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Abstract: This paper provides a novel approach for the problem of 

detecting the yellowish lesions in the eye fundus images, such as hard 

and soft exudates, in a fully-automated manner. To solve this problem 

of segmenting exudates automatically, the fundus image was first 

converted into the L*a*b* color space to decouple the chromaticity 

information of the image. Next, the fundus image was partitioned into 

five disjoint clusters based on this information via the unsupervised k-

means algorithm. Among the clustered images, the one having the 

brightest average intensity was chosen to be the best cluster containing 

all the bright yellowish pixels. Using this cluster, a threshold value was 

estimated via statistic-based metrics and subsequently applied to 

remove any non-bright clustered pixels and preserve only the relatively 

bright ones within the image. Finally, the optic disc was eliminated 

from the thresholded image, leaving out only the bright abnormalities. 

This approach was evaluated over a total of 1419 images retrieved from 

three heterogeneous datasets: DIARETDB0, DIARETDB1 and 

MESSIDOR. The proposed segmentation algorithm was fully-

automated, non-customized, simple and straightforward, regardless of 

the heterogeneity of the datasets. The proposed system correctly 

detected the bright abnormalities achieving an average sensitivity and 

specificity of 85.08% and 56.77%, respectively.  

 

Keywords: Abnormalities Segmentation, Cotton Wool Spots, Hard 

Exudates, K-Means Clustering, Statistical-Based Thresholding 

 

Introduction  

Segmenting fundus abnormalities occurring in the 

interior surface of the eye shall assist ophthalmologists 

in diagnosing and treating serious eye diseases such as 

glaucoma, diabetic retinopathy and macular 

degeneration. Diabetic retinopathy particularly is a major 

sight-threatening complication caused by diabetes 

mellitus. Diabetes harmfully affects the retina (diabetic 

retinopathy), as well as the kidneys (diabetic 

nephropathy) and the nervous system (diabetic 

neuropathy) as stated by Patton et al. (2006) and 

Allam et al. (2015). Also, WHO (2016) reported that 2.6% 

of global blindness could be attributed to diabetic 

retinopathy, in which the number of people with diabetes 

had risen from 108 million in 1980 to 422 million in 2014. 

Accordingly, the greatest emphasis in automated 
diagnosis had unsurprisingly been given to the detection 
of the symptoms of diabetic retinopathy. Ghoneim 
(2007) categorized these indicators into two classes: 
“Bright/yellowish abnormalities” which include hard 
exudates and cotton wool spots and the “dark/red 
abnormalities” which include hemorrhages and 
microaneurysms. Fig. 1 illustrates such bright and dark 
abnormalities within the diabetic fundus image. As 
noticed in Fig. 1, bright abnormalities such as hard 
exudates and cotton wool spots are mainly 
characterized by their yellowish color. This is also the 
characterizing feature of the circular optic disc which 
appears on the right of the fundus image illustrated in 

Fig. 1. But on the contrary to the optic disc, such 
bright abnormalities have varying sizes (i.e., tiny-
tolarge), irregular shapes and unspecific random 
positions within the fundus image. 
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Fig. 1. Bright and dark abnormalities in a diabetic fundus image 

 

Problem 

In large-scale screening tests of numerous number of 

patients, it is normally inefficient to rely solely on 

ophthalmologists to detect the exudates that may be found 

in the captured fundus images. Therefore, it is extremely 

necessary to rely on automated computer vision systems to 

detect such abnormalities that diabetic patients suffer from.  

Challenges 

Due to their similar color and appearance within the 

fundus image, exudates may be confused with the optic 

disc. Also, such abnormalities may be indiscernible (i.e., 

hard to detect) in low-quality images.  

Objective 

Accordingly, the main objective of this paper is to 

provide a computer-aided automated technique for 

detecting and segmenting the bright yellowish lesions, 

which significantly affect the normal appearance and 

semblance of the fundus.  

Advantages 

The proposed technique contributed in presenting a 

detection strategy that was fully automated, regardless of 

the extreme heterogeneity of the screened images (e.g., 

spatial size, field of view, image quality, etc.); as no 

image-dependent parameters were adjusted, nor training 

images were utilized, nor predefined templates were 

exploited for the sake of customizing the proposed 

algorithm over certain image datasets.  

