

 © 2017 Naveed Ahmed. This open access article is distributed under a Creative Commons Attribution (CC-BY) 3.0 license.

Journal of Computer Science

Original Research Paper

Multi-View RGB-D Video Analysis and Fusion for 360

Degrees Unified Motion Reconstruction

Naveed Ahmed

Department of Computer Science, University of Sharjah, Sharjah, UAE

Article history

Received: 14-10-2017

Revised: 26-11-2017

Accepted: 23-12-2017

Email: nahmed@sharjah.ac.ae

Abstract: We present a new method for capturing human motion over 360

degrees by the fusion of multi-view RGB-D video data from Kinect

sensors. Our method is able to reconstruct the unified human motion from

fused RGB-D and skeletal data over 360 degrees and create a unified

skeletal animation. We make use of all three streams: RGB, depth and

skeleton, along with the joint tracking confidence state from Microsoft

Kinect SDK to find the correctly oriented skeletons and merge them

together to get a uniform measurement of human motion resulting in a

unified skeletal animation. We quantitatively validate the goodness of the

unified motion using two evaluation techniques. Our method is easy to

implement and provides a simple solution of measuring and reconstructing

a 360 degree plausible unified human motion that would not be possible to

capture with a single Kinect due to tracking failures, self-occlusions,

limited field of view and subject orientation.

Keywords: 3D Animation, Kinect, RGB-D Video, Motion Capture, Multi-

View Video

Introduction

The field of marker-less motion capture and 3D or

free-viewpoint video has received a lot of interest in the

past decade. It has a number of applications in the areas

such as natural user interface design, motion analysis,

video surveillance, virtual reality etc. Traditionally,

multi-view RGB camera systems have been used to

capture motion, shape and appearance of a real-world

actor. Carranza et al. (2003) presented one of the pioneer

works in this area by employing eight synchronized

RGB video cameras to capture a real-world actor. Using

the eight video streams they developed a template-based

marker-less motion capture scheme to correctly estimate

the motion of the actor. This work was later extend by

Theobalt et al. (2007), who measured the surface

reflectance properties of the actor in addition to its

motion. Afterward, de Aguiar et al. (2008) presented

another template-based deformation framework to

capture high quality motion of the real-world actor. In

contrast, Vlasic et al. (2008) used the skeletal data to

deform a template mesh to capture the high quality

motion. Ahmed et al. (2008) used a shape matching

approach over dynamic visual hulls to capture the track a

single mesh over the complete sequence. So far, the

previously explained methods relied on the RGB data.

Depth cameras, especially consumer-grade depth
cameras were made popular by the introduction of
Kinect by Microsoft (2010). The major benefit of Kinect
is its low cost that allows it to be used a very cheap
RGB-D sensor to acquire both the color and depth data
at 30 frames per second (Ahmed and Khaifa, 2016). If
only the depth data is desired then the Time-of-Flight
(TOF) cameras can also be employed (Kim et al., 2008).
Unlike Kinect, a TOF camera does not provide a unified
solution to acquire both depth and RGB data, which is
one of the major strengths of Kinect. In addition, using
the Microsoft’s Kinect SDK, one can also acquire real-time
pose estimation or skeletal data of a real-world actor.

 Pose estimation from a single camera has been a

hallmark feature of Kinect and a number of solutions

have been proposed for human pose estimation using a

single Kinect (Girshick et al., 2011; Ye et al., 2011;

Baak et al., 2011). The real-time skeletal data from

Kinect is employed in a number of applications ranging

from controlling a robot using the skeletal data or a

controller free gaming experience by means of body

poses (Lun and Zhao, 2015). The Kinect SDK can

provide the skeletal data of multiple actors in a standing

or sitting position.

A number of methods have been proposed that only

use the depth data for the real-time pose estimation using

machine learning or non-linear optimization (Chen et al.,

Naveed Ahmed / Journal of Computer Science 2017, 13 (12): 795.804

DOI: 10.3844/jcssp.2017.795.804

796

2013). On the other hand, one can use the Kinect SDK

directly to get the real-time pose data. Thus Kinect SDK

provides a simpler solution of pose retrieval compared to

a number of other methods that are comparatively very

difficult to implement (Wei et al., 2012; Ye et al., 2011;

Baak et al., 2011; Yasin et al., 2015; Shotton et al.,

2011; Dantone et al., 2013). Due to the complexity of

these methods they are not as widely adapted as Kinect’s

pose estimation. In practice, Kinect’s SDK has been

widely adopted for the real-time pose estimation and has

been employed in a number of applications in a number

of areas (Lun and Zhao, 2015).

