired features for the solid construction and in integration 
strategies for an automatic mesh generation. The approach was tested in 
nontrivial domains and with known relevance for studies focused on 
computational electromagnetics. Meshes were generated with millions of 
tetrahedral elements and the results were compared to the quality values 
commonly discussed in literature focused on FEM. Complex geometries were 
meshed in a few seconds, with consistent values of aspect ratios (more than 
90% of the tetrahedral elements were constructed with values at most 5) and 
dihedral angles (the values were bounded between 5.9 to 166.7°C, with a 
peak value around 90°C). Finally, in order to show the relation among highly 
refined meshes and quality criteria which can be explored by proposed 
method, the Laplace's equation was simulated by FEM in order to analyze the 
equipotential lines of a parallel-plate capacitor. The results show how the 
quality of a simulation can be improved, especially concerning the 
increasing number of tetrahedra in the mesh with proper aspect ratio. 
 
Keywords: Delaunay Tetrahedralization, Solid Modeling, Open Source 
Codes, Integration Strategies, FEM Applications 

 
Introduction 

The Finite Element Method (FEM) has become, in the 
last five decades, a well consolidated technique for the 
treatment of partial differential equations with extensive 
applications in computational electromagnetics, 
structural analysis, heat transfer, fluid mechanics of 
compressible and incompressible flows. The whole 
potential of the FEM was not entirely explored by 

researchers yet. One of the reasons for this, is that the 
more complex is the geometry of the problem domain, 
the more sophisticated are the software tools for 
geometric modeling and mesh discretization required by 
the FEM. In this context, several papers have been 
addressed the topic of mesh generation, for both 2 and 3-
dimensional elements, in different areas (Cacace and 
Blöcher, 2015; Leng et al., 2013; Wang and Yu, 2012; 
Chen and Biro, 2012; Wall et al., 2012; Zhao et al., 2012; 
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Bracken et al., 2012; Ecabert et al., 2011; Zhang and 
Kumar, 2011; Ho et al., 2011; Krebs et al., 2010;       
Sun and Chaichana, 2010; Milasinovic et al., 2008; 
Barauskas et al., 2007). In these studies, strategies of 
algorithms and software tools for domain construction 
and mesh generation, well as the performance and the 
availability of the tools were present issues.  

In many FEM applications, almost all problem 
domains can be described in terms of geometric design 
parameters as dimensions, embrace ratios, among other, 
being adequate to be reproduced by applying a 
Computer-Aided Design (CAD) tool. The necessary 
commitment to represent the complex geometries of the 
involved domains is fundamental, which requires 
sophisticated resources being sometimes under 
development in specific tools for geometric modeling 
and mesh discretization (OpenFOAM Foundation, 
[Online]; EnGrid, [Online]). Therefore, a CAD tool and 
a reliable automatic mesh generator, both integrated in 
an user friendly environment, are essential in a FEM 
simulation process. Nowadays, a typical integrated 
software tool for three-dimensional domain construction 
(solid modeling) and finite element meshing may have a 
time development cycle of more than 10 years 
(Schneider et al., 2016; Geuzaine and Remacle, 2009) 
and frequently there are exceptions to allow linking with 
other mesh generators. 

The Delaunay algorithm, which is also applied into 
our approach, is able to generate meshes with high 
degree of topological complexity, even for problems in 
which the geometric domain is not regular and can be 
properly described only by surface smoothing 
techniques, which is common in biomedical modeling 
(Wagner et al., 2016; Wang and Yu, 2012; Wall et al., 
2012; Ecabert et al., 2011; Sun and Chaichana, 2010; 
Milasinovic et al., 2008; Barauskas et al., 2007). 
However, in many application contexts these difficulties 
might be avoided, since the geometric domains are easily 
reproduced by the classical methods of solid modeling, 
as in problems of computational electromagnetics, for 
instance (Specogna, 2015). The open source codes 
developed for these tasks are commonly conceived as 
separated products for the geometric modeling and mesh 
generation steps. These open source codes can apply 
different requirements which make difficult their 
integration in a single package. Moreover, this task can 
discourage users involved in problems for FEM 
applications due to the time required to associate 
software packages developed with different standards. 
Therefore, the conclusion is that strategies and tools for 
integration of open source solid modelers and mesh 
generators are relevant in the context of FEM 
applications. For instance, some preliminary approaches 
were described by Pavarino et al. (2013), Pavarino et al. 
(2014) and Neves et al. (2015), considering tridimensional 
elements for applications in medicine. However, in these 

strategies the computational simulations were not 
performed with the tetrathedral meshes. 

In this study, we described a proposal based on 
strategies for the 3D solid construction and script 
capable of providing the desired integration with an 
automatic mesh generator. The main contributions 
concern in the following two aspects: (1) The whole 
access to an integrated environment of open source 
codes, providing averages to perform the entire pre-
processing step (solid modeling and mesh generation) of 
a FEM simulation problem; (2) FEM simulations using 
the proposed method to show the improvement of the 
results, accordingly to the improvement of the mesh, 
considering the increase number of tetrahedra and the 
quality of the aspect ratio. In the next sections, 
arguments are presented to justify the choices, as well as 
a discussion concerning the proposal for software 
integration, performance tests in realistic application 
domains and some performed simulations.  

Mesh Generation Techniques: An Overview  

In order to apply the FEM, the problem domain should 
be continuously divided into sub-domains with simple 
geometry (triangles, squares, cubes, tetrahedral and 
others), named finite elements, which must be connected 
without overlapping regions or failures to compose a valid 
mesh (Lo, 2012; Nunes et al., 2011; Owen, 1998; Ho-Le, 
1988). Thus, the automatic mesh generation may be 
classified into two main groups, structured mesh 
generation and unstructured mesh generation (Li et al., 
2016; George et al., 2004; Mavriplis, 1995). Automatic 
methods for structured meshes employ a construction 
technique which follows an interconnection of 
parametrization curves, with these ones describing the 
boundary domain. In this group are the methods of 
algebraic grid generation, elliptic grid generation and grid 
marching, based on algebraic constructions or in 
differential mappings (Shaw and Weatherill, 1992; Cook, 
1974). This approach is usually limited by domains which 
are not much complex. In the second group, automatic 
methods for unstructured meshes do not depend on the 
overall domain geometries, being able to control the local 
meshing density, as well as the transition smoothness 
between regions with distinct mesh densities (Guo et al., 
2015; George et al., 2004; Mavriplis, 1995).  