The remainder of this paper is organized as follows. 

First, it reviews the previous work pertaining to exudates 

segmentation, followed by a section that describes our 

proposed method for segmenting the bright 

abnormalities such as hard and soft exudates. Finally, the 

paper presents the results of the proposed technique, 

followed by a concluding section.  

Related Work  

Harangi et al. (2012) enhanced the visual appearance 

of the exudates by eliminating the optic disc as well as 

improving the contrast of the green channel via 

contrastlimited adaptive histogram equalization 

(CLAHE). Then, they identified the candidate regions 

containing exudates via morphological closing and 

reconstruction. Consequently, 56 descriptors were 

extracted for each candidate pixel to classify them, 

where the most relevant features were selected to train a 

boosted naïve Bayes classifier, achieving a sensitivity of 

63% over the DIARETDB1 dataset.  
Similar to the previous preprocessing method, 

Jaafar et al. (2011) first enhanced the contrast of the 

green channel using CLAHE. Consequently, the hard 

exudates were detected by top-down image segmentation 

to partition the image into two homogeneous regions 

followed by Canny edge detection and region growing to 

segment the candidates of hard exudates. These 

candidates were classified into either “exudates” or 

“non-exudates” using a rule-based classifier. The 

proposed method was trained using the DIARETDB0 

dataset and successfully detected the hard exudates in 

93.2% of the 106 images picked from the DIARETDB1 

and MESSIDOR datasets. 

Kumar et al. (2013) employed histogram analysis to 

detect exudates. First, the contrast of the image was 

changed via the nonlinear curve with brightness values of 

the HSV space, in which gamma correction was applied 
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on each of the red and green components of the image. 

Then, the exudates candidates were detected using 

histogram analysis. Finally, multi-channel histogram 

analysis was performed to eliminate the false positive 

candidates in the optic disc. This algorithm was tested 

over a dataset of 158 images achieving a sensitivity and 

specificity of 88.45% and 95.5%, respectively.  

Sopharak et al. (2008) preprocessed the image to 

enhance its contrast and eliminate the optic disc. Then, they 

carried out a set of experiments on feature selection and 

exudate pixel classification using a naïve Bayes classifier, 

which proved that the best feature set is a combination of 

six features: (1) the preprocessed pixel intensity, (2) the 

standard deviation of the preprocessed intensities in a 

window around the pixel, (3) the pixel’s hue, (4) the 

number of edge pixels in a window around the pixel, (5) the 

ratio between the size of the pixel’s intensity cluster and the 

optic disc and (6) the response of the pixel to Gaussian filter 

derivative. Their approach correctly classified the exudates 

in 93.38% of a dataset containing 39 images. 

Again, to prevent confusion with exudates, Sreng et al. 

(2013) first detected and eliminated the optic disc 
through image binarization, ROI-based segmentation and 
morphological reconstruction. Then, the exudates were 
detected by applying the maximum entropy thresholding 
to filter out the bright pixels and finally, exudates were 
extracted via morphological reconstruction. This 

exudates extraction method was tested over 100 fundus 
images achieving a sensitivity of 91%.  

Eadgahi and Pourreza (2012) detected and eliminated 
the blood vessels using bottom-hat transformation and 
then extracted the bright components of high intensities 
using the top-hat transformation. After extracting the 
bright components, their method consequently 
distinguished the exudates by locating and eliminating 
the optic disc via its distinctive properties such as its 
high intensity and its high density of blood vessels. Their 
Method successfully extracted exudates with an average 
sensitivity of 78.28% over the DIARETDB1 dataset.  

Franklin and Rajan (2014) preprocessed the fundus 
images in the LAB color space using CLAHE to enhance 
its contrast. After eliminating the optic disc, the bright 
pixels were detected and classified as either “exudates” 
or “non-exudates” based on their high grey-level 
variations via employing an artificial neural network that 
utilized features such as color, size, shape, edge strength 
and texture. Their algorithm was tested over 
DIARETDB1 achieving an average sensitivity and 
specificity of 96.3% and 99.8%, respectively. 