Kinect has been developed to be used as a standalone

camera in a living room, where the person is always facing

the camera. Therefore, the Kinect SDK only captures the

correct pose of the person as long as it is facing the camera

with the frontal orientation (Obdrzalek et al., 2012). If the

person is not facing the camera or in case the body parts

of the person are occluded due to self-occlusions then the

incorrect orientation or the missing depth information

result in the incorrect pose estimation. Additionally, due

to the field of view limitations of a Kinect combined

with the orientation of the person, it is not possible to

capture the motion of the person from all sides. Thus a

360 capture of the motion of the person is not possible

using a single Kinect.

In order to resolve these shortcomings of pose

estimation from a single Kinect, a number of methods

have been proposed that employ more than one Kinect

for the pose estimation. Viewing a scene from multiple

Kinects provide a number of benefits, specifically if a

body part is occluded in one camera view will be visible

in some other camera. Additionally, if the placement of

the cameras is around the person, then the person will be

oriented towards at least one of the camera that can

correctly estimate its pose. On the other hand using

multiple Kinects results in the loss of depth data due to

the interference between different depth sensors. As

shown by Ahmed (2012), this interference does not

result in the loss of quality for a 360 degree 3D

animation reconstruction, because the missing

information from one depth sensor is filled in by the

other sensors. In their work (Ahmed, 2012), employed

six synchronized Kinects to reconstruct a 360 degree 3D

animation. In contrast, Berger et al. (2011) employed

four Kinects for unsynchronized marker-less motion

capture. Ye et al. (2013) employed three hand-held

Kinects for marker-less performance capture. Caputo et al.

(2012) employed multiple Kinects for hand gesture

recognition. All of these methods did not use the real-

time pose data from Kinect. Rather, all pose estimation

methods used an optimization process by means of

silhouette-based minimization or template deformation

to find the correct pose. Even though these methods

work fine in practice, using Kinect SDK for the pose

estimation has a number of benefits. In the first place,

the pose data is available at 30 frames per second,

making it suitable for a number of real-time applications.

There is no additional post processing required before

using the skeletal data. In addition, the reliability of the

skeletal data is good enough to be employed in a number

of applications as long as the person is facing the camera

and the person’s pose does not result in the self-

occlusion of body parts (Obdrzalek et al., 2012).

If multiple Kinects are used to acquire the real-time

pose data, it is not straightforward to fuse these poses

together for 360 degree unified motion reconstruction.

As Kinect only estimates the correct pose if the person is

facing the camera, a completely incorrect pose with

inverted joints is estimated for the back-facing camera.

To fuse the pose data from Kinects, it is important to

first identify the Kinects toward which the person is

oriented. In addition, even for those Kinects with the

correct person orientation, the joint data should be

selected in such a way that the self-occluded joints

should be discarded and only be used from the pose data

that is estimated from the non-occluded joints. Finally,

even if the joints are no occluded, a joint which is

oriented more towards a Kinect should be preferred because

in general it is better tracked compared to a joint that is not

oriented towards Kinect (Obdrzalek et al., 2012).

In this study, we propose a new method of fusing the

skeleton data from multiple Kinects over 360 degrees.

Our method can automatically detect the correct

orientation of the actor with respect to each camera and

can fuse the joint data based on our novel confidence

score to create a unified skeletal representation at each

frame. Our method uses the Microsoft Kinect SDK for

acquisition and its implementation is relatively simple.

The result of our method is a unified human motion

measurement in the form of a skeletal animation over

360 degrees that is free from the artifacts due to

occlusions or tracking failures. Our work does not

estimate the pose from the depth data, rather it presents a

very simple and effective method to combine the data

acquired from multiple low-cost sensors for a reliable

360 degrees motion capture. An algorithmic flowchart of

our method can be seen in Fig. 1 and the algorithmic

details can be seen in Fig. 2.

In the following sections, we will present each of the

algorithmic step in detail, starting from the discussion of

data acquisition, followed by the presentation of the

unified skeletal animation reconstruction algorithm.

Afterward, the results are presented and validated

followed by the conclusions.

Naveed Ahmed / Journal of Computer Science 2017, 13 (12): 795.804

DOI: 10.3844/jcssp.2017.795.804

797

Fig. 1: Flowchart of the proposed method, starting from the acquisition of depth, RGB and skeletal data to the measurement of 360-degree

human motion measurement using the novel confidence score, resulting in the unified skeletal animation reconstruction. The

algorithmic details from each step can be seen in Fig. 2

Fig. 2: Algorithmic details of the method from the acquisition to the unified 360-degree animation reconstruction

Naveed Ahmed / Journal of Computer Science 2017, 13 (12): 795.804

DOI: 10.3844/jcssp.2017.795.804

798

Data Acquisition

Our acquisition system is comprised of four Kinects

placed at 90 degrees with respect to each other. Our

system is not confined to a fixed camera setup, but can

work effectively for a hand-held acquisition, if required. We

use a software-based synchronization similar to Ye et al.