Since the methods in the second group are also more 
easily applied to the domains with more complex 
geometries, this group was chosen. The method was 
defined among the following techniques: hierarchical 
spatial decomposition using quadtree and octree based 
methods, advancing front with front propagation method 
and the Delaunay algorithm (Ghisi et al., 2014; Ray and 
Adviser-Dey, 2006; Marcum and Weatherill, 1995; 
Weatherill and Hassam, 1994; Lo, 1985; Yerry and 
Shephard, 1984; Nguyen-Van-Phai, 1982). Each choice 
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has some advantages but also drawbacks. The hierarchical 
spatial decomposition is a technique that partitions a 
domain into variable-sized blocks based on quadtree or 
octree data structures. This approach is unusual for 
modeling domains with sharp angles (Yerry and 
Shephard, 1984; 1983). The advancing front algorithms 
work with the insertion of new elements into a mesh by 
following geometric constraints, which are given as input 
of the process. The advantage in this case is a better 
control of dimensions and classification of the elements in 
a tetrahedral mesh, but at the same time the algorithm 
complexity is increased, due to the verification tests for 
optimal point insertions (Lo, 1985; Nguyen-Van-Phai, 
1982). The Delaunay algorithm is related to a geometric 
structure introduced in 1934 by Delaunay (Si and 
Shewchuk, 2014; Ray and Adviser-Dey, 2006; Marcum and 
Weatherill, 1995; Weatherill and Hassam, 1994), which is 
the Delaunay triangulation of a vertex set. The Delaunay 
algorithm brings many advantages for the automatic mesh 
generation, since it needs only the coordinates of the 
vertex set to work properly, not requiring orientations or 
detailed information about the solid structure. However, 
this algorithm has also some drawbacks, especially in 3D 
domains. For instance, when there are holes in the solids, 
the Delaunay tetrahedralization of a given vertex set may 
not conform to the original boundaries of the volume 
that vertex set is intended to describe. In some 
circumstances, zero volume elements may be generated 
and the software should include tests to detect these and 
other possible mesh integrity violations.  

The decision for the Delaunay algorithm, which is the 
method implemented in the TetGen package, was 
conditioned not only by its general characteristics, 
especially the non-local properties of the 
tetrahedralization, but also by the availability of open 
source packages implemented on it, what is the main 
factor in the context of the proposed method.  

Methodology  

The proposed method was organized as follows: in 
subsection Open source packages are some definitions 
concerning the packages and the arguments to justify the 
corresponding choices; in subsection Solid construction 

are the required features for solid construction in order to 
guarantee the integration of the automatic mesh 
generator with the Delaunay algorithm, independently of 
the considered geometry complexity; in subsection 
Application of the integration strategy are the integration 
strategies and the script developed to obtain the 
tetrahedral meshes; in subsection Application context are 
the solids in order to validate the proposed method, 
considering the complex geometries with known 
relevance in studies focused on computational 
electromagnetics; in subsection Performance evaluation 

measures are the metrics used to evaluate the quality of 

the resultant meshes, such as aspect ratio, meshing time 
and dihedral angles; and, in subsection Simulation and 

result analysis the Laplace's equation was simulated by 
FEM in order to show a practice application of the 
proposed method and how the quality of a simulation 
can be improved by the improvement of the mesh. Each 
step was described in detail in the next subsections, 
considering an applied research methodology.  

Open Source Packages  

There are few examples of open source packages 
available and dedicated to the tasks of solid modeling and 
3D mesh generation. The package Blender (Blender 
Foundation, [Online]) was selected to perform the solid 
modeling step in the proposed method. This package is an 
integrated system of software tools with resources for 
modeling and animation of solids with high quality and 
complexity. Capabilities are also provided to export and 
import objects in different formats. The Blender package is 
available under a double License (BL/GNU general public 
license) and some parts of the code also support the Python 
as the programming language for scripts, under a Python 
Software Foundation License. Thus, in the proposed 
method, the solid structures were modeled by applying the 
package Blender and Python was employed to export data 
about boundaries and surfaces, in a convenient format, 
which were given as input to the mesh generation package.  

The TetGen package (Si, 2013) was selected for 
automatic generation of tetrahedral meshes. This 
package uses the Delaunay tetrahedralization for the 3D 
mesh generation. Although there are different methods 
for generating three-dimensional meshes, the Delaunay 
algorithm (Si, 2013; Ho-Le, 1988) is one of the most 
popular and efficient methods (Lizier et al., 2008;  
Buell and Bush, 1973), being applied to automatic mesh 
generation of three-dimensional complex domains  
(Buell and Bush, 1973; Lizier et al., 2008; Ho-Le, 1988; 
Si, 2013). Thus, just as Blender, TetGen is an open 
source software and was considered for the integration 
with the Blender solid modeler. TetGen is available 
under MIT License and is maintained by the research 
group called Numerical Mathematics and Scientific 
Computing, Weierstrass Institute for Applied Analysis 
and Stochastics (WIAS), Berlin, Germany. 

The approaches were implemented using the software 
Blender 2.59 and the mesh generator TetGen 1.4. In 
addition, Python language was used for writing the 
proposed scripts.  

Solid Construction  

The proper representation of the geometry of the 
problem domain can define the success of the mesh 
generation step. Thus, the method was based on three 
general recommendations to represent a solid with the 
package Blender. The first two recommendations ensure 
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a proper construction of the solids to be meshed, avoid 
possible interruptions or warnings and assure appropriate 
construction of tetrahedral elements by Delaunay 
algorithm. The third recommendation can be applied to 
minimize the formation of flatten elements.  

First Recommendation 

Each solid can be constructed with quadrilateral faces 
in order to reduce the number of geometrical elements 
(vertices and edges) required for representing a solid. 
The internal angles of a face comprise values in the 
interval from 30 to 160 degrees approximately (Fig. 1), 
in order to represent acute angles in boundaries. The 
range was defined considering the values which provided 
highly refined meshes with the desired quality during the 
mesh generation and similar conditions presented by 
Watson (1981), George et al. (1991), Caendish et al. 
(1985), Schroeder and Shephard (1988) and Baker 
(1989). It is important to remark that, sometimes, 
boundary angular deviations of great magnitude may be 
necessary in the solid face, where the second and third 
recommendations should be applied. 
 