Singh et al. (2015) proposed two independent 
methods to detect exudates after eliminating the optic 
disc and then strategically combined both methods to 
reduce all possible false positives. The first method 
transformed the OD-free image into the LAB color 
space, in which the contrast of the luminance channel 
was adjusted and then thresholded to detect exudates. 
Whilst, the second method morphologically processed 

the green channel of the OD-free image by dilating it 
twice via two different structuring elements and 
consequently subtracted the two dilated images to detect 
exudates edges. Finally, both methods were combined 
using some morphological and logical operators to 
remove noisy false positives. Their algorithm achieved 
an average sensitivity of 94.87% over a dataset made up 
of 20 diabetic fundus images. 

Roychowdhury et al. (2014) measured the severity 

grade of diabetic retinopathy using a machine learning 

system that classified the bright and red lesions. Their 

algorithm went through three stages; initially the optic 

disc and blood vessels were detected and then excluded 

from further processing. Secondly, the bright lesions 

were detected and classified into exudates or cotton wool 

spots and the red lesions were classified into 

microaneurysms or hemorrhages. At the end the severity 

grade was estimated per the severity scale specified by 

MESSIDOR project. Among several classifiers, the 

Gaussian Mixture Model (GMM) classifier proved to be 

the best in classifying the bright lesions using a set of 30 

features, achieving a sensitivity and specificity of 89% 

and 85%, respectively, over the DIARETDB1 dataset. 

To detect the exudates, Rajan et al. (2016) utilized 

the orientation scores of the retinal image to form an 

orientation-enhanced image, from which a binary mask 

of exudates was obtained by thresholding. First, the 2D 

orientation-score framework mapped the position and 

orientation angle of each pixel to a complex scalar, 

where the information of the edges and oriented 

structures were given by the imaginary and real parts, 

respectively. Afterwards, an enhanced image was 

formed using the real and imaginary parts of the 

complex scores. Finally, the resultant intensity image 

was thresholded to obtain the exudates, achieving a 

sensitivity and specificity of 86.2% and 85%, 

respectively, over the DIARETDB1 dataset. 

Prentasic and Loncaric (2016) detected the exudates 

using deep convolutional neural networks. First, the 

anatomical structures of the eye fundus were detected. 

Accordingly, the probability maps of blood vessels, optic 

disc, parabola fitting and values for the bright border 

detection were combined all together to get one 

probability map via weighted summing. Afterwards, 

the outputs of those probability maps were combined 

with the output of the deep neural network of exudates 

in order to reduce the false positive detection and 

hence improve the detection accuracy. This algorithm 

achieved a sensitivity of 78% using 50 fundus images 

from the DRiDB database. 

Liu et al. (2017) presented a location-to-segmentation 

strategy for segmenting exudates via three stages. First, the 

fundus image was preprocessed by removing the main 

vessels and the optic disc to facilitate the detection of the 

exudate patches at the further stages. In the second stage, 

the random forest classifier was learned to classify, identify 
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and locate the exudate patches, in which the histograms of 

completed local binary patterns were extracted to describe 

the texture structures of the patches. At the final stage, the 

local variance, the size prior about the exudate regions and 

the local contrast prior were used to segment the exudate 

regions out from patches which were classified as exudate 

patches in the location stage. The algorithm was tested on 

DIARETDB1, achieving a sensitivity and specificity of 

83% and 75%, respectively. 

Materials and Methods 

This section presents and describes the proposed 
system architecture. The block diagram shown in Fig. 2 
illustrates the proposed architecture of segmenting the 
bright abnormalities, showing the materials that were 
exploited and the methods that were utilized in 
manipulating the eye fundus images. 

Input Datasets: Fundus Images & Ground Truths 

The fundus images are the raw material to be 
manipulated by a screening system. These fundus images 
are also accompanied with the ground truth to evaluate 
the results achieved by a segmentation algorithm using 
the true results provided by ophthalmological experts.  

Thus, in order to diagnose diabetic retinopathy and 

detect its abnormal clinical signs, our proposed system 

utilized a total of 1419 images retrieved from three 

datasets: DIARETDB0, DIARETDB1 and MESSIDOR, 

which are the only ones among publicly available 

datasets that provided the ground truths of abnormalities 

occurring in diabetic retinopathy, as shown in Table 1.  

