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Abstract: Density Based Spatial Clustering of Applications with Noise 

(DBSCAN), a well-known Density-Based Clustering Algorithm is a 

advanced data clustering method with various applications in numerous 

fields like Satellites images, X-ray crystallography, Anomaly Detection in 

Temperature Data. But its run time R(n
2
) complexity draws a major 

challenge. In this research paper, we propose a new unique algorithm 

called Real Time Density Based Clustering RTDBC to minimize the 

problems in DBSCAN. In proposed algorithms, objects are allotted into 

clusters using labels representatives than the method of propagating 

directly to reduce propagation time of label considerably. In contrast, 

RTDBC produce fast result and continuous process of runtime and 

additionally users are permitted to suspend for testing the result and 

continue as to enhance good results. 
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Introduction 

DBSCAN, a familiar density based data clustering 
algorithm introduced by Easter et al. (1996). It has a fast 
solution for complicated clusters assigned one input 
parameter and suggested the value of the parameter for 
user. In huge data bases it was 1900 times faster and 
expected improved final results ended up. DBSCAN 
identify the clusters which are in arbitrary shape and 
also for finding outliers. A set of Dense objects 
connected and separated by a new created cluster with 
low density region clusters while density object more 
than p objects inside ε radius of neighborhood. 
DBSCAN is mainly considerable clustering algorithm 
with various applications and extension (Brecheisen et al., 
2004; Gan and Tao, 2015) like satellite images, x-ray 
crystallography, anomaly detection in temperature data, 
astronomy (Settles, 2009) and neuroscience (Mai et al., 
2012). Bur its real weakness complex data sets if they 
located too close with each other even if they are 
different densities. 

During cluster extension process DBSCAN (Ester et al., 
1996) executes and determines the ε-radius of the 
neighborhood queries of all objects for data grouping. 
Thus, it has two sources: 
 

• Range of n query process, ensuring as R(dxn
2
) 

where dx = worst case complexity of distance, n = 

no. of objects  

• Propagation process of label with R(dxn
2
): it’s a time 

complexity to allocate objects as labels. 

 

These two sources rapidly turn to block while 

increasing the volume and aims for various works for 

improving DBSCAN. These techniques (both sources) 

results to accelerate of DBSCAN by either of two 

sources means without the data information exploited 

the improved performance. A filter (Fast Lower Bound) 

by source 2, the calculations of the true distance 

reduced along with increased label propagation time to 

maintain the order of initial list. The Data space divides 

by grids in Grid Based Technique (GBT) for saving the 

run time as each cell perform locally. 

Information of the data is not utilized considerably by 

all these techniques, they earn excessive distance 

computation, thus tends to limit the performance 

efficiency. Hence, we propose a new unique algorithm 

called Real Time Density Based Clustering RTDBC to 

minimize the problems in DBSCAN. 

When compare to previous techniques, it upholds 

accurate results always and reads the current structure 

data then it considers a small object into subsets for 

refining all iterations. So, it replace the label 

propagating directly with objects are in to clusters by 

the representative of the labels. Hence propagation 

time of the label is decreased considerably.  
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During execution in existing approaches works on 

batch scheme, does not permit the user 

communication (Brecheisen et al., 2004; Gan and 

Tao, 2015). In other side, during the run time anytime 

algorithm (Zhou et al., 2000) rapidly generate 

approximate result and refine continuously and permit 

the users to suspend for verifying the result, resume to 

finding satisfactory result is obtained. So, RTDBC 

algorithms have suitable method and broadly applied 

for various areas (Zhou et al., 2000). But all existing 

methods are designed mainly for small datasets due to 

their space complexity and high time. Hence, 

proposed RTDBS algorithm aiming to provide for 

very large datasets.  

There are very few algorithms works on complex 

data like images and graphs (Brecheisen et al., 2004) 

but facing a scalability problems. But in proposed 

RTDBC algorithm effectively works on very large 

complex data and minimize the high time and space 

complexity. 

In this research paper, a proposed new RTDBC 

algorithm for clustering very large complex datasets that 

represents all described problems above. The proposed 

RTDBC algorithm ahead with the advantages: 

 

• RTDBC dynamically study the information of 

data and apply to decrease the propagation time of 

the label with number of range queries. So, it is 

considerably speed up the runtime to extent level 

of magnitude compared with DBSCAN and other 

approaches 

• RTDBC runs initial runtime very low for better 

results compared and user interaction for to get good 

considerations in arbitrary time 

• RTDBC useful for clustering very large complex 

datasets 

 

Related Work 

Density based Data Clustering Algorithm 

Definition 1: ε-Neighborhood 

Figure  1  describes ε-neighborhood of objects within 

the radius of ε from an object, the ε neighborhood of an 

object p represented by Nε (p) then: 

 

( ) { }: | ( . )N p q d p q ε≤
ε

 

 

Definition 2: High Density 

Figure 2 describes ε-Neighborhood of an object 

contains at least MinPts of objects.  

Definition 3 

Figure 3 describes core, Border and Outlier (Noise). 