 
 
Fig. 1: Structured faces used in the solid representation. In 

highlighted face is shown the nodes and the internal 
angles, limited to values in the interval from 30 to 160°C 

 

 
 
Fig. 2: Solid used to show the smoothness in the transition 

between different boundary regions: this 
recommendation was obtained by increasing the node 
and face densities along the curve region 

Second Recommendation 

The vertex number can be increased in order to 
discretize borders and transition of direction of an element 
(Fig. 2). This strategy allows a better representation and 
smoothness of borders, nontrivial regions and transition of 
direction. This strategy helps to construct consistent 
elements in the mesh generation step.  

Third Recommendation 

This is a property, which complements the second 
recommendation and can be applied when the internal 
angles of faces do not comprise values from 30 to 160 
degrees. Thus, a region can be successively refined, 
dividing existing faces and insert new vertices, to 
accomplish this interval. Each “subdivide surface” is 
applied on selected edges and faces by cutting them in 
half, adding the necessary vertices and subdividing 
accordingly the faces involved. For instance, when four 
edges of a face (a quadrilateral face) are selected, the face 
is subdivided into four smaller quadrilaterals (Fig. 3). 
Therefore, a new distribution is obtained and can assure 
more consistent tetrahedral elements. This approach may 
be justified for instance in Watson (1981), George et al. 
(1991), Caendish et al. (1985), Schroeder and Shephard 
(1988), Baker (1989). 

Notice, however, that a limitation is imposed here by 
precision factors. The successive refinements may generate 
faces with very small areas, what can start a detection of 
superimposed vertices by the Delaunay algorithm. These 
regions with transition of direction can occur after some 
successive refinements. For instance, transition of direction 
after three successive refinements is shown in Fig. 4. 

The proposed recommendations ensure a finite 
number of points of a domain Ω to represent in an 
approximate way, however acceptable, the solid 
boundary, its shell and its inner region. Each obtained 
point set was given as input for the Delaunay 
tetrahedralization, which was performed through the 
approach described by Si and Gartner (2005). The 
automatic mesh generation was possible considering a 
simplex K as a sorted vertex list Pi, where 1 ≤ i ≤ d + 1 
and d the dimension of Euclidean affine space � 
(Weatherill and Hassam, 1994; Schroeder and Shephard, 
1988; Baker, 1989). Thus, the determinant det (K) of 
order d +1, was given by Equation 1:  
 

( )

1 1
1 1

2 2
1 1

1 1

1 1

det
d

d

d d

d

P P

K P P

P P

+

+

+

=

L L L

L L L

L L L

M L L L M

L L L

 (1) 
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i
P was the coordinate j of point Pi to 1 ≤ i ≤ d +1 

and 1 ≤ j ≤ d.  
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 (a) (b) 
 
Fig. 3: Solids used to illustrate the third recommendation. The refinement process for a single face is shown in (a) and the 

corresponding overall result in the solid is presented in (b) 
 

 
 
Fig. 4: Result after three successive refinements, which were 

applied in the original solid shown in Fig. 2. The refined 
region presents a higher density of separation lines 

 
Therefore, if the det(K)>0, K is positively oriented and, 

if det(k) = 0, K is degenerate and all its vertices belong the 
same hyperplane (George and Hermeline, 1992). The 
proposed recommendations in this study ensure K 
positively oriented to obtain the desired tetrahedralization. 
The tetrahedralization was extended as a ζ set of 
simplexes which were achieved from a domain Ω used as 
input. This approach was possible considering: the 
intersection of two elements of ζ was empty or reduced to 
one face; the union of the elements of ζ was equal to Ω; 
the elements of ζ were topologically regular, but not 
necessarily equal; and, the incidence of elements was 
greater in the regions of domain Ω where this was 
necessary. The optimal number of vertices or tetrahedral 
elements depends on some parameters, such as relation 
between the volumes from the domain and tetrahedra. 
For instance, considering a bound enforced to the 
maximum volume on every tetrahedron of the mesh and 
reducing this bound, the results were meshes involving 

more elements (vertices and tetrahedra). This process is 
named as mesh refinement. Complementary details 
concerning the maximum tetrahedron volume constraint 
are also discussed by Shewchuk (1998) and Si (2013). 

Application of the Integration Strategy  

A simplex or complex solid constructed through 
Blender is stored in its native file format as .blend. The 
information concerning each constructed solid is stored 
in this kind of file container, designated as a datablock. 
Datablocks are classes of data structures of the type 
object, mesh, material, camera, texture, lamp and others. 
In a simple or complex solid, several datablocks may be 
involved. For instance, an object datablock contains a 
pointer to a geometric datablock, such as mesh, a matrix 
which stores the transformation properties, as location, 
rotation, scale and dimension and optionally pointers to 
other datablocks. Mesh datablock stores information 
about vertices, edges, faces, holes and vertex groups, 
which are achieved from the operations assigned by an 
object datablock. However, linear transformations 
applied over vertices are contained in mesh datablocks. 
A material datablock contains information about colors, 
specularity and translucency, which can be associated to 
a mesh datablock. In this case, an object datablock is the 
parent data structure of another datablock, which in its 
turn can have some children data structures and so on, 
resulting in a hierarchy scheme or tree. In Fig. 5 are 
presented the structures described for material, mesh and 
object datablocks, based on Blender architecture.  

The TetGen input was written in ASCII pattern, with 
four separate parts. The first part is an indexed list 
containing the point coordinates, which represent the 
solid geometry as nodes or solid vertices. The second 
part is a list of solid faces, each face being structured by 
a sequence of connected points, the face components. 
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The indexes in the first part of the input file allow the 
identification of the nodes. The third part contains a list 
of volume holes. These holes are identified by points 
inside them. The TetGen package initially forms the 
constrained Delaunay tetrahedralization and then creates 
inner spaces by removing properly the tetrahedral inside 
the mesh, following the boundaries of holes belonging to 
the third part list. The fourth part is not mandatory and may 
contain a list of attributes or constraints which can be 
applied to the mesh of a given domain sub-region. It is 
possible for the user to specify the maximum tetrahedral 
volume, which is desirable for a given region, in this 
optional fourth part. In Fig. 6 is shown a typical TetGen file 
input. 