(2013) for the multi-view acquisition. We use the Kinect

SDK to acquire RGB, depth and skeleton data. RGB-D

streams from Kinect are low resolution (640x480) at 30

frames per second. For each frame, Kinect tracks a

skeleton comprising of 20 joints. One frame from our

acquisition system showing, RGB, depth and the

skeleton data can be seen in Fig. 3a and 3b.

One of the benefits of using the Kinect SDK is that it

circumvents the need of any manual intrinsic camera

calibration. The SDK provides the mapping between

RGB, depth and skeleton data. It also maps the depth and

skeleton data to a unified three-space coordinate system.

Thus for every depth value the corresponding RGB value

is available. Additionally, for every joint position we

know its depth value and the mapping to the RGB data.

For our work, we only need the mapping between depth

and the skeleton data.

The depth to world coordinate mapping allows us to

resample the depth data in a 3D point cloud. Thus, for

each frame we obtain four 3D point clouds along with

their corresponding estimated skeleton data in their local

coordinate systems. In addition, the Kinect SDK also

provides a tracking state for the skeleton and each joint.

For the skeleton the tracking states are: Not Tracked (did

not track anything), Position Only (did not track any

joint, only one skeleton position) and Tracked (did track

joints). For the joints the tracking states are: Not Tracked

(joint data is not available), Inferred (joint data is

calculated from other tracked joints), Tracked (joint data

is tracked and available).

The joint tracking states are an important part of the

confidence score assigned to each joint for our method,

as discussed in the next section. Even though our

experiments use a static camera setup, our method can

also work without a fixed extrinsic parameterization

between the cameras for the whole sequence, in case the

cameras are not static. We show that the extrinsic

parameters can also be calculated dynamically using the

skeleton data as explained in the next section.

Fig. 3: (a) shows RGB frames from three cameras. Frontal and profile faces are detected in two cameras (b) shows the depth data with the

overlaid skeleton from Kinect (c) shows the unified skeleton from the two cameras towards which the actor's face is oriented

Naveed Ahmed / Journal of Computer Science 2017, 13 (12): 795.804

DOI: 10.3844/jcssp.2017.795.804

799

Unified Skeletal Animation Reconstruction

The fusion of skeleton data from multiple Kinects
poses a number of challenges. First, the skeleton data
from Kinect is not usable if the actor is not facing the
camera. The Kinect uses the depth data under the
assumption that the actor is facing the camera and
returns the incorrect pose if the actor is not facing the
camera, as seen in Fig. 3b(right). In the first step, for
every frame we need to identify which cameras can be
used for reconstructing the unified skeleton.As the depth
data, or the skeleton and joins tracking states are not
helpful in finding the correct orientation of the human
actor, we use one of the standard face detection methods
(Viola and Jones, 2001) over the RGB data to determine
the front-facing actors. We use two profiles, one for the
frontal face and one for the profile face to find out which
cameras can be used for the fusion (Fig. 3a). Face
detection is a standard feature provided in nearly all
camera systems, ranging from mobile phones to high end
DSLRs. It is prone to failure if the actor's face is
occluded. Sometimes it can also detect false positives.
We used simple sanity checks to circumvent these
issues, to be discussed in the Results and Validations
section. Additionally, we could also use the face
detection API provided with the Kinect SDK, which
works robustly in practice, but since it is real-time, we
found that it adversely affected the performance of our
acquisition system. In principle, as the Kinect already
provides the head position in the depth image
coordinates, the extrinsic camera parameters can be used
to localize the head position in the RGB space. Using the
head position, some other image processing algorithm
can also be used to detect the front-facing camera.

Once the cameras to be used are identified, we start

the fusion process by assigning a confidence score to

each of the skeleton joint for each camera. Assuming we

are using C cameras and there are T frames in the

sequence, the confidence score S for a joint c

t
j , where j =

1,…,20, c = 1,...,C and t = 1,..., T , is defined by:

() () () () ()c c c c c

t t t t tj j j j j= + + +S R O D B (1)

()c

t
jR is the joint tracking state for c

t
j from the

Kinect SDK and its possible values are:

0 if joint data is not available

() 0.5 if it is calculated from other joints

1 if it is tracked and available

c

tj

=

R

It is to be noted that the values 0, 0.5 and 1 are not

provided by the Kinect SDK. We convert the joint
tracking state to these weights based on its tracking
status. A joint that is not tracked should not have any
weight. Similarly, if the joint's state is tracked from the
other joints, then its weight should be half of the weight
of the joint that is independently tracked.

