

© 2017 Kale Sarika Prakash and P.M. Joe Prathap. This open access article is distributed under a Creative Commons

Attribution (CC-BY) 3.0 license.

Journal of Computer Sciences

Original Research Paper

Tracking Pointer and Look Ahead Matching Strategy to

Evaluate Iceberg Driven Query

Kale Sarika Prakash and P.M. Joe Prathap

Department of Computer Science and Engineering, St. Peter’s University,

St. Peter’s Institute of Higher Education and Research, Avadi, Chennai, India

Article history

Received: 30-12-2016

Revised: 14-02-2017

Accepted: 17-04-2017

Corresponding Author:

Kale Sarika Prakash

Department of Computer

Science and Engineering, St.

Peter’s University, St. Peter’s

Institute of Higher Education

and Research, Avadi, Chennai,

India
Email: kalesarikaprakash@gmail.com

Abstract: Iceberg driven query is important and common in many

applications of data mining and data warehousing. Main property of

iceberg driven query is it extracts small set of data from huge database.

It works on aggregation function followed by GROUP BY and

HAVING clause. Due to involvement of aggregation function execution

of iceberg driven query becomes tedious and complex work. Main

objective of this research is to improve the performance of iceberg

driven query by reducing the time, number of iteration and I/O access

required to execute it. Currently available iceberg driven query

processing technique faces the problems of empty bitwise AND, OR

and XOR operation. Because of these problems they require more time

and I/O access to execute query. To overcome above problems this

research proposes tracking pointer and look ahead matching strategy to

evaluate iceberg driven query. Tracking pointer will initiate the

evaluation process as per the priority of vector. Look ahead matching

strategy help to identify probable vector instead of generating one by one

till the end of vector list. This strategy decides the probability of bitmap

vector to be executed. Thus in advance it identifies and avoids

unnecessary operations to be performed on bitmap vector. Our

experimental result shows that time and number of iteration required to

evaluate iceberg driven query using proposed approach is reduced [40 to

50] % even though data size increases. Thus we prove the effectiveness

and efficiency of proposed approach to process iceberg driven query.

Keywords: Iceberg Driven Query (IDQ), Tracking Pointer (TP) Strategy,

Look Ahead Matching (LAM) Strategy

Introduction

Data warehouse is collection of subject oriented,

integrated, non volatile and time variant dataset as

described by Inmon (2005). Analysis of such huge

database is done by executing complex queries such

as IDQ and online analytical processing functions.

The basic operation required in data analysis is

aggregate functions such as MIN, MAX, SUM, AVG

and COUNT. Generally the queries to be executed on

data warehouse are the queries with aggregation

function followed by HAVING and GROUP By

clause, such a query is known as IDQ. It consists of

three main parameters such as aggregation function,

HAVING clause and GROUP BY clause which makes

the query more complex.

Dubey et al. (2014) reported that, in addition to the

complexity of IDQ, the large volume of data stored in

data warehouse lengthens the time needed to execute

queries. Hence performance of query in terms of time is

most important requirement of any large database

system. This research focus on efficient execution of

aggregate function as it is a main part of IDQ.

Number of researches He et al. (2011; Guru Rao and

Shankar, 2012; 2013; Shankar and Guru Rao, 2014; Rao,

2014) work to improve performance of IDQ. But all of

them faces the problem of empty bitwise AND

operation, XOR operation, OR operation and futile

queue pushing.

 Proposed research overcomes these problems by

using Tracking Pointer (TP) and Look Ahead

Kale Sarika Prakash and P.M. Joe Prathap / Journal of Computer Sciences 2017, 13 (3): 55.67

DOI: 10.3844/jcssp.2017.55.67

56

Matching (LAM) Strategies. TP strategy work on

priority based approach which first analyse the

operation to be perform as per the evaluation of query.

According to evaluation process it arranges the

sequence of operation to be performed. Based on

results of current operation it change the priority and

perform the remaining operation. Along with TP

strategy this research proposes use of LAM strategy.

Main task of LAM strategy is to identify useless

operation in advance and skip such operations. It uses

the concept of probability to predict the chances of

bitmap vector to be part of final query result. In this

way by performing only required operations it reduces

I/O access, iterations as well as time required to

execute IDQ. These strategies work on bitmap vector

of attribute as per query requirement. The bitmap

vectors are in the form of 0’s and 1’s and our

algorithm perform logical operations such as OR and

XOR on this bitmap vectors. Executing bitwise

operations on 0’s and 1’s are very much cost effective

in term of I/O access and time. In this research it

directly helps us to improve the performance of IDQ.