The desired integration was accomplished by Python 
script, which was developed to integrate the file 
structures previously described, such as the 3D domains 
generated by Blender with the input data structures of the 
mesh generator TetGen. This script comprises code 

segments developed to access the material, mesh and 
object datablocks. The Python script actions into these 
datablocks were controlled by four iterative structures. 
These structures read and translate conveniently the 
information contained in datablocks, which describes 
vertices, faces, holes and attributes of the domain. The 
processed information was written in an ASCII file 
(.poly), according to the format required by TetGen 
(Fig. 6). It is important to notice that a new 
contribution is presented here, an algorithm capable of 
providing the meshing of mixed solids: the proposed 
method automatically executes the process for each 
member in the group of existing solids, updating the lists 
and generating a single final ASCII file (.poly). In Fig. 7 
is shown the integration strategies written in Python 
language. Also, in Fig. 8 is shown the hierarchy scheme 
(material, mesh and object datablocks) using a simple 
cube as example. The .poly file format is given from the 
integration strategy application.  

 

 
 

Fig. 5: A representation of the structures contained in material, mesh and object datablocks 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Fig. 6: A Typical file structure required as input by the TetGen package (Si, 2013) 
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Fig. 7: Proposed method used to export a group of existing solids and generates a .poly file format 
 

                 
 (a) (b) 
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(c) 

 
Fig. 8: Cube (2×2×2) without material is shown in (a), the corresponding hierarchy scheme for datablocks is shown in (b) and the 

.poly file format obtained with the proposed method is shown in (c) 
 
Application Context  

The proposed method was tested considering solids 
with complex geometries: “C-type” magnet, turbo-
compressor device, Klein bottle and an electrical 
motor with supplementary permanent magnets. These 
choices were motivated by the several studies focused 
on computational electromagnetics considering 
similar geometries (Li et al., 2016; Chen and Biro, 
2012; Wall et al., 2012; Zhao et al., 2012; Bracken et al., 
2012; Zhang and Kumar, 2011; Ho et al., 2011;  
Chang et al., 2010; Jang et al., 2007; Cho et al., 2006).  

Performance Evaluation Measures  

Several quality metrics have been used to measure 
the quality of tetrahedral meshes (Chen and Chen, 2016; 
Paille et al., 2015; Leng et al., 2013; Misztal et al., 2009; 
Si, 2013), such as the dihedral angles, aspect ratio, 
number of tetrahedral elements and meshing time. These 
features can significantly affect the convergence and 

stability of numerical algorithms such as the FEM 
(Shewchuk, 2002; Babuvska and Aziz, 1976). Therefore, 
the obtained meshes with the proposed method were 
tested against these quality metrics.  

The dihedral angles are the angles between two faces 
of a tetrahedron, defining its shape. Elements with very 
small and large dihedral angles should be avoided since 
they usually downgrade the accuracy and performance of 
numerical methods. The optimal desired value should be 
close to the dihedral angle of a regular tetrahedron, as 
discussed by Labelle and Shewchuk (2007). Therefore, 
histograms were constructed to show the total of dihedral 
angles inside some prescribed intervals, considering the 
smallest and the largest dihedral angle (Wang and Yu, 
2012; Labelle and Shewchuk, 2007). In addition to the 
dihedral angles, another measure was the aspect ratio � 
of an element, which can be defined as the ratio of the 
radius of its circumsphere to the radius of its inscribed 
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sphere (Leng et al., 2013; Misztal et al., 2009; Si, 2013). 
A well shaped tetrahedron is obtained when Q is closer to 
1.00 (Leng et al., 2013). Thus, the total of aspect ratios 
inside some intervals were also shown through histograms. 
The aspect ratio of one tetrahedron can be calculated by 
Equation 2, which was generalized by Leng et al. (2013).  

( )

5

2

3
6 22

1

8.3
,

ii

V
Q

e
=

=

∑

 (2)  

 
where, ei are six edge lengths of one tetrahedral element 
and V is the corresponding volume.  

 

 
 

Fig. 9: Flowchart of the proposed method for solid modeling and automatic mesh generation 



Leandro Alves Neves et al. / Journal of Computer Science 2018, 14 (7): 1000.1028 
DOI: 10.3844/jcssp.2018.1000.1028 
 

1009 

The proposed method allows automatic mesh 
generation and successive refinements of nontrivial 
domains. These relevant features are required in studies 
focused on computational electromagnetics. Therefore, 
all the mesh examples discussed in this study were 
accomplished from a coarse initial mesh, which was 
refined in repeated steps of node inclusions and mesh 
reconstruction. This approach allowed calculating the 
processing time growth as a function of the increasing 
number of tetrahedral elements. The result was the 
meshing time considered as another quality metric.  

The solid construction and the mesh generation were 
both performed in a computer with a 1.87 GHz quad core 
processor, 4 GB of RAM memory and an operating 
system with 32 bit architecture. Although the considered 
system have a multi-core processor, the open source 
mesh generator applied in the tests is not available to use 
automatically the multiple cores. Therefore, the 
performance measures were calculated using one CPU 
core. In Fig. 9 is shown a summary of the proposed 
method with all steps previously described. 

Simulation and Result Analysis  

A FEM simulation was performed in order to analyze 
and verify the usefulness of a highly refined mesh, as 
well as to show a practice application of the proposed 
method and how the quality of a simulation can be 
improved by the improvement of the mesh. The 
Laplace's equation, Equation 3, where V is the electric 
potential, was simulated in order to analyze the 
equipotential lines of a parallel-plate capacitor. Laplace's 
equation is suitable for this simulation since there is no 
free charges in the analyzed region.  

FEM is one of the most appropriate methods to 
perform this analysis due to its accuracy and it also make 
possible the comparison between the meshes, from less 
refined to highly refined ones.  
 

2 0V∇ =  (3) 
 

The results from the simulations were analyzed by 
cutting a plane in the model and calculating the electric 
potential in each element the cross or touch that plane.  

Results and Discussion  

The solid construction and automatic mesh 
generation were performed using the proposed method. 
To clarify the understanding and discussion of the 
results, in subsection Tetrahedralization and mesh 

refinements of nontrivial domains are presented the raw 
and highly refined meshes which were constructed with 
the proposed method; and, in subsection Mesh quality 

are discussed the quality values used to evaluate the 
tetrahedral meshes, such as meshing time, aspect ratio 
and dihedral angles.  