()c

tjO is the occlusion score for c

t
j , it is 0 if the joint

is occluded or 1 otherwise. We find out if the joint is

occluded or not by back projecting its depth value to the

depth image and comparing the z value of the three-

space joint position from Kinect and the depth image.

We cannot completely discard a joint if it is occluded

because in some cases Kinect can still track the pose

even if a joint is occluded for a small number of frames.

The term ()c

tjO complements ()c

tjR such that even if

the joint tracking state reports a higher confidence in the

joint, but it is occluded then it should get a lesser score.

()c

tjD is the temporal smoothness term for c

t
j ,

which if a joint is moving, compares its displacement dt

at t with the displacement dt−1 at t−1. If the joint is not

moving, or if there is very little movement, then it is set

to 1. If dt ⇐ σ * dt−1 then it is set to 1, if dt > σ * dt−1 and

dt ⇐ ρ * dt−1 then it is 0.5, otherwise 0. We found this

term to be very important because it penalizes sudden

jerky motion of the joints in case of a tracking failure.

Skeleton tracking from Kinect can also fail not because

of the occlusions but also due to the limitations of the

underlying pose estimation algorithm. By introducing

this temporal smoothness term, we try to compensate for

these failures. It is to be noted that ()c

tjD cannot

compensate for the jerkiness if it is present for a joint in

a particular frame, in all the cameras. The jerkiness is a

shortcoming of the underlying pose estimation

algorithm, whereas this term favors the best available

joint with the least jerky motion. In this regard, this term

compensates for this particular shortcoming of the

underlying skeleton estimation algorithm. The

parameters σ and ρ are found through experiment, as

discussed in the Results and Validation section. For our

method, we chose σ = 1.2 and ρ = 2.0 for two slow

sequences, while for the faster motion their value was

1.05 and 1.7 respectively.

Finally, ()c

tjB , is the bone length score. Similar to

Yueng et al. (2013), we initialize all the bone-lengths

manually for the first frame and classify them as the

ideal lengths. As each joint is associated with one or

more bones, let L(j) be the sum of all the bones lengths

associated with each joint. Using the sum of ideal bone

lengths associated with each joint Lideal(j), the

normalized term ()c

tjB is calculated as follows:

()
()
() () ()
()

() () ()

if

if

c
t

c
ideal t

c
ideal t

c
t

j
c

ideal t
j

c

t
j

c

ideal tj

j j

j

j j

 >
=
 ≤

L

L

L

L

L L

B

L L

Naveed Ahmed / Journal of Computer Science 2017, 13 (12): 795.804

DOI: 10.3844/jcssp.2017.795.804

800

 (a) (b) (c)

Fig. 4: (a) shows unified two point clouds (shown in black and

red) and (b) shows the corresponding two skeletons

after the extrinsic calibration. (c) shows the unified

skeleton reconstructed from our method

Thus, the maximum value of ()c

tjB is 1.0 and any

deviation from the ideal bone length results in a smaller

score. We also use the bone length variation to

quantitatively validate our method, as discussed in the

Results and Validations section.
For all the cameras oriented towards the face of the

actor, we use the 3-space mapping of the joints with
the confidence score greater than 2 and find the least
squares solution to determine the transformation that
maps one camera to the other. As explained earlier,
given the static camera setup, this is not a required
step. It is only performed to demonstrate that our
method can also work for moving cameras.
This dynamic extrinsic calibration is done at every frame
and if more than two cameras are used, they are mapped
to one reference camera. The results of extrinsic
calibration can be seen in Fig. 4a and 4b. In practice,
we always found 12 or more joints with the
confidence value greater than 2. Thus, the linear
system was never underdetermined. The confidence
score in Equation 1 is one of the ways to perform the
dynamic extrinsic calibration. Using the skeletal data
is a novel approach in this regard, but one can use also
use traditional image processing based methods,
similar to Ahmed (2012), to achieve the similar
results. To reconstruct the unified skeleton, dynamic
extrinsic calibration by means of Equation 1, is the
first step. We modify Equation 1 with an additional
orientation term to select the best possible joints for
the uniform skeletal reconstruction.

Using the extrinsic calibration, we first map 3D

point clouds and skeletons to the global world

coordinate system. In the next step, we use the unified

point cloud (Fig. 4a) to estimate the normal ()c

tn j of

each c

t
j . The normal orientation is estimated using

SVD-based plane fitting on the neighboring 3D points

of c

t
j in the unified point cloud. If we do not use the

unified point clouds and the normal for c

t
j is only

estimated through its corresponding camera point

cloud, then the normal orientation will be biased

towards that particular camera.