Our experimental result proves that performance of

our strategy is better than previous algorithms.

This paper is organized into following sections.

Section 2 describes review of aggregate function, BI

and IDQ. Section 3 focuses on TP and LAM strategy

to evaluate IBDQ its workflow diagram and pseudo

code. Experimental analysis with graphical

representation is described in section 4 and section 5

conclude the paper.

Review of Aggregate Function, Bitmap

Indexing (BI) and Iceberg Driven Query

(IDQ)

This section highlights the concepts such as

aggregate function, bitmap indexing and iceberg driven

query. We are using these concepts in our research.

Aggregate Function

Dubey et al. (2014; Fang et al., 1998) stated that

aggregation function across many attributes are

commonly used in queries of data mining, data

warehousing and online analytical processing. The

commonly used queries in data mining and data

warehouse are IDQ which perform an aggregate

function across attributes and then remove aggregate

values that are below some specified threshold value.

Generally used aggregation functions are MIN, MAX,

SUM, AVG and COUNT.

As stated in research article by Gray et al. (1997)

there are three different type of aggregate functions.

Distributive: An aggregate function F is distributive if

there is a function G such that F (T) = G ({F (Si)|i = 1 ...

n}). SUM, MIN and MAX are distributive with G = F.

Count is distributive with G = SUM.

Algebraic: An aggregate function F is algebraic if

there is an M-tuple valued function G and a function

H such that F (T) = H ({G (Si)|i = 1 ... n}). Average,

Standard Deviation, MaxN, MinN and

Center_of_Mass are all algebraic. For Average, the

function G records the sum and count. The H function

adds these two components and then divide to produce

the global average. Similar technique is apply to find

the N largest value, the center mass of group objects

and other algebraic functions. The key to algebraic

functions is that a fixed size result (an M-tuple) can

summarize the sub-aggregation.

Holistic: An aggregate function F is holistic if

there is no constant bound on the size of the storage

needed to describe a sub-aggregate. That is, there is

no constant M, such that an M-tuple characterizes the

computation F.

Efficient computation of all these aggregate functions

are required in most of the large database applications

because processing cost of aggregate function is much

higher than that of the other basic relational operations

like SELECT and PROJECT.

Bitmap Indexing (BI)

Mei et al. (2013) stated that BI technique is most

suitable and efficient for read mostly, append only and

large size dataset. Because of this feature of BI we are

using it in our research.

Jrgens (1999) reported that BI strategy perform better

than tree based indexing methods like B Tree and R

Tree. In White Paper (2015; 2011) they mentioned

that BI has three advantages for using it in data

warehouse that it avoids complete table scan, save

number of disk access and save computational time.

Compressed BI concept is stated by Deliège and

Pedersen (2010; He et al., 2011) which is appropriate for

our research. Our research makes use of this concept

which saves the memory and shows the effectiveness of

BI for evaluation of IDQ. BI performs effectively as it

works on index level rather on original table. This

feature help to improve performance in terms of time

required to access data from database and memory

required to store database. By considering all above

features of BI we are using it in our research. We are

extending the way of using BI by TP and LAM strategy

and improving the performance of IDQ.

Overview of Iceberg Driven Query (IDQ) and its

Processing Methods

IDQ refer to a class of queries which compute

aggregate function across attributes to find aggregate

Kale Sarika Prakash and P.M. Joe Prathap / Journal of Computer Sciences 2017, 13 (3): 55.67

DOI: 10.3844/jcssp.2017.55.67

57

value above some specified threshold value. The

number of tuples that satisfy the threshold in the

having clause is relatively small compared to the large

amount of input data. The output result can be seen at

the tip of iceberg. Main property of IDQ is it extracts

small set of data from huge database. As it extracts

small set of data, the time required for extracting such

a small data set must be less even though it works on

huge database. Our research make use of this property

to evaluate IDQ.