Tetrahedralization and Mesh Refinements of 

Nontrivial Domains  

A “C-type” magnet was used to demonstrate the 
obtained results with the proposed method and validate 
the integration strategy. The obtained solid with 
application of the first two recommendations 
(subsection “Solid construction”) is shown in Fig. 10a. 
The smoothness in the transition boundaries is clearly 
illustrated. Also, the required hierarchical data 
structures by “C-type” magnet are presented in Fig. 10b 
in order to show the 6 datablocks which were accessed 
by the proposed script. Each part of the “C-type” 
magnet requires 3 datablock types. Thus, in Fig. 11a is 
shown the test solid with the corresponding raw mesh, 
used to validate the concept of iteration loop described 
in subsection “Application of the integration 
strategy”. The “C-type”magnet was meshed with 951 
vertices and 2,698 tetrahedral elements. An application 
proof    for   the   third  recommendation is illustrated in 
Fig. 12a, in which a new and refined, set of vertices was 
defined, when compared to raw mesh shown in Fig. 11. 
The result was an updated redistribution of the original 
solid volume and more tetrahedra were generated, 
resulting in 3,063 vertices and 8,810 tetrahedral 
elements (Fig. 12b and 12c).  

The topology domain may be easily modified and 
enlarged to reproduce classical geometries of power 
transformers and electromagnets (Duan et al., 2015; 
Chen and Biro, 2012; Zhao et al., 2012; Krebs et al., 
2010; Ho et al., 2011; Zhang and Kumar, 2011;       
Chang et al., 2010). For instance, in Fig. 13 to 15 are 
shown a kind of turbo-compressor device, a Klein bottle 
and an electrical motor with permanent magnet 
supplementary, respectively. The turbo-compressor was 
meshed in 1.60 seconds, involving 13,830 nodes and 
42,821 tetrahedral elements. In this example, a 
combustion chamber and a turbine were connected 
through manifolds. Similar  

structures, based in the original concept of centrifugal 
engines, are also used in jet propulsion applications 
(Jang et al., 2007; Cho et al., 2006). The Klein bottle 
was meshed with 8,420 nodes and 25,676 tetrahedral 
elements, in 1.01 sec. Similar topology was used in 
studies focused on symmetry in meta-materials     
(Chang et al., 2010). The electrical motor with 
permanent magnet supplementary was constructed with 
5,584 and 16,176 tetrahedral elements. The meshing 
time was of 0.75 seconds. This topology was explored 
by Zhao et al. (2012) in order to analyze electromagnetic 
devices, considering a parameterized mesh generation 
and refinement method for finite elements.  

Examples of .poly files, are partially shown in Fig. 16, 
since is not feasible to give them in their integrity due to 
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huge file sizes. These data were automatically written by 
the proposed script. For instance, the .poly file for the 
turbo compressor case comprises a set of 6,638 
vertices, 6,676 faces and 7 color markers. The 
markers are numerical codes, which can be applied to 
assign different colors to some vertices in order to 
better distinguish the domain boundaries in adaptive 
refinement of the mesh. For instance, the numerical code 
-417148 was used to assign the red color to the vertices 
of the device part designated as combustion chamber. 
The Klein bottle comprises 3,460 vertices, 3,462 faces 
and only the color marker -454880 (green). The 
hierarchical data structure of the turbo-compressor 
device comprises 21 datablocks and the Klein bottle 
considers three datablocks. These hierarchical data 
structures are shown in Fig. 17 and 18, respectively. 

All the mesh examples previously presented were 
successively refined. For instance, highly refined meshes 
are shown in Fig. 19 to 22, in which are illustrated the 
“C-type” magnet, turbo-compressor device, Klein bottle 
and electrical motor with supplementary permanent, 
respectively. The “C-type”' magnet was generated with 
307,327 vertices and 1,788,145 tetrahedra. The turbo-
compressor device was generated with 349,421 vertices 
and 1,838,948 tetrahedral elements. The Klein bottle 
was constructed with 344,534 vertices and 1,774,489 
tetrahedra. The electrical motor with supplementary 
permanent was meshed with 453,806 vertices and 
2,753,985 tetrahedral elements. Also, in Fig. 23 is 
shown the running time as a function of the increasing 
number of tetrahedra for each example previously 
presented. 

 

       
 (a) (b) 
 
Fig. 10: “C-type” magnet used to validate the first two recommendations is shown in (a) and the required hierarchical datablocks 

(material, mesh and object) are presented in (b)  
 

  
 (a) (b) 

 
Fig. 11: The meshed “C-type”' magnet is shown in (a) and a plane cut is illustrated in (b) 
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 (a) (b) 
 

 
(c) 

 
Fig. 12: “C-type” magnet constructed with the third recommendation (subsection “Solid construction”) is shown in (a), the 

corresponding finite element mesh is presented in (b) and a plane cut is illustrated in (c) 
 

     
 (a) (b) 
 

 
(c) 

 
Fig. 13: Turbo-compressor meshed in 1.60 sec is shown with different views in (a) and (b) and details of the tetrahedral elements 

after a plane cut is presented (c) 
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 (a) (b) 

 
Fig. 14: Klein bottle meshed in 1.01 sec is shown with different views in (a) and details of the tetrahedral elements after a plane cut 

is presented (b) 
 

    
 
Fig. 15: Electrical motor with permanent magnet supplementary poles meshed in 0.75 sec is shown in (a) and details of the 

tetrahedral elements after a plane cut is presented in (b) 
 
Mesh quality  

Several mesh generation approaches have been 
explored on studies considering computational 
electromagnetics (Moreno et al., 2015; Leng et al., 2013; 
Wang and Yu, 2012), but they are not based on 
integration of open source packages yet. This can be a 
limitation for comparisons of the results presented here. 
However, the proposed method was evaluated 
considering different quality metrics, such as aspect ratio 
and dihedral angles of the tetrahedra. Moreover, the 
improvement in the quality has a direct relation to the 
number of elements and, therefore, in the meshing time.  

A well shaped tetrahedron has aspect ratio defined as 
1.00 (Si, 2013), but a bounded aspect ratio at most five 
also was discussed in detail by Ruppert (1995). 