Before merging the skeleton data, we modify our

confidence measure (Equation 1) and introduce a new

orientation term ()c

tjN :

() () ()
() () ()()1.0

c c c

t t t

c c c

t t t

j j j

j j j

= + +

+ + −

S R O

D B N
 (2)

()c

tjN is the dot product of ()c

tn j and ()c

tv j , where

()c

tv j is the view vector from c

t
j to the camera c. The

maximum value of (()1.0 c

tj− N is 1 if ()c

tn j is

oriented towards c and it decreases as the actor

rotates away from the camera. This term increases the

confidence score for the joints of the front-facing

camera, which is desired, as Kinect best estimates the

skeleton if the actor is facing the camera. Finally, we

reconstruct the unified skeleton at t by selecting each

of the 20 joints from the camera c that has the highest

confidence score ()c

tjS presented in Equation 2 for

that particular joint.

Results, Validations and Discussions

We recorded three sequences of 200 frames each.
First sequence shows a fast boxing motion, the second
sequence is a normal walking motion, while the third
sequence is the fast rotation motion of whole body. Our
method was able to track all sequences successfully and
the selected joints from multiple cameras capture the
motion accurately. Our confidence measure ensures that
joints with the wrong pose are replaced by the joints
from other cameras that estimate the correct pose, as can
be seen in Fig. 5. More results from two of the sequences
can be seen in Fig. 3c, 4c. It can be observed in the
results that our method can merge the skeleton data from
multiple cameras to reconstruct the unified skeletal
animation. Please note that the boxing sequence is
shown with only three cameras because the actor never
turned around to face the fourth camera. It can be seen in
the figures that because of the faster motion, the boxing
sequence has a number of tracking failures, even in the
front-facing camera, but our method was able to
reconstruct the correct motion by merging data from the
other cameras. The walking sequence shows a complete
360 degree reconstructed unified motion.

Naveed Ahmed / Journal of Computer Science 2017, 13 (12): 795.804

DOI: 10.3844/jcssp.2017.795.804

801

In addition to the qualitative visual evaluation, we also
perform multiple quantitative validations. In general there is
no ground truth data available for us to compare the
goodness of our method. In addition, this work is not a
direct pose estimation from the depth data (Chen et al.,
2013), rather it uses the estimated pose from each camera
and combines them together. Therefore, we do not need
to quantify the quality of the individual pose, but need to
estimate if the unified skeleton is better than the individual
poses from each camera. We use two methods that compare
the unified skeleton with individual skeletons using the
bone-length variation estimation and 3D point cloud
overlap to quantify the goodness of the unified skeleton:

Bone-length Variation Estimation

For the first quantitative analysis, we implement the
bone-length variation estimation system that is presented
and employed by Yueng et al. (2013). Similar to their
method, we initialize all the bone-lengths manually for
the first frame and classify them as the ideal lengths.
Ideally the bone-lengths of the reconstructed skeleton at
each frame should be as close as possible to the ideal
lengths. Following Yeung et al. (2013), we compared
bone-lengths at each frame for the unified skeleton and

the front-facing cameras at each frame. For all the
sequences we found the unified skeleton to be closest
to the ideal lengths compared to individual Kinects.

Fig. 5: Merging of three cameras (black, red and green) is

shown on the right. As can be seen the algorithm

correctly selects the joints from the cameras that depict

the most accurate motion

Fig. 6: The statistics of bone-length variation at different part of skeleton in the boxing sequence. The ideal bone length is shown as

a dotted line in the center. The bone-length from individual Kinects and from the reconstructed uniform skeleton are shown

over the 200 frames. Kindly note that some Kinects (e.g., Kinect C), depending on the orientation of the person, are not used

for all the frames in the reconstruction process

Naveed Ahmed / Journal of Computer Science 2017, 13 (12): 795.804

DOI: 10.3844/jcssp.2017.795.804

802

In this study, due to size constraints, we are only

showing results of the boxing sequence, because it is the

most challenging sequence with the very fast motion,

with a number of tracking failures for all the cameras.

Similar to Yeung et al. (2013), we show the statistics of

bone-length variation for a number of bones for the

boxing sequence in Fig. 6. Table 1 shows the absolute

difference of the average bone length and the ideal bone-

length for individual Kinects and the unified skeleton for

the boxing sequence. As can be seen in Fig. 6 and Table

1, over the course of the sequence, the bone lengths of

the unified skeleton are always closest to the ideal

length, when compared to individual Kinects.