Bright Abnormalities Segmentation 

The proposed detection system adopted a two-stage 

approach for segmenting the bright abnormalities. First, 

the fundus image was partitioned into clusters based on 

its chromaticity information extracted from the L*a*b* 

color space. At the second stage, the pixels within the 

brightest cluster were thresholded to remove the 

relatively non-bright pixels and preserve only the 

brightest ones within the cluster. 

Besides, the circular yellowish optic disc is usually 

clustered together with the other bright abnormalities 

found in the fundus image. Therefore, the optic disc was 

removed from the fundus image to improve the detection 

of such bright abnormalities and thereby avoid false 

responses so that the bright lesions would not be 

misclassified or confused with the optic disc. 

 

 
 

Fig. 2. Proposed method of detecting bright abnormalities 

 
Table 1. Eye Fundus Image Datasets  

Dataset name  Size  FOV  Images size (in pixels)  Format  Ground truth 

DIARETDB0 (Kauppi et al., 2006)  130  50° 1500 × 1152  PNG  MA, HE, CWS, EX and NV 

DIARETDB1 (Kauppi et al., 2007)  89  50°  1500 × 1152  PNG  MA, HE, CWS, EX and NV 

MESSIDOR (Decencière et al., 2014)  1200  45°  Set (1): 1440 × 960 TIF MA, HE and EX 

   Set (2): 2240 × 1488  

   Set (3): 2304 × 1536 

FOV = Field Of View, MA = Microaneurysms, HE = Hemorrhages, CWS = Cotton wool spots, EX = Exudates, NV = Neovascularization 
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Convert RGB Image into L*A*B* Color Space 

As mentioned before, hard and soft exudates are mainly 

characterized by their yellowish color. But on the other 

hand, such abnormalities have varying sizes (i.e., tiny-to-

medium), irregular shapes and no specific locations within 

the fundus. Therefore, the proposed detection method relied 

mainly on the color properties and nothing more else, to 

detect and segment such lesions. 
Compared to the RGB color space, the L*a*b* space 

can quantify and decouple the chromaticity of the fundus 
image, which is represented by the (a*) and (b*) layers. 
Accordingly, the RGB fundus image was initially 
transformed into the L*a*b* color space to facilitate the 
detection of the hard exudates and the cotton wool spots 
based on their yellowish color. 

Perform Color-Based K-Means Clustering 

After extracting the (a*) and (b*) layers that represent 

the chromaticity (color) values of the fundus image, the 

pixels in the image were partitioned and classified into five 

disjoint clusters (k = 5) via the unsupervised k-means 

clustering algorithm according to their color, such that the 

colors of the objects within each cluster are as close as 

possible to each other and as far as possible from colors 

within other clusters, as illustrated in Fig. 3. 

Each cluster is defined by its centroid as well as its 

member objects. The centroid for each cluster is the 

value to which the sum of distances from all the objects 

in that cluster is minimized. Once the grouping is done, 

the process is repeated several times to calculate the new 

centroid of each cluster and subsequently reassign the 

member objects to the cluster having the closest distance 

to the new centroid. 

Thus, this color-based clustering algorithm using the 

k-means method worked as follows: 

 

Step 1: Create five empty cluster images (i.e., k = 5) 

to which each image pixel will be furtherly 

assigned (step3) and randomly specify the 

centroid value (ck) of each of the five 

clusters, using the chromaticity values of the 

image pixels p(x,y) 

Step 2: Based on the chromaticity value of each pixel 

p(x,y) in the fundus image, the algorithm 

measures the cosine distance (d) between the 

centroid value (ck) and the chromaticity value of 

each pixel p(x,y), as follows:  

 

( ), kd p x y c= −  (1) 

 

Step 3: Assign and group each pixel with the cluster 

having the closest centroid according to the 

distance (d) computed by Equation (1). Thus, 

the centroid of each cluster is the value to which 

the sum of distances from all the pixels in that 

cluster is minimized 

Step 4: For each of the five clusters, calculate the 

arithmetic mean of the new cluster centroid (ck) 

to re-cluster the pixels based on the new 

centroid. The new cluster centroid is calculated 

using the equation given below:  

 

( )
1

,

k k

k

x c y c

c p x y
n

∈ ∈

= ∑∑  (2) 