Therefore, to ensure accurate results, a well shaped 
tetrahedron has a low aspect ratio (Gerritsen et al., 2015; 
Cheng, 2006). Considering these values and each mesh 
explored here, histograms are shown for both the raw 
and highly refined meshes: “C-type” magnet (Fig. 24), 
turbo-compressor device (Fig. 25), Klein bottle (Fig. 26) 
and electrical motor with supplementary permanent 
(Fig. 27). This strategy allows verifying aspect ratios 
more appropriate in refined meshes than raw meshes. 
For instance, more than 90% of the tetrahedral elements 
were constructed with values at most five and mainly 
closer to ideal condition. The best numerical accuracy is 
achieved by a mesh with uniform perfect tetrahedral 
elements. However, considering nontrivial domains as 
explored here, it is not possible to generate meshes only 
with perfect tetrahedra, due to both multiply connected 
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sub-domains and thin and curved regions (Field, 1986). 
Thus, the proposed method is able to provide consistent 
values, mainly when compared to those presented in 

different studies (Cheng, 2006; Si, 2013; Shewchuk, 
1998; Ruppert, 1995) and with the advantage of using 
open source packages. 

 

   
 (a) (b) 
 
Fig. 16: Structures of .poly files for a part of the turbo-compressor are shown in (a) and the structure of .poly files for the entire Klein 

bottle is presented in (b) 
 

 
 
Fig. 17: Hierarchical datablocks obtained from the turbo-compressor representation, in which each part of the turbo-compressor 

required three datablock types: Material, mesh and object 
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Fig. 18: Hierarchical datablocks obtained from the Klein bottle representation, which comprises the material, mesh and object 

datablocks 
 

   
 (a) (b) 
 
Fig. 19: “C-type” magnet with high degree of refinement, which was meshed in 39.60 sec, is shown in (a) and a “zoom view”' detail 

is given in (b), according to the area enclosed by the highlighted rectangle 
 

    
 (a) (b) 
 
Fig. 20: Turbo-compressor device with high degree of refinement, which was meshed in 44.60 sec, is shown in (a) and a cross 

sectional cut is presented in (b)  
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 (a) (b) 

 
Fig. 21: Klein bottle with high degree of refinement, which was meshed in 45.30 sec, is shown in (a) and a cross sectional cut is 

given in (b) 
 

    
 (a) (b) 
 
Fig. 22: Electrical motor with supplementary permanent magnets, which was meshed in 60.60 sec, is shown in (a) and a cross 

sectional cut is illustrated in (b) 
 

 
(a) 
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 (b) 
 

 
 (c) 
 

 
 (d) 

 
Fig. 23: Histograms considering meshing time in seconds (y axis) as a function of the number of elements in the tetrahedral mesh (x 

axis) are shown for the “C-type” magnet (a), turbo-compressor device (b), Klein bottle (c) and electrical motor (d) 
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(a) 

 

 
(b) 

 
Fig. 24: Aspect ratio histograms for the “C-type”' magnet, considering the total of tetrahedra (y axis) inside of prescribed aspect ratio 

intervals (x axis). In (a) is presented the histogram calculated from the raw mesh (2,698 tetrahedral elements - Fig. 11) and in 
(b) is shown the obtained histogram from the mesh with high degree of refinement (1,788,145 tetrahedral elements - Fig. 19) 

 

 
(a) 
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(b) 

 
Fig. 25: Aspect ratio histograms for the turbo-compressor device, with the total of tetrahedra (y axis) inside of prescribed aspect ratio 

intervals (x axis). In (a) is shown the histogram defined from the raw mesh (42,821 tetrahedral elements - Fig. 13) and in (b) 
is illustrated the obtained histogram from the mesh with high degree of refinement (1,838,948 tetrahedra - Fig. 20)  

 

 
(a) 

 

 
(b) 

 
Fig. 26: Aspect ratio histograms for the Klein bottle, illustrating the total of tetrahedra (y axis) inside of prescribed aspect ratio 

intervals (x axis). In (a) is presented the obtained histogram from the raw mesh (25,676 tetrahedral elements Fig. 14) and in 
(b) is shown the calculated histogram from the mesh with high degree of refinement (1,774,489 tetrahedra - Fig. 21) 
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(a) 

 

 
(b) 

 
Fig. 27: Aspect ratio histograms for the electrical motor with permanent magnet supplementary poles magnet, considering the total of 

tetrahedra (y axis) inside of prescribed aspect ratio intervals (x axis). In (a) is presented the calculated histogram from the 
raw mesh (16,176 tetrahedral elements - Fig. 15) and in (b) is shown the obtained histogram from the mesh with high degree 
of refinement (2,753,985 tetrahedra - Fig. 22).  

 
Regarding the dihedral angles, the histograms are 

shown in Fig. 28 for all highly refined meshes previously 
discussed, namely the “C-type”' magnet with 1,788,145 
tetrahedral elements, turbo-compressor device meshed 
with 1,838,948 elements, the Klein Bottle meshed with 
1,774,489 elements and the electrical motor with 
2,753,985 tetrahedral elements. Notice that the histograms 
were constructed for all elements in the mesh and not only 
for those elements belonging to the domain borders as in 
Wang and Yu (2012). From these histograms, it is 
possible to verify dihedral angles whose values belong to 
the interval from 5.90 to 166.70 degrees, with a peak 
value around the condition for a regular tetrahedron (90 
degrees) (Ruppert, 1995). The proposed algorithm by 
Labelle and Shewchuk (2007) provided tetrahedral 
meshes with dihedral angles between 8.90 and 164.80°C. 
Also, the dihedral angles were bounded between 1.66 and 

174.72°C when non-uniform tetrahedra on the surface 
boundary were chosen. In a study presented by Wang and 
Yu (2012), tetrahedral meshes were constructed with the 
minimal dihedral angle being guaranteed to be greater 
than or equal to 5.71 degrees. Therefore, the proposed 
method in this study is able to generate meshes with 
consistent dihedral angles, mainly when compared to the 
results provided by other approaches (Wang and Yu, 
2012; Labelle and Shewchuk, 2007).  