Bounding-box and Skeleton Overlap Estimation

The bounding-box-based error measure calculates the

overlap of the skeleton and the underlying 3D point

cloud. For each bone in the individual skeleton from

Kinects and the unified skeleton, a bounding box Bi is

defined at the first frame, where i = 1,...,19 is the bone

index. The size of each bounding box Bi is initialized

manually and remains consistent throughout the

sequence. The orientation of each bounding box is

automatically determined from the orientation of the

bone. The bounding boxes are tracked over the whole

sequence using the skeletal animation. An example

bounding box of a bone at an arbitrary frame can be

seen in Fig. 7.

 For each bounding box, the number of

overlapping 3D points are calculated for each

skeleton. A normalized error measure ξt is calculated

for a time frame t as follows:

()()()
()

i

t

t

t

count

count
ξ =

U P B

P

where, ()()()i

tcount U P B is the count of all unique points

overlapping bounding boxes of the bones and, ()tcount P

is the count of all the points in the complete 3D point

cloud. As shown in Fig. 7(c and d), the bounding box

from the unified skeleton completely overlaps the correct

region of the merged 3D point clouds, resulting in the

higher value of ξt. In this particular frame, the unified

skeleton has on average 7.73% better quality, compared to

the individual cameras.

For comparison, we also estimate the goodness

criteria for each individual front facing camera ξt. For all

three sequences, we found that on average the goodness

of the unified skeleton ξt was better than the average

goodness of individual front facing cameras ξt by a

factor of 7% to 10%.

Table 1: Table type styles (Table caption is indispensable)

Bones A B C Unified

Pelvis 0.0078 0.0139 0.0096 0.0006

Spine 0.0088 0.0194 0.071 0.0008

Head 0.1090 0.1767 0.0642 0.0035

Left shoulder 0.0222 0.0300 0.0811 0.0071

upper arm 0.0175 0.0047 0.0399 0.0009

Left forearm 0.0304 0.0148 0.0684 0.0050

Left hand 0.0303 0.0208 0.0328 0.0033

Right shoulder 0.0105 0.0052 0.0142 0.0005

Right upper arm 0.0161 0.0338 0.0102 0.0046

Right forearm 0.0062 0.0044 0.0044 0.0019

Right hand 0.0221 0.0383 0.0435 0.0032

Left hip 0.0138 0.0073 0.0610 0.0042

Left upper leg 0.0128 0.0113 0.0639 0.0010

Left lower leg 0.0270 0.0012 0.0120 0.0007

Left foot 0.0135 0.0028 0.0087 0.0015

Right hip 0.0037 0.0134 0.0232 0.0005

Right upper leg 0.0186 0.0813 0.0173 0.0060

Right lower leg 0.0137 0.0324 0.0093 0.0058

Right foot 0.0019 0.0097 0.0193 0.0012

 (a) (b) (c) (d)

Fig. 7: One example of bounding box based error calculation

is shown. As shown in (a) and (b), the tracking failure

causes the complete mismatch of the right arm's joints

with respect to the underlying merged 3D point

clouds. On the other hand, (c) and (d) show the

reconstructed unified skeleton, where the joints are

correctly aligned with the underlying merged 3D

point clouds, thus a large of number of 3D points are

within the bounding of the right forearm

Discussion

We used both evaluation methods to estimate the two

parameters σ and ρ in the temporal smoothness term

()c

tjD that was used in Equation 1. For each sequence,

we reconstructed the unified skeletons with varying

parameters and compared each bone-length with the

corresponding ideal length and the goodness of the

skeleton by calculating ξt. We observed that for the

sequences with the slower motion the value was

higher, whereas for the faster motion it was lower,

because the sudden jerky motion is heavily penalized

in case of the faster motion.
In terms of computing speed our method runs at a

moderate speed and can estimate 12 frames of uniform
skeletons per second. Ignoring the I/O overhead and if
the extrinsic calibration is pre-established, it runs in real-
time at 30 frames per second. We tested the method on a
2.4 Ghz Quad Core i5 system with 4 GB of memory.

Naveed Ahmed / Journal of Computer Science 2017, 13 (12): 795.804

DOI: 10.3844/jcssp.2017.795.804

803

Our method can easily be parallelized on a cluster as
each frame is processed individually.

Our method is subject to a couple of limitations. We

employ face detection to find out actor's orientation with

respect to the camera. Face detection works well in more

than 90% of the frames but it can fail if the face is

occluded, for example, in the boxing sequence. We solve

this issue in a pre-processing step by analyzing the

sequence and if a couple of frames are missing the face,

then we look at the frames before and after the missing

frames under the assumption that the frames were

skipped due to occlusion. Additionally, we also use the

normal of the root joint from the previous frame to

determine if the actor is still oriented towards the

camera. For example, in case face detection has failed,

but in the previous frame the actor was facing the

camera, then it is unlikely that the actor was rotated by

90 degrees in a single frame. Similarly, face detection

can also detect false positives, for example, some parts in

the surroundings can be incorrectly classified as faces.