 

where, n and p(x,y) are the number and values 

of the member objects, respectively, within 

each cluster 

Step 5: Replicate steps (2 to 4) to avoid local minima 

clustering (i.e., avoid grouping pixels all together 

within the same or a few of the clusters) 

Step 6: Reshape the cluster pixels into the image, such 

that the colors of the pixels within each cluster 

are as close as possible to each other and as far 

as possible from colors within other clusters 

(Fig. 3 and 4) 

 

The number of clusters (k = 5) was empirically 

proven to be the ideal value of clustering the pixels of 

the fundus image, as the pixels of all yellowish 

objects were “best grouped” together and, at the same 

time, “best isolated” from the pixels of all other 

objects. Experimentally, it was found that at (k = 2,3 

or 4), the bright yellowish abnormalities were grouped 

together in the same cluster with some other pixels 

that are not yellowish enough, such as the bright 

orange pixels of the retina (i.e., less number of 

clusters leads to poor isolation). On the other hand, 

using more than five clusters (e.g., k = 6) resulted in 

having the yellowish pixels separated and dispersed 

over more than one cluster image (i.e., more number 

of clusters leads to poor grouping).  

Select the Best Cluster Image 

Among the five clusters that were created via the 

k-means algorithm at the preceding step, it was 

important to automatically find and retrieve the best 

cluster, the one having the highest average intensity of 

clustered pixels. The notion behind considering such 

cluster, is that the exudates as well as the optic disc 

usually fall within the same cluster due to their similar 

bright color and which in turn, leads to having the 

highest mean intensity among other clusters due to 

their bright color. Therefore, the cluster with the 

highest mean intensity was selected to be furtherly 

processed and manipulated, as shown in Fig. 4.
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(a) (b) 

 

 
 (c) (d) 

 

 
 (e) (f) 
 
Fig. 3. Color-based clustering using k-means algorithm (a) Reference image, (b) 1st Cluster, (c) 2nd Cluster, (d) 3rd Cluster, 

(e) 4th Cluster, (f) 5th Cluster 
 

 
 (a) (b) 
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 (c) (d) 

 

 
 (e) (f) 

 
Fig. 4. Selecting the highest mean intensity cluster (a) Reference image, (b) Cluster-1, (c) Cluster-2, (d) Cluster-3 (best 

cluster), (e) Cluster-4, (f) Cluster-5 

 

 
 

Fig. 5. Algorithm of retrieving the best-clustered image 

 
Fig. 5 shows the algorithm for detecting and selecting 

the cluster having the brightest mean intensity of 
foreground (non-zero) pixels among the clustered images. 

Estimate a Threshold Based on Statistical Metrics 

After selecting the best cluster, the proposed 
detection system automatically computed a threshold 

value (θt) that was estimated via order-statistic 
properties of the selected cluster intensity image (Ic). 
This threshold value was computed as the difference 
between the highest non-zero values of Ic and the 
median of the non-zero values of Ic. Thus, the 
threshold value was estimated via statistic-based 
metrics, using the following equation:  
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( ) ( )t c cmaximum I median Iθ = −  (3) 

 

where, I� is the foreground (non-zero) pixels of the 

cluster intensity image Ic.  

The notion behind using the “median” metric is 

because of its appropriateness for skewed distributions, 

as well as its resistance to outliers (i.e., extreme/noisy 

values) which may be found in an image; which makes it 

slightly better than other statistical measures such as the 

mean or minimum metrics. 

Consequently, the threshold (θt) was applied to the 

intensity cluster image to remove the relatively non-

bright pixels and preserve only the bright ones within the 

cluster, as illustrated in Fig. 6. 

Remove the Optic Disc and its Connected Pixels 

Eliminating the optic disc would reduce the false 

positive responses of exudates. Moreover, the pixels 

connected to the optic disc are most likely part of the 

segmented optic disc region. Accordingly, the optic 

disc and the pixels connected to it were removed from 

the thresholded image, leaving out only the additional 

clustered pixels, as illustrated in Fig. 7(e). The optic 

disc shown in Fig. 7 (b) was localized and segmented 

using the method proposed by Allam et al. (2016). 