An efficient method can mesh complex geometries 
with high degree of refinement and with a minimum of 
running time, without applying parallel computing 
resources. This is particularly important for three-
dimensional simulations of nontrivial domains, as the 
presented here and commonly explored in studies 
focused on computational electromagnetics. These two 
features are presented in the proposed method.
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(a) 

 

 
(b) 

 

 
(c) 

 
Fig. 28: Total of dihedral angles (y axis) inside of prescribed angle intervals in degrees (x axis), considering also the angle bounds: in 

(a) is shown the histogram from the “C-type” magnet - the corresponding mesh was illustrated in Fig. 19; in (b) is presented the 
histogram from the turbo-compressor device - the corresponding finite element mesh was illustrated in Fig. 20; in (c) is 
defined the histogram from the Klein bottle - the corresponding mesh was presented in Fig. 21; and, in (d) is shown the 
histogram from the electrical motor - the corresponding tetrahedral mesh was illustrated in Fig. 22 
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Thus, the running time as a function of the increasing 
number of tetrahedra was presented in Fig. 23 for each 
explored context in this study, such as the “C-type” 
magnet, turbo-compressor device, Klein bottle and 
electrical motor with supplementary permanent. From 
these histograms (Fig. 23), it is possible to verify that 
highly refined meshes were obtained in acceptable 
running times, considering the used computational 
resources and accessible to many users. Millions of 
tetrahedral elements were constructed in a few seconds. 
The minimum running time was of 39.60 sec, the 
maximum running time was of 60.60 sec and the mean 
value was of 47.59 sec, which was calculated computing 
only the most refined mesh from each domain.  

It is important to notice that the running time required 
to construct mesh with the desired quality is related to the 
complexity of the geometry. For instance, the electrical 
motor with permanent magnet supplementary poles 
presented by Zhao et al. (2012) was reproduced here. The 
3D domain related to the same motor topology was 
meshed into tetrahedral elements (Fig. 22). The model 
described by Zhao et al. (2012) was meshed in triangles 
(2-dimensional elements) through a parameterized mesh 
generation technique. The refinement procedure was 
performed in an adaptive manner, with 6,930 times FEM 
computations in five hours to obtain all solutions. The 
Delaunay algorithm was also employed and, for each 
FEM computation, the overall mesh generation and 
refinement processes required 30% of time, which 
represented a value of 0.80 sec in a single mesh 
generation Zhao et al. (2012). The proposed method 
provided the electrical motor meshed with 2,753,985 
tetrahedral elements in approximately 60 sec (Fig. 22). 
Since the domain in this case is bigger (3D) with a high 
number of 3D elements, this performance is very 
encouraging, for instance, considering future 
developments of 3D adaptive calculations.  

All meshes included in this study do not represent the 
refinement limits, which could be reached, even using 
one core of the processor. In this context, several 
methods have been developed to study mesh generation 
and FEM simulations (Bracken et al., 2012; Li et al., 
2013; Chen and Biro, 2012; Zhao et al., 2012; Ho et al., 
2011; Zhang and Kumar, 2011; Krebs et al., 2010). 
However, none of them has used our proposed 
combination. Most of these methods lead to an “almost” 
ideal result, considering different strategies, models and 
systems. Therefore, compare our proposal in order to 
define the best one would be a difficult task, not to say 
senseless. In fact, our method is rather complementary 
than ratable, capable of providing relevant and reliable 
results in any other similar FEM simulations. Moreover, 
we contribute to future works, in which one could profit 
from valuable information contained in each of the 
explored domains.  

Simulation Analysis by FEM  

It is not useful a highly refined mesh involving 
tetrahedral elements without the required quality by 
FEM simulations. The equation solutions are strongly 
dependent on the shape and number of elements. In a 
valid mesh constructed under proper conditions, such as 
meshes defined with well shaped tetrahedra, the FEM 
approximations converge to the problem solution when 
the number of elements is increased (mesh refinements) 
(Shewchuk, 2002; Silvester and Ferrari, 1996;   
Babuvska and Aziz, 1976). Therefore, in addition to the 
total values of tetrahedra (highly refined meshes) which 
were previously discussed, the proposed method 
provided also well shaped tetrahedra. This conclusion 
was possible exploring comparisons of aspect ratio, 
which were verified through FEM simulations.  

The quality of the mesh is an important part of the 
simulation process. The FEM can be used to solve many 
kind of physical problems and mathematical equations and 
sets of equations, including non-trivial ones. The setup 
phase, in which the geometry of the problem is defined, 
the boundary conditions are applied and the mesh is 
crucial to the quality of the solution. The FEM simulations 
can be performed by two strategies. One is increasing the 
degree of interpolation functions that describe the 
behavior of the solution inside an element. This strategy 
can be useful, but it represents an additional complexity in 
the solving process and turn the matrix assembly process 
more complex and computationally expensive. The other 
strategy is the increase of the number of elements given as 
input to the simulation process. This strategy hinders the 
solution process using FEM by increasing the size of the 
matrices. More elements implies bigger matrices 
(Silvester and Ferrari, 1996). Although the increase in 
the size of matrices, these are sparse matrices that do not 
add much complexity neither increases too much the 
computational costs of the solution process.  

One fact needs to be considered about the amount of 
elements and the quality of the solution using FEM. The 
number of elements has an impact in the quality of the 
solution depending on what is being analyzed. For instance, 
when evaluating the electric field between the plates of a 
parallel-plate capacitor, a great number of elements will not 
improve the solution, since the mentioned electric field is 
uniform. This way, a great number of elements will be 
useless to this analysis. On the other hand, if the edge 
effects needs to be analyzed, a better precision is required 
and this can be achieved increasing the number of 
elements in the interest area. Therefore, depending on the 
complexity of the effect to be analyzed, a better precision 
is required and the improvement of the precision can be 
achieved by the uplifting quality of the mesh used in the 
simulation process. 
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 (a) (b) (c) 

 
Fig. 29: Models with different degrees of refinements applied in FEM simulations. Mesh with 148 elements (a), mesh with 3,251 

elements (b) and mesh with 122,842 elements (c) 
 

 
(a) 

 

 
(b) 
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(c) 

 
Fig. 30: Aspect ratio histograms for the capacitor, considering the total of tetrahedra (y axis) inside of prescribed aspect ratio 

intervals (x axis): in (a) is presented the calculated histogram from the raw mesh (148 tetrahedral elements - Fig. 29a); in (b) 
is shown the obtained histogram from the mesh with high degree of refinement (3,251 tetrahedra - Fig. 29b) and in (c) is 
shown the obtained histogram from the mesh with high degree of refinement (122,84 tetrahedra - Fig. 29c) 

 
Three simulations of a parallel-plate capacitor were 

executed with three different degrees of refinement, 
whose models are shown in Fig. 29. It is important to 
notice that aspect ratio presents similar behavior to the 
ones previously discussed and it can verified in Fig. 30. 
The results of these simulations are shown in Fig. 31. 