Again, we make use of the full sequence to determine the

correct size and most likely position of the face.

Incorrect face rectangles with very small or large areas

are immediately discarded.
One can also see some flickering in the

reconstructing sequences, where one joint switches
between two cameras quickly. This is due to very similar
confidence score, which can vary according the normal
orientation if both cameras see the joint clearly. The
depth data from Kinect is very noisy and we do not
compensate for this noise, thus normal orientation can
differ slightly in each frame. Additionally, the general
flickering in joint positions is not from our algorithm
rather it is the raw skeleton data from Kinect, which is
not smooth over time. In future, we want to explore
smoothing the skeleton data by reconstructing the joint
position from all available cameras by means of a
weighted average, or incorporate a probabilistic model in
the confidence measure.

Despite the limitations, we show that our method is

able to reconstruct the human motion over 360 degrees

by fusing multiple RGB-D sensors and reconstruct a

unified skeletal animation in a plausible way that would

not be possible with a single Kinect.

Conclusion

We presented a method to reconstruct human motion
over 360 degrees by using data from multiple RGB-D
Kinect sensors and reconstruct a unified skeletal
animation. Our method can merge the skeleton data
directly from Kinects by assigning a confidence score to
each joint based on its tracking state, occlusion,
displacement, bone length and orientation. The
confidence score is then used to select 20 best joints
from the cameras towards which the actor's face is
oriented. This orientation is found by means of face

detection. Our method can reconstruct a unified 360
degree skeletal animation from multiple Kinects that
would not be possible from a single Kinect due to
occlusions and tracking failures. We also quantified the
goodness of the reconstructed unified skeleton using the
bone-length variation calculation and bounding-box
overlap ratio methods. In future, we would like to
extend the unified skeletal animation reconstruction
algorithm by incorporating a probabilistic model in the
confidence measure. In addition, we would also like to
work on new methods to quantify the goodness of the
reconstructed unified skeleton.

Acknowledgement

The author would like to thank the students who helped

with the recordings by performing specific motion.

Funding Information

The work is funded completely internally by the

University of Sharjah.

Author’s Contributions

The author has solely worked on the acquisition

setup, followed by the design and implementation of

the algorithm.

Ethics

This is author’s original work and no ethical issues

are associated in terms of its publication.

References

Ahmed, N. and S. Khalifa, 2016. Time-coherent 3d

animation reconstruction from rgb-d video. Signal,

Image Video Processing, 10; 783-790.

Ahmed, N., 2012. A system for 360 degree acquisition

and 3d animation reconstruction using multiple rgb-

d cameras. Proceedings of the 25th International

Conference on Computer Animation and Social

Agents, (ASA’12).

Ahmed, N., C. Theobalt, C. Rössl, S. Thrun and H.P.

Seidel, 2008. Dense correspondence finding for

parametrization-free animation reconstruction from

video. Proceedings of the Conference on Computer

Vision and Pattern Recognition, Jun. 23-28, IEEE

Xplore Press, Anchorage, AK, USA.

 DOI: 10.1109/CVPR.2008.4587758

Baak, A., M. Muller, G. Bharaj, H.P. Seidel and

C. Theobalt, 2011. A data-driven approach for real-

time full body pose reconstruction from a depth

camera. Proceedings of the International Conference

on Computer Vision, Nov. 6-13, IEEE Xplore Press,

Barcelona, Spain. DOI: 10.1109/ICCV.2011.6126356

Naveed Ahmed / Journal of Computer Science 2017, 13 (12): 795.804

DOI: 10.3844/jcssp.2017.795.804

804

Berger, K., K. Ruhl, Y. Schroeder, C. Bruemmer and
A. Scholz et al., 2011. Markerless motion capture
using multiple color-depth sensors. In: Vision,
Modeling and Visualization, Eisert, P., K. Polthier and
J. Hornegger (Eds.), The Eurographics Association.

Caputo, M., K. Denker, B. Dums and G. Umlauf,
2012. 3d hand gesture recognition based on
sensor fusion of commodity hardware.
Proceedings of the Mensch and Computer,
(PMC’12), Oldenbourg Verlag, pp: 293-302.

Carranza, J., C. Theobalt, M.A. Magnor and H.P. Seidel,
2003. Free-viewpoint video of human actors.
ACM Trans. Graph., 22: 569-577.