Given a relation R with attributes a1, a2… an,

aggregate function AggF and a threshold T, the structure

of IDQ is as follow:

SELECT R.a1, R.a2… R.an, AggF (R.a1, R.a2… R.an)

FROM relation R

GROUPBY R.a1, R.a2… R.an

HAVING AggF (R.m) >= T

Suppose, a purchase manager is given a sales

transaction dataset. He or she may want to know location

wise total number of Products which satisfy threshold

condition. To answer this, we can write iceberg driven

query as below:

SELECT location, Product Type, Sum (# Product)

FROM Relation Sales

GROUP BY Location, Product Type

HAVING Sum (# Product) >= T

To implement Iceberg driven query, a common

strategy in horizontal database is first to apply

hashing or sorting to all the data in the dataset, then

count all of the location and Product Type pair groups

and finally eliminate those groups which do not pass

the threshold T. These algorithms generate significant

I/O for intermediate results and require large amounts

of main memory. They leave much room for

improvement in efficiency. Another option to retrieve

above data is instead of counting the number of tuples

in every location and Product Type pair group at first

step, we can generate Location-list: A list of local

stores which sell more than T number of products

using following query:

SELECT Location, Sum (# Product)

FROM Relation Sales

GROUPBY Location

HAVING Sum (# Product) >= T

Second step we can generate Product Type-list: A list

of categories which sell more than T number of products.

For example:

SELECT Type, Sum (# Product)

FROM Relation Sales

GROUPBY Product Type

HAVING Sum (# Product) >= T

In this way we can eliminate many of the location

and Product Type pair groups. It means that we only

generate candidate location and Product Type pairs

for local store and Product type which are in

Location-list and Product Type-list.

In this research we are making use of the main

feature of IDQ that it can answer quickly because of

small result set from large database. But current database

systems do not take full advantage of this feature. The

relational database systems like Oracle, SQL, MYSQL

and DB2 uses general aggregation algorithm to answer

the iceberg driven query by aggregating all tuples first

then evaluating HAVING clause to generate query

result. This method require multiple passes of database

to generate result which directly affect on the

performance of query in terms of time, I/O access and

memory requirement.

The concept of Iceberg query was first studied by

Fang et al. (1998). In this research researchers extend

probabilistic technique suggested by Whang et al. (1990)

and proposes hybrid and multi bucket algorithm. This

research combine sampling and multi hash functions to

improve the performance of iceberg query and reduce

memory requirement. But these algorithms are not

suitable for large data sets.

To solve above problem Fang et al. (1998)

proposes algorithm based on sampling and bucket

counting method. This method generates false positive

and false negative values which are in the final result

but it is not in the constraint list. Focus of this

research is to minimize false positive value. Different

optimization methods like hashing, multiple hashing

and combination of multiple hash functions are used

in these algorithms. These methods reduces number of

false positive values but it take more time to execute

query as it require multiple scan of relation.

To overcome the problem occurred in above research

Bae and Lee (2000) introduces method to select

candidate values using partitioning and postpone

partitioning algorithms. This overcome the problem of

multiple scan over relation occurs in sampling and

bucket counting mechanism. The performance of these

algorithm depends upon the order of data and memory

size. If database is sorted then performance is good

without considering memory size.

Collective Iceberg query evaluation is proposed by

Leela et al. (2004) which presents comparison using

three methods sort merge aggregate, hybrid hash

aggregate and ORACLE. This study proves that

Kale Sarika Prakash and P.M. Joe Prathap / Journal of Computer Sciences 2017, 13 (3): 55.67

DOI: 10.3844/jcssp.2017.55.67

58

performance of sort merge aggregate is better on data

sets with low to moderate number. Hybrid hash

aggregate performance was not good when data set is

large. There was a considerable performance gap

between the online algorithms and ORACLE.

All above mentioned algorithms of iceberg query

processing come under the group of tuple scan based,

which require multiple table scan to read data from

disk. This way of processing iceberg query is time

consuming. All above algorithms focuses on reducing

number of tuple scan but no one of them uses property

of iceberg query.

However Ferro et al. (2009) tries to make use of

this property of iceberg query and uses BI but it

suffers from empty bit wise AND result problem.

Researchers He et al. (2011) tries to minimize this

problem using dynamic pruning and vector alignment

algorithm. This work leverages the antimonotone

property of iceberg query and develop dynamic pruning

algorithm using BI. However they notice that there is

problem of massively empty bitwise AND results and

extra XOR operation. To overcome this challenge they

develop vector alignment algorithm which help to solve

empty bitwise AND operation problem. The problem

with this algorithm is that all vectors may not have 1 bit

at same position and if it is not at same position then all

the AND as well as XOR operations are fruitless and

time consuming.In this way both the above approaches

suffer from fruitless AND as well as XOR operations.

Guru Rao and Shankar (2012) try to handle empty XOR

operation problem but did not able to solve fruitless bit

wise AND operation problem. Both the research He et al.