The simulations were performed in order to 
analyze the electric potential immediately after the 
end of the capacitor. This problem is governed by the 
Laplace's equation, Equation 3 and it was chosen 
because its results are well-known and can be easily 
verified in its correctness.  

Also, simulating a well-known problem allows to 
focus on the influence of the refinement of the mesh 
in the final result more than the resultant values 
themselves. 

All the simulations were performed by applying the 
same model and setup. The only variation is the 
refinement of the mesh used to achieve the results. For 
simulations, the upper plate was assigned with 3,500V of 
electric potential, while the lower plate was assigned 
with 0� of electric potential. The results were analyzed 
within a plane with x-axis coordinate fixed at 0.011 cm, 
0.001 cm away from the end of the plates. We intended 
to show the equipotential lines according to the 
improvement of the mesh.  

The first simulation was performed using a mesh 
with 41 nodes and 148 elements. This mesh led to the 
result shown in Fig. 31a, in which there is 48 elements 
crossing or touching the plane. The second simulation 
was performed using a mesh with 614 nodes and 

3,251 elements. This mesh led to the result shown in 
Fig. 31b, in which there is 275 elements crossing or 
touching the plane. Finally, the third simulation was 
performed using a mesh with 21,486 nodes and 122,842 
elements. This mesh with 21,486 nodes and 122,842 
elements. This mesh led to the result shown in Fig. 31c, 
in which there is 4,891 elements crossing or touching 
the plane. It is important to notice the relation among 
the colors, where the red represents the highest value 
of electric potential (3,500V) and the deep blue 
represents the lowest value of electric potential (0V).  

Analyzing the results, it is possible to verify the 
enhancement of the simulations, using only two steps 
of refinaments. While in the first simulation result, 
Fig. 31a, the plates of the capacitor were 
unrecognizable. In the second simulation (Fig. 31b) 
there was a slightly improvement in the identification 
of equipotential lines. In the last simulation, Fig. 31c, 
the plates and the equipotential lines are perfectly 
clear. These results show how the quality of a 
simulation was improved through the adjustment of 
the mesh. The improvement of the mesh and 
consequently in the result of FEM simulation, is 
related with the increasing number of tetrahedra in the 
mesh and with the better accuracy of the aspect ratio, 
as previously presented in this study. It is extremely 
important to reinforce that, a mesh in which the 
elements do not have proper aspect ratio is not 
suitable for using in FEM. Moreover, tetrahedra with 
the proper characteristics turn a FEM simulation 
possible and correct. 
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 (a) (b) 
 

 
 (c) 
 
Fig. 31: Results of simulation of the Laplace's equation in order to analyze the electric potential of a parallel-plate capacitor using 

three different degrees of refinement. Mesh with 148 elements (a), mesh with 3,251 elements (b) and mesh with 122,842 
elements (c) 

 
Conclusion 

In this study was described a method to construct 
and mesh 3D nontrivial domains, in a continuous and 
integrated process, totally controlled by script code 
segments written in Python language. The strategies 
were developed from the Blender and TetGen 
packages. The method was tested in solids considering 
relevant geometries for computational electromagnetics 
problems, such as “C-type” magnet, turbo-compressor, 
Klein bottle and an electrical motor with supplementary 
permanent magnets.  

The open source packages were integrated with 
success and the results were highly refined meshes, with 
guaranteed quality. Millions of tetrahedral elements were 

constructed in a few seconds, with a minimum running 
time of 39.60 sec, a maximum running time of 60.60 sec 
and a mean value of 47.59 sec. The highest number of 
mesh elements was of 2,800,000 tetrahedra 
approximately, but it is not a limit in the degree of mesh 
refinement. These values are important, mainly 
considering the 3D nontrivial domains, which were 
chosen to test our proposal. Therefore, unless the parallel 
computing resources are used (Bracken et al., 2012), 
neither the topological domain complexity, nor the mesh 
refinements and time processing performance of the 
examples discussed in relevant studies (Li et al., 2013; 
Chen and Biro, 2012; Zhao et al., 2012; Ho et al., 2011; 
Zhang and Kumar, 2011; Krebs et al., 2010) surpass the 
equivalent features of the test cases presented in this 
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study, which were explored using one CPU core. 
Moreover, the approach described is able to provide 
highly quality meshes with common and very accessible 
hardware resources.  

Considering the mesh quality, the dihedral angles 
were bounded between 5.90 to 166.70°C, with a peak 
value around the condition for a regular tetrahedron. 
These values are relevant when compared to the values 
presented in other studies (Wang and Yu, 2012;    
Labelle and Shewchuk, 2007). Also, in the refined 
meshes, more than 90% of the tetrahedral elements were 
constructed with aspect ratios at most 5 and closer to 
ideal condition (aspect ratio defined as 1). These values 
are important in comparison to the discussed in other 
studies (Cheng, 2006; Si, 2013; Shewchuk, 1998; 
Ruppert, 1995), as well as, still considering the explored 
nontrivial domains (multiply connected sub-domains and 
many curved regions). As FEM solutions depend on the 
shape and number of tetrahedral elements, the proposed 
method as able to generate highly refined meshes with 
well shaped tetrahedra. These characteristics are 
guarantees for convergence and stability of the numerical 
solution, as discussed by Shewchuk (2002), Silvester and 
Ferrari (1996) and Babuvska and Aziz (1976). Finally, 
FEM simulations were performed to show how the 
quality of a simulation can be more suitable by the 
improvement of the mesh. Meshes with 41 nodes and 
148 elements, 614 nodes and 3,251 elements and 21,486 
nodes and 122,842 elements were used and we are able 
to notice that the improvement of the mesh were related 
to the increasing number of tetrahedra. This feature 
implies directly in the quality of the results, where the 
elements do not have proper aspect ratio is not suitable 
for using in FEM. Thus, proper characteristics of 
tetrahedra turn FEM simulation feasible and correct. 
Regarding our proposal, we could imply that was 
possible to integrate the environment of open source 
codes to perform FEM simulations. Then, we are able to 
show better results, accordingly to the improvement of 
the mesh, considering the increase number of tetrahedra 
and the quality of the aspect ratio.  

In this context, the proposed method not only is able 
to decompose nontrivial domains with multiply 
connected sub-domains into meshes of tetrahedral 
elements, but also performs successive mesh refinements 
in acceptable running times and with the quality required 
by FEM simulations. Thus, these results encourage new 
applications of the FEM in problems of different areas, 
especially in computational electromagnetics.  
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