Finally, the last step was inpainting the internal skeleton 

of those remaining pixels, after removing the optic disc and 

the objects connected to it, as exemplified in Fig. 7 (f):  
 

Evaluation Metrics of Segmentation 

In order to evaluate the proposed algorithm of 
segmenting the bright abnormalities, the produced 
segmentations are compared against the ground truths 
provided by the employed datasets. The evaluation of the 
segmentation algorithm was measured via two metrics: 
the “sensitivity” which is the rate of correctly detecting 
the presence of bright abnormalities, as well as the 
“specificity” which is the rate of correctly confirming the 
absence of such abnormalities within the exploited 
fundus images, given by the following equations:  
 

=
+

p

p N

T
Sensitivity

T F
 (4) 

 

=
+

N

N P

T
Specificity

T F
 (5) 

 
TP (true positive): Correct responses to detecting the 

presence of bright abnormalities 

(i.e., hit) 

TN (true negative): Correct responses to confirming the 

absence of bright abnormalities (i.e., 

correct rejection) 

FN (false negative): Incorrect responses to detecting the 

presence of bright abnormalities 

(i.e., miss) 

FP (false positive): Incorrect responses to confirming 

the absence of bright abnormalities 

(i.e., false alarm) 

  
 (a) (b) 
 

 
 (c) (d) 
 

Fig. 6. Statistic-based thresholding of the selected cluster (a) Reference image (b) Selected cluster (c) Intensity image of best 

cluster (d) Thresholded image 
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 (a) (b) 

 

 
 (c) (d) 

 

 
 (e) (f) 

 
Fig. 7. Excluding the optic disc and its connected pixels (a) Reference image (b) Binary optic disc (c) Thresholded image (d) 

Combining (b) and (c), (e) Optic disc removal (f) Segmented abnormalities 

 

Experimental Environment and Results  

The proposed algorithm was implemented via 

MATLAB platform using the “Image Processing 

Toolbox” and the “Statistics Toolbox”. The proposed 

system was tested in a unique environment composed of 

three miscellaneous datasets of a total of 1419 images 

having diverse properties (e.g., spatial size, image 

quality, FOV, format, etc.). The notion behind 

employing a huge set of heterogeneous images was to 

examine the effectiveness and robustness of the proposed 

algorithm over any image. 

The proposed system correctly detected the bright 

abnormalities, such as hard exudates and cotton wool 

spots, achieving an average sensitivity and specificity of 

85.08% and 56.77%, respectively. Table 2 aggregates 

and compares the results achieved by our proposed 

segmentation approach over the three different datasets, 

DIARETDB0, DIARETDB1 and MESSIDOR, mainly in 

terms of sensitivity and specificity. 

Figure 8 shows samples of the segmentations 

obtained by the proposed algorithm over the employed 

datasets: DIARETDB0, DIARETDB1 and MESSIDOR. 
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Table 2. Results of the proposed method  

 Dataset Number Abnormal  Correct  Normal  Correct 

 name of images images responses  Sensitivity images  responses Specificity 

1  DIARETDB0  130  86  68  0.7907  44  28  0.6364  

2  DIARETDB1  89  49  40  0.8163  40  29  0.7250  

3.a  MESSIDOR (subset1)  400  145  130  0.8966  255  143  0.5608  

3.b  MESSIDOR (subset2)  400  81  70  0.8642  319  159  0.4984  

3.c  MESSIDOR (subset3)  400  68  57  0.8383  332  203  0.6114  

 All datasets  1419  429  365  0.8508  990  562  0.5677  
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Fig. 8. Sample results of abnormalities segmentation Left column: Input reference images Right column: segmented abnormalities 