(2011; Guru Rao and Shankar, 2012) faces the problem

of futile queue pushing and empty bitwise operation.

Our research overcomes these problems by using TP

and LAM strategy. This approach improves efficiency

by pruning many groups beforehand. In our strategy the

main operations are bitwise AND, OR and XOR which

are perform on bitmap vector. Bitmap vector is in the

form of 1’s and 0’s, so these operations can be executed

quickly by hardware. The execution cost of these

operations is really cheap. As we can see in our

experimental result section, our methods and procedure

are superior in computing IDQ. In this way this research

provide a framework for evaluating IDQ with aggregate

functions like MIN, MAX, COUNT and SUM.

Proposed TP and LAM Strategy for IDQ

processing

Working Model of TP and LAM Strategy

This section describes the workflow of TP and LAM

strategy for IDQ evaluation. Figure 1 shows workflow of

TP and LAM strategy.

Initially, bitmap vector is generated. Then TP

strategy uses priority based approach to assign

priorities to vector. TP assign priority to vectors as

per the position of 1’s occurring in vector. After

finalization of vectors for performing bitwise AND

operation LAM strategy will get activate. It help to

find out probability of vector whether it will satisfy

threshold condition or not. If it recognize that

possibility of success is less then it will skip further

AND, OR and XOR operation. Then it will move to

next probable bitmap vector for further processing.

Thus it help to reduce unnecessary burden of

performing fruitless bitwise AND, OR and XOR

operation. In this way our strategy reduces the empty

bitwise AND, XOR and OR operation problem which

occur in previous research. Finally the combination of

vectors which satisfy threshold condition will be

added in RESULT.

Methods used in TP and LAM Strategy for IDQ

Processing

This section describe the method used in this research

to process the IDQ. Here we are considering an IDQ

with two attribute and COUNT aggregate function. The

structure of query to be process is as shown in Fig. 2 and

3. This section describe detail processing of query 1 on

the table T shown in Fig. 4.

If IDQ given in Fig. 2 is executed on relational

database T as shown in Fig. 4 using normal BI strategy

to declare the result of IDQ following steps are required:

Step 1: Perform (X AND Y) bitwise AND operation

between X and Y Bitmap Vector. In our

example as shown in Fig. 4 X and Y vector

contain 3 distinct values like (X1,X2,X3) and

(Y1,Y2,Y3) therefore to process query1 9(3*3)

bitwise AND operations are required. The pair

of operations to be perform are

(X1,Y1),(X1,Y2),(X1,Y3),(X2,Y1),(X2,Y2),(X

2,Y3),(X3,Y1),(X3,Y2),(X3,Y3).

Step 2: Next step is comparing result with the threshold

value specified in query. In our example query

threshold value is >= 3. The result of each AND

operation is compared with threshold value >=

3. The result which satisfy this condition will be

included in final IDQ result.

In this way comparison step has to execute 9 times.

The final IDQ result contain only two combination

(X2,Y3) and (X3,Y2). But in this approach we have to

perform bitwise AND operation 9 times, comparing

results with threshold also 9 times. If database size

increases then the number of fruitless AND operations

also go on increase which degrades the performance of

IDQ. This is the major limitation of all previous research.

Kale Sarika Prakash and P.M. Joe Prathap / Journal of Computer Sciences 2017, 13 (3): 55.67

DOI: 10.3844/jcssp.2017.55.67

59

Fig. 1. Workflow diagram

Fig. 2. Query1: IDQ with COUNT function

Fig. 3. Query2: IDQ with COUNT function

Kale Sarika Prakash and P.M. Joe Prathap / Journal of Computer Sciences 2017, 13 (3): 55.67

DOI: 10.3844/jcssp.2017.55.67

60

Fig. 4. Table T and its bitmap index

Our research overcomes these problems by making

use TP and LAM strategy. It will work in following way:

• First it will decide which attribute vectors to be

considered for operation. For this it allocates priority

to vector as per first 1 bit position. In case of above

example first operation is (X3,Y2) and the output is

(10001000101001) it contain 1 bit more than

threshold value. So (X3,Y2) is added in final IDQ

RESULT

• To check further the probability of X3 and Y2 to be

part of IDQ result this strategy perform following

operations:

Generate New X3 and Y2. New X3 = (X3 AND Y2)