 DOI: 10.1145/882262.882309
Chen, L., H. Wei and J. Ferryman, 2013. A survey of

human motion analysis using depth imagery. Pattern
Recogn. Lett., 34: 1995-2006.

Dantone, M., J. Gall, C. Leistner and L.J.V. Gool, 2013.
Human pose estimation using body parts dependent
joint regressors. Proceedings of the Conference on
Computer Vision and Pattern Recognition, Jun.
23-28, IEEE Xplore Press, Location: Portland, pp:
3041-3048. DOI: 10.1109/CVPR.2013.391

de Aguiar, E., C. Stoll, C. Theobalt, N. Ahmed and
H.P. Seidel et al., 2008. Performance capture from
sparse multi-view video. Proceedings of
SIGGRAPH, Aug. 11-15, ACM, Los Angeles,
California, DOI: 10.1145/1399504.1360697

Girshick, R., J. Shotton, P. Kohli, A. Criminisi and A.
Fitzgibbon, 2011. Efficient regression of general-
activity human poses from depth images. Proceedings
of the International Conference on Computer Vision,
Nov. 6-13, IEEE Xplore Press, Barcelona, Spain.
DOI: 10.1109/ICCV.2011.6126270

Kim, Y.M., D. Chan, C. Theobalt and S. Thrun, 2008.
Design and calibration of a multi-view tof sensor
fusion system. Proceedings of the Computer Society
Conference on Computer Vision and Pattern
Recognition Workshops, Jun. 23-28, IEEE Xplore
Press, Anchorage, AK, USA.

 DOI: 10.1109/CVPRW.2008.4563160
Lun, R. and W. Zhao, 2015. A survey of applications and

human motion recognition with microsoft kinect. Int. J.
Pattern Recogn. Artificial Intelligence, 29: 1-50.

Microsoft, 2010. Kinect for microsoft windows and
xbox 360.

Obdrzalek, S., G. Kurillo, F. Oi, R. Bajcsy and E. Seto et al.,
2012. Accuracy and robustness of kinect pose
estimation in the context of coaching of elderly
population. Proceedings of the Annual
International Conference of the Engineering in
Medicine and Biology Society, Aug. 28-Sept. 1,
IEEE Xplore Press, San Diego, CA, USA, pp:
1188-1193. DOI: 10.1109/EMBC.2012.6346149

Shotton, J., A. Fitzgibbon, M. Cook, T. Sharp and M.

Finocchio et al., 2011. Real-time human pose

recognition in parts from single depth images.

Proceedings of the Conference on Computer

Vision and Pattern Recognition, Jun. 20-25, IEEE

Xplore Press, Colorado Springs, CO, USA, pp:

1297-1304. DOI: 10.1109/CVPR.2011.5995316

Theobalt, C., N. Ahmed, G. Ziegler anad H.P. Seidel,

2007. High-quality reconstruction of virtual actors

from multi-view video streams. IEEE Signal

Processing Magazine, 24: 45-57.

Viola, P. and M. Jones, 2001. Rapid object detection

using a boosted cascade of simple features.

Proceedings of the Computer Society Conference

on Computer Vision and Pattern Recognition,

Dec. 8-14, IEEE Xplore Press, Kauai, HI, USA.

DOI: 10.1109/CVPR.2001.990517

Vlasic, D., I. Baran, W. Matusik and J. Popovic, 2008.

Articulated mesh animation from multi-view

silhouettes. ACM Trans. Graph.

Wei, X., P. Zhang and J. Chai, 2012. Accurate realtime

full-body motion capture using a single depth

camera. ACM Trans. Graphics.

Yasin, H., U. Iqbal, B. Krüger, A. Weber and J. Gall,

2015. 3d pose estimation from a single monocular

image. CoRR, abs/1509.06720.

Ye, G., Y. Liu, Y. Deng, N. Hasler and X. Ji et al., 2013.

Free-viewpoint video of human actors using

multiple handheld kinects. IEEE Trans. Cybernet.,

43: 1370-1382. DOI: 10.1109/TCYB.2013.2272321

Ye, M., X. Wang, R. Yang, L. Ren and M. Pollefeys,

2011. Accurate 3d pose estimation from a single

depth image. Proceedings of the International

Conference on Computer Vision, Nov. 6-13, IEEE

Xplore Press, Barcelona, Spain, pp: 731-738.

 DOI: 10.1109/ICCV.2011.6126310

Yeung, K.Y., T.H. Kwok and C.C.L. Wang, 2013.

Improved skeleton tracking by duplex kinects: A

practical approach for real-time applications. J.

Comput. Inform. Sci. Eng., 13: 041-051.