 
Table 3. Methods of segmenting the bright abnormalities  

 Method  Dataset(s)  SENS  SPEC  

1  Sopharak et al. (2008)  Local dataset (39 images)  0.9338  0.9814  

2  Jaafar et al. (2011)  Mixed dataset (106 images)  0.9320  0.9920  

3  Harangi et al. (2012)  DIARETDB1 (89 images)  0.6300  -  

4  Eadaghi and Pourreza (2012)  DIARETDB1 (89 images)  0.7828  -  

5  Kumar et al. (2013)  Mixed dataset (158 images)  0.8845  0.9550  

6  Sreng et al. (2013)  Local dataset (100 images)  0.9100  -  

7  Franklin and Rajan (2014)  DIARETDB1 (89 images)  0.9630  0.9980  

8  Roychowdhury et al. (2014)  DIARETDB1 (89 images)  0.8900  0.8500  

9  Singh et al. (2015)  Local dataset (20 images)  0.9487  -  

10  Rajan et al. (2016)  DIARETDB1  0.8620  0.8500  

11  Prentasic and Loncaric (2016)  DRiDB  0.7800  -  

12  Liu et al. (2017)  DIARETDB1  0.8300  0.7500  

13  Proposed method  DIARETDB0 (130 images)  0.7907  0.6364  

  DIARETDB1 (89 images)  0.8163  0.7250  

  MESSIDOR (1200 images)  0.8741  0.5574  

 

Table 3 shows a comparison of the proposed 
technique against the other related work presented for 
segmenting the bright abnormalities. 

Results Discussion 

It is practically difficult to conduct a thorough and 
concrete comparison of the proposed method against 
others due to the big differences in the experimental 
environment used by each. On the contrary of all 
previous studies, the proposed method was assessed in 
a unique and strict environment composed of three 
diverse datasets of a total of 1419 images. However, 
this challenging experimental environment, in turn, 
led sometimes to a slight deterioration in our results 
compared to some of the other presented methods.  

As shown in Table 3, the DIARETDB1 dataset was 
utilized by many of the previous studies for assessing 
their algorithms. By comparing the results of the 
presented methods over this dataset particularly, it is 
deduced that the result of the proposed method was 
comparable to those achieved by others. Although the 
proposed approach outperformed some of the presented 
methods, yet it was not the best among all the other ones. 
The reason behind that is because of the full-
automation of the proposed approach without any 
human interaction, either before, during, or after the 
segmentation process. Also, the proposed algorithm 
was indifferent against the extreme heterogeneity and 
huge size of the employed datasets, which means that 
it would have achieved better results if it was 
customized over only one specific dataset.  
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Conclusion and Future Work  

Conclusion  

The proposed segmentation technique followed a 
strategy that relied mainly on the color properties and 
nothing more else, to detect the bright abnormalities, 
such as hard exudates and cotton wool spots. The 
presented method adopted a two-stage approach for 
segmenting the bright abnormalities occurring in 
pathological fundus images. Thus, the overall process of 
detecting and segmenting those abnormalities was 
affected by those two stages/factors.  

The first stage partitioned the fundus image into 
several clusters, each of which contained the colors that 
were as close as possible to each other and as far as 
possible from colors within the other clusters. 
Subsequently, the cluster having the brightest objects was 
selected. Therefore, a wrongfully selected cluster leads to 
either a false negative response (i.e., deselecting the 
cluster of abnormal pixels), or a false positive response 
(i.e., misclassifying the normal pixels as abnormal).  

Similarly, the second stage thresholded the 
retrieved cluster to remove the relatively non-bright 
pixels and preserve only the bright ones within the 
cluster. Therefore, an inaccurately estimated threshold 
may also lead to either a false negative response or a 
false positive response. 

However, the segmentation algorithm proved its 
effectiveness and robustness by achieving an average 
sensitivity of 85.08% which was comparable to the 
results achieved by other approaches. But more 
importantly, the segmentation algorithm was fully 
automated, simple and straightforward regardless of the 
heterogeneity of the employed datasets; as no training 
images were exploited, nor predefined templates were 
used and no image-dependent parameters were tuned, 
for the sake of customizing the proposed algorithm 
over certain images. 

Future Work  

The system proposed for segmenting the 

“bright/yellowish abnormalities” and distinguishing it 

from the “optic disc” can be furtherly applied likewise 

on the akin pair of the “dark/red abnormalities” and 

“blood vessels”. This inspiration has been deduced 

during the process of partitioning the fundus image 

into several color-based clusters within the presented 

algorithm. It was observed that the optic disc and the 

bright lesions were usually grouped within the same 

cluster and at the same time the blood vessels and red 

abnormalities were normally grouped together in 

another cluster, as noticed previously in the images of 

Fig. 3 (c) and 4 (e). So, this technique can be 

exploited and potentially achieve promising results for 

segmenting the “blood vessels”, as well as detecting 

and distinguishing the “red lesions”. 
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