– X3 and New Y2 = (X3 AND Y2)-Y2. New X3 is

(00010000010000) number of 1’s does not satisfy

threshold condition so vector X3 is removed from

list to perform operation in combinations with

vector from Y. Similarly Generate New Y2 as per

above procedure and it will be (00000000000000) it

does not satisfy threshold condition therefore it is

also discarded from the list

In this way through this strategy within first AND

operation we discarded two vectors from the bitmap

vector list. Now only 4 vectors X1,X2,Y1 and Y3

are present in bitmap vector

• Repeat step 1 on remaining vectors(X1, X2) and

(Y1,Y3). Next operation is (X1ANDY1) whose

result is (010000000000000) which does not

satisfy threshold condition so it will be not in

final IDQ RESULT. Now X1 and Y1 is also

removed from the list

• Repeat step 1 on remaining vectors(X2) and (Y3).

Perform (X2 AND Y3) whose result is

(00100110000000) it contain 1 bit more than

threshold so add (X2,Y3) in final IDQ RESULT

In this way this strategy require only 3 AND

operations and it directly skip fruitless AND, OR and

XOR operations. Due to this the computational cost of

IDQ in terms of number of iterations required to execute

the query get reduce so query processing time is reduced.

In the similar fashion we have applied our strategy to

solve query 2 shown in Fig. 3. We noticed that the number

of AND and XOR operations required to evaluate above

queries using our strategy get reduces due to this time

required to execute IDQ also get reduced.

Implementation Detail of TP and LAM Strategy for

IDQ Processing

This subsection of paper represents the different

functions required to implement the methodology

specified in last subsection. The pseudo code for TP and

LAM strategy for IDQ processing is as below.

Input: (Iceberg driven Query(Attribute X, Attribute Y,

threshold T), Table P, Bitmap Vector table of P)

Processing: Processing of algorithm is based on number

of distinct values of IDQ attribute and threshold T

Output: (IDQ RESULT)

A] CREATE BITMAP VECTOR FUNCTION

Kale Sarika Prakash and P.M. Joe Prathap / Journal of Computer Sciences 2017, 13 (3): 55.67

DOI: 10.3844/jcssp.2017.55.67

61

It contains main functions which are used to

convert INPUT into OUTPUT. First function is Create

BITMAP VECTOR on IDQ attribute. It works on

following formula:

BITMAP VECTOR = [cardinality of Column

A+ cardinality of Column B+…….+

cardinality of Column N]* No. of Rows

present in Database

Above formula is used to find the Space Complexity

of Algorithm. Relationship between each cardinality

vector is one to one. The attribute which has this

relationship is SET to 1 otherwise 0. In this way

complete BITMAP VECTOR is created which is

combination of 0’s and 1’s.

B] TP and LAM based strategy for IDQ evaluation

1. For each bitmap vector of Attribute X

COUNT(Number of 1’s in each Bitmap vector) if it is >

T then only keep such vector in BI. Otherwise discard it

from the list. For each bitmap vector of Attribute X find

first 1 bit position and accordingly allocate priority.

PriorityQueueX.clear, PriorityQueueY.clear.

For each vector x of attribute X do

If(x.count>= T)then x.next1 = FirstOneBitPosition(x,0)

2. For each bitmap vector of Attribute Y

COUNT(Number of 1’s in each Bitmap vector) if it is >

T then only keep such vector in BI otherwise discard it

from the list.

PriorityQueueX.clear, PriorityQueueY.clear. For each

vector y of attribute Y do

If(y.count>=T)then y.next1 = FirstOneBitPosition(y,0)

3. Find first 1 bit position of vector X and Y and

accordingly allocate Priority.

If (X.Positionof1Bit > Y. Positionof1Bit)

Then (FirstPriority == X.vector)

Else (FirstPriority == Y.vector)

4. If (X.Positionof1Bit == Y. Positionof1Bit)

Then (FirstPriority == X.vector) as X vector appears first

in sequence and Y comes later.

5.PriorityQueueX.Push(x)

6. PriorityQueueY.Push(y)

7. Initiate Tracking pointer strategy: It will check the

position of 1’s bit in bitmap vector and map it with other

attributes 1 bit position. NextMatchVector function will

get initiate during this phase.

x,y = NextMatchVector(PriorityQueueX.clear,

PriorityQueueY,T)

While x! = NULL &y!=NULL do

PriorityQueueX.Pop

PriorityQueueY.Pop

CurrentResult = BitwiseAND(x,y)

If(CurrentResult.count>= T) then

Add IDQ Result in

RESULT(x.value,y.value,CurrentResult.count)

x.count = x.count-CurrentResult.count

y.count = y.count-CurrentResult.count

If x.count>= T then

x.next1 = FirstOneBitPosition(x,x.next+1)

If x.next1! = NULL then

PriorityQueueX.Push(x)

If y.count>= T then

y.next1 = FirstOneBitPosition(y,y.next+1)

If y.next1! = NULL then

PriorityQueueY.Push(y)

Repeat step 7 till allocating priority to vectoe.

x,y = NextMatchVector(PriorityQueueX,

PriorityQueueY,T)

8. Initiate Look ahead matching strategy.

If RESULT satisfies THRESHOLD condition then to

predict the possibility of positive result look ahead

matching strategy is used. This help to reduce fruitless

AND, OR and XOR operation. It prune the vector as it

identify that this vector will not able to produce positive

result. In this way this module skip further operational

overhead of IDQ processing.

9. GENERATE new vectors by performing OR

operation between RESULT and the new vector which is

already part of RESULT.

New X Vector = Old X vector- Current Result Vector

New Y Vector = Old Y vector- Current Result Vector

10. If (New X OR Y Vector) satisfy Threshold condition

then perform step 7 on newly generated vector otherwise

skip the respective attribute from the vector list.

This step helps to identify the possibility of vector to be

part of IDQ RESULT further.

11. Repeat step 7-10 till the vector list will be empty.

12. Final IDQ RESULT is generated.

Above algorithms are implemented using JAVA 7.0

platform with ORACLE 10 g as backend database. The

experiment is performed on corei 3 processor with 4 GB

DDR-III RAM. Experimentation is done on synthetic

database with tuple size of 5, 10, 20, 40, 50 and 80 K.

We have executed IDQ’s with different aggregate

functions like CONNT, SUM, MIN and MAX.

Experimental Analysis

This section describes the result of experiment

conducted on TP and LAM strategy for IDQ
evaluation and previous strategies like Bitmap
Indexing Approach (BIA) and dynamic pruning
approach. Parameters consider for comparison and to
measure the performance of IDQ are database size,
threshold value, number of iterations required to

execute query, time and aggregate functions. As we
have seen in section 3 that the number of AND, OR
and XOR operation required to execute IDQ get

Kale Sarika Prakash and P.M. Joe Prathap / Journal of Computer Sciences 2017, 13 (3): 55.67

DOI: 10.3844/jcssp.2017.55.67

62

reduced in case of TP and LAM approach. This is
reflected in our actual result obtained from this
framework. We observe that number of iterations as
well time required to execute query get reduced.

The graphical illustration is shown in Fig. 5 to 14

for COUNT, SUM, MIN and MAX aggregate

functions. We have compare the performance of TP

and LAM approach with the BIA and DPA suggested

in previous work He et al. (2011; Guru Rao and

Shankar, 2012; 2013). We observe that as we go on

increasing size of data set and threshold value then also

query performance is goes on increasing which is as

shown in Fig. 5 to 8. Practically the performance of

query is also depend on the nature of data present in

database that is, if data is uniformly distributed in

database then it may take more time.

The main feature of IDQ is it extracts small data

from huge dataset. As data to be extracted is small so

time required for extracting it must be less. But with

previous approaches we noticed that as data size

increases the time required to extract data is also

increases. Based on our experimental result we have

proved that through our approach even though data

size increases then also IDQ response time get

reduced proportionally. We are using bitmap indexing

technique which help to handle huge data effectively

as describe in Jrgens (1999; White Paper, 2015; 2011).

This is also noticed through our experimentation as

data size is go on increasing the percentage of response

time is reduced. As shown in Fig. 6, 8 and 10 which

represent time analysis we observe that for small data

set size i.e., 5, 10 k and up to 20 k difference in time

required is reduced only 10-20% but as we go on

increasing dataset size from 20, 40 to 80 k difference in

time required is reduced to 45-50%. This indicates that

our strategy is well suitable for large data set. Through

our experimental result we have proved that TP and

LAM based approach using BI is helpful to improve the

performance of IDQ. In this way we have developed

the frame work for COUNT, SUM, MIN and MAX

aggregate function used in IDQ.

Fig. 5. Iteration Analysis of COUNT function based on Dataset size and Threshold

Fig. 6. Time Analysis of COUNT function based on Dataset size and Threshold

Kale Sarika Prakash and P.M. Joe Prathap / Journal of Computer Sciences 2017, 13 (3): 55.67

DOI: 10.3844/jcssp.2017.55.67

63

Fig. 7. Iteration analysis of SUM function based on dataset size and threshold

Fig. 8. Time analysis of SUM function based on dataset size and threshold

Fig. 9. Iteration analysis of COUNT function based on threshold

Kale Sarika Prakash and P.M. Joe Prathap / Journal of Computer Sciences 2017, 13 (3): 55.67

DOI: 10.3844/jcssp.2017.55.67

64

Fig. 10. Time analysis of COUNT function based on threshold

Fig. 11. Iteration analysis of SUM function based on threshold

Fig. 12. Iteration analysis of MIN function based on threshold

Kale Sarika Prakash and P.M. Joe Prathap / Journal of Computer Sciences 2017, 13 (3): 55.67

DOI: 10.3844/jcssp.2017.55.67

65

Fig. 13. Iteration analysis of MAX function based on threshold

Fig. 14. Query1 and query 2: AND operation, XOR operations and iteration analysis

Figure 9 to 13 shows the iteration and time analysis

against TH: Threshold value. In this case also we

observe that even though threshold value increases then

also the iteration count get reduced for large data set.

Only time against threshold value is not directly decrease

because it considers time to load huge data set. Also this

analysis is based on data available in dataset with similar

group. It may possible that with fewer threshold group

huge data may present. So in that case it is not always

possible that as threshold value increases time and

iterations required get reduced. We observe that

performance of query also depend upon the aggregate

function used in query. IDQ with SUM aggregate

function required more time compare to MIN, MAX and

COUNT aggregate function.

Figure 14 shows the analysis of query 1 and query 2 of

Fig. 2 and 3 respectively. Here we have calculated the

number of AND and XOR operation required to solve

query manually using BIA, DPA and our TP and LAM

strategy. We have also tested both the query on our

framework and calculated iterations required to execute the

query 1 and query 2. Here also we noticed that performance

of our strategy is better compare to old strategies.

Thus with this experimental analysis we prove that

performance of IDQ with TP and LAM strategy is better

than all previous strategies.

Kale Sarika Prakash and P.M. Joe Prathap / Journal of Computer Sciences 2017, 13 (3): 55.67

DOI: 10.3844/jcssp.2017.55.67

66

Conclusion

Basic requirement of decision support and

knowledge discovery systems is to compute aggregate

values of interesting attributes by processing a huge

amount of data. In particular, IDQ is a special type of

aggregation query that computes aggregate values

above a user specified threshold values. Proposed

research makes use of TP and LAM strategy and uses

bitmap indexing technique for processing IDQ. For

efficient evaluation of aggregate function we used TP

concept and LAM approach which helps to increase the

speed of IDQ. On the basis of experimental results we

found that number of iterations required and time

required to execute query get reduced to 40-50% even

though dataset size increases. Experimental results

prove the superiority of our strategy by comparing it

with previous research like BIA and DPA. It overcome

all the problems occur in previous research such as

empty bitwise AND, OR and XOR operation and

number of table scan required to execute IDQ. Our

research concentrates only on structured data. In future

by extending this concept for unstructured data

proposed strategy will helpful for big data analysis.

Acknowledgment

The authors wish to thank anonymous reviewers for

their valuable, insightful comments that improve the

content of this original research paper.

Author’s Contributions

Kale Sarika Prakash: The main responsible author

for conducting the literature review and drafting the

complete research paper. Contributed in design,
implementation and testing of framework.

P.M. Joe Prathap: Contributed in preparation,

organization and supervision of complete paper.

Ethics

This article is original and contains unpublished

material. The corresponding author confirms that the

other author has read and approved the manuscript and

no ethical issues involved.

References

Bae, J. and S. Lee, 2000. Partitioning algorithms for the

computation of average iceberg queries. Proceedings

of the 2nd International Conferences on Data

Warehousing and Knowledge Discovery, Sept. 4-6,

Springer, London, UK, pp: 276-286.

 DOI: 10.1007/3-540-44466-1_27

Deliège, B. and T.B. Pedersen, 2010. Position list word

aligned hybrid: Optimizing space and performance

for compressed bitmaps. Proceedings of the 13th

International Conference on Extending Database

Technology, Mar. 22-26, ACM., Lausanne,

Switzerland, pp: 228-239.

 DOI: 10.1145/1739041.1739071

Dubey, A., A. Kamal and S.C. Gupta, 2014. Effects of

aggregation and data size on query performance and

memory requirements of a data warehouse.

Proceedings of the International Conference on

Optimization, Reliabilty and Information Technology,

Feb. 6-8, IEEE Xplore Press, pp: 99-104.

 DOI: 10.1109/ICROIT.2014.6798300

Fang, M., N. Shivakumar, H. Garcia-Molina, R. Motwani

and J.D. Ullman, 1998. Computing iceberg queries

efficiently. Proceedings of the 24rd International

Conference on Very Large Data Bases, Aug. 24-27,

Morgan Kaufmann Publishers Inc. San Francisco,

CA, USA., pp: 299-310.

Ferro, A., R. Giugno, P.L. Puglisi and A. Pulvirenti,

2009. BitCube: A bottom-up cubing engineering.

Proceedings of the 11th International Conference on

Data Warehousing and Knowledge Discovery, Aug.

31-Sept. 02, Springer, Linz, Austria, pp: 189-203.

DOI: 10.1007/978-3-642-03730-6_16

Gray, J., A. Bosworth, A. Layman and H. Pirahesh,

1997. Data cube: A relational aggregation operator

generalizing group-by, cross-tab and sub-totals.

Data Min. Knowl. Discovery, 1: 29-53.

 DOI: 10.1023/A:1009726021843

Guru Rao, C.V. and V. Shankar, 2012. Efficient iceberg

query evaluation using compressed bitmap index by

deferring bitwise-XOR operations. Proceedings of

the IEEE 3rd International Advance Computing

Conference, Feb. 22-23, IEEE Xplore Press, pp:

1311-1316. DOI: 10.1109/IAdCC.2013.6514418

Guru Rao, C.V. and V. Shankar, 2013. Computing

iceberg queries efficiently using bitmap index

positions. Proceedings of the International

Conference on Human Computer Interactions, Aug.

23-24, IEEE Xplore Press, pp: 1-6.

 DOI: 10.1109/ICHCI-IEEE.2013.6887811

He, B., H.I. Hsiao, Z. Liu, Y. Huang and Y. Chen, 2011.

Efficient iceberg query evaluation using compressed

bitmap index. IEEE Trans. Knowl. Data Eng., 24:

1570-1589. DOI: 10.1109/TKDE.2011.73

Inmon, W.H., 2005. Building the Data Warehouse. 4th

Edn., Wiley, ISBN-10: 0764599445, pp: 576.

Jrgens, M., 1999. Tree based indexes versus bitmap

indexes: A performance study. Proceedings of the

International Workshop Design and Managementof

Data Warehouses, (MDW’ 99).

Kale Sarika Prakash and P.M. Joe Prathap / Journal of Computer Sciences 2017, 13 (3): 55.67

DOI: 10.3844/jcssp.2017.55.67

67

Leela, K.P., P.M. Tolani and J.R. Haritsa, 2004. On

incorporating iceberg queries in query processors.

Proceedings of the 9th International Conferences on

Database Systems for Advances Applications, Mar.

17-19, Springer, Jeju Island, Korea, pp: 431-442.

DOI: 10.1007/978-3-540-24571-1_40

Mei, Y., K. Ji and F. Wang, 2013. A survey on bitmap

index technologies for large-scale data retrieval.

Proceedings of the 6th International Conference on

Intelligent Networks and Intelligent Systems, Nov.

1-3, IEEE Xplore Press, pp: 316-319.

 DOI: 10.1109/ICINIS.2013.88

Rao, V.C.S., 2014. Efficient iceberg query evaluation

using set representation. Proceedings of the Annual

IEEE India Conference, Dec. 11-13, IEEE Xplore

Press, pp: 1-5.

 DOI: 10.1109/INDICON.2014.7030537

Shankar, V. and C.V. Guru Rao, 2014. Cache based

evaluation of iceberg queries. Proceedings of the

International Conference on Computer and

Communications Technologies, Dec. 11-13, IEEE

Xplore Press, pp: 1-5.

 DOI: 10.1109/ICCCT2.2014.7066694

Whang, K.Y., B.T.V. Zanden and H.M. Taylor, 1990. A

linear-time probabilistic counting algorithm for

database applications. ACM Trans. Database Syst.,

15: 208-229. DOI: 10.1145/78922.78925

White Paper, 2011. An oracle white paper. Oracle

Database 11g for Data Warehousing and Business

Intelligence. Oracle

White Paper, 2015. An oracle white paper. Oracle

database 12c-Built for Data Warehouse, Oracle.