 
 
Fig. 1. ε-Neighborhood of p; ε-Neighborhood of q; MinPts = 4 

(Density of p is “high”); MinPts = 4 (Density of q is 

“low”) 

 

 
 
Fig. 2. MinPts = 5, ε = 1unit; Core: core points are at inside of 

the cluster and it has more than a specified number of 

points (MinPts) within ε; Border: A border point has 

fewer than MinPts within ε, but is in the neighborhood 

of a core point; Outlier (Noise): A Outlier (Noise) point 

is any point that is not a core point nor a border point 

 

 
 
Fig. 3. MinPts = 4; q is directly density reachable from p; p is 

not directly density reachable from q 

 

 
 
Fig. 4. MinPts = 7; p ←p2 ←p1← q form a chain; p is 

(indirectly) density reachable from q; q is not density 

reachable from p 
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Definition 4 

Density Reachability 

Figure 4 describes asymmetric object q is directly 

density-reachable from object p if p is a core object and 

q is in p’s ε -neighborhood 

Density Connectivity: 

• Point p is directly density-reachable from p2  

• p2 is directly density-reachable from p1  

• p1 is directly density-reachable from q  

 

DBSCAN Algorithm 

Algorithm1  

for each o є D do  

if o is not yet classified then  

if o is a core-object then  

 collect all objects density reachable from o  

 and assign them to a new cluster 

else assign o to NOISE 

 

DBSCAN arbitrarily draws object p (unlabelled) 

and executed q є Nε (p) while p is core object, then 

objects are labeled for p including all density 

connected objects of p. 

Proposed Algorithm: RTDBC (Real Time 

Density Based Clustering) 

RTDBC algorithm is a solution for time consuming 

in many areas like object recognition (Kobayashi et 

al., 2013) and robotics (Zhou et al., 2000). The main 

idea of this algorithm is to produce approximate 

results immediately and continuously drawing the 

results till to extract the acceptable results or 

solutions. This algorithm also analyzes the 

intermediate results on interruption while running and 

resumed for extract acceptable solutions this 

representation is shown in Fig. 5. 

Figure 6 shows the development of different algorithms 

of proposed RTDBC and observed that the performances of 

a (Zhou et al., 2000) is better quality than others (B, C). 

Hence A preferred for many works for better solution and 

other side C stands on worst performance. 

The main approach of proposed RTDBC algorithm is 

shown in Fig. 7. 

By illustrating the Fig. 7, C1 cluster is determined 

completely while select the two objects f, g then: 

 

• C1 and C2 are the final Clusters 

• Two small clusters are formed inside C1, by a, b and 

with their neighbors 

• Two more small clusters form inside C2 by d, e and 

with their neighbors 

• Outlier is c  

• a, b are density connected together while core object 

is f 

• border object g permits to find the core object h 

without performing query as h having minimum µ 

neighbors 

• C2 also determined with d and e which are density 

connected together. 

 

 
 
Fig. 5. MinPts = 3, ε = 2 cm 

 

 
 
Fig. 6. Performance of different algorithms of RTDBC (tb = 

Runtime) 
 

 
 

Fig. 7. Proposed RTDBC algorithm 
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Hence the proposed RTDBC extract the same results 

as in DBSCAN without executing all queries, result that 

time reduced in clustering. 

The pseudo code RTDBC algorithm shown in 

algorithm 2 described in nine major steps. 
 

Step 1: Design a Structure of an initial cluster 

Step 2: Developing the cluster graph as G = (V, E) 

Step 3: Identifying the connected components 

Step 4: Merging the connected components 

Step 5: Verifying a stopping condition 

Step 6: Choosing objects for queries 

Step 7: Activating queries 

Step 8: Updating cluster graph  

 

Algorithm2: Pseudo Code of RTDBC Algorithm 

function C = RTDBClu (R, ε, µ, α, β, d) 

input: O dataset, ε, µ, parameters, d function of distance 

DBSCAN 

α, β block size of the query  

output: C the result of final clustering  

begin 

/* step 1: Design a Structure of an initial cluster */ 

while there exist objects untouched in R do 

S = set of α untouched objects 

for all objects o in S do 

perform range query on o and mark the state of o 

if o is a core object then mark the states of its neighbors 

in Nε(o) 

if o is a noise object then put o and Nε(o) into the noise 

list L 

/* step 2: developing the cluster graph as G = (V, E)*/ 

put all primitive clusters into V as nodes 

determine the states of all edges e in E 

/* repeatedly select objects for range queries until 

terminated */ 

do 

/* step 3: identifying the connected components */ 

find all connected components of G via the yes states 

/* step 4: merging the connected components */ 

merge each connected component of G into a single node 

calculate the state of each edge of the new graph G 

return an intermediate clustering result C’ if required 

/* step 5: verifying a stopping condition */ 

b = check if G only contains edges with yes or no states 

if b = false then 

/* step 6: choosing objects for queries */ 

for all nodes v in V do 

calculate the node statistic for v 

calculate the node degree for v 

calculate object scores for all unprocessed objects in O 

S = set of β objects with highest scores 

/* step 7: activating queries */ 

for all objects o in S do 

perform range queries on the object o 

update the states of o and its neighbors Nε(o) 

merge Nε(o) to all nodes that contain o 

/* step 8: updating cluster graph */ 

update the states of all edges e in E 

while the stopping condition is not reached (b = false) 

/* step 9: processing the outliers */ 

for all objects o in L do 

check if o is truly a noise or a border object 

return the final clustering result C 

 

In step 1 RTDBC queries objects α in size of blocks 

and β for step 6 to 7. Hence selection of objects α and β 

for activating queries for all iterations of step 1 and 6, 7 

as to provide main benefits; 

 

• The quality of intermediate clustering at earlier steps 

been enhancing with overlapping of primitive circles 

• Anytime scheme of the overall overhead been 

reducing as by using α = β  

 

Assume that RTDBC is run at the end; its end results 

are absolutely identical from DBSCAN. 

Here we analyze a RTDBC algorithm of worst case 

complexity. Lets assume: 

 

• Number of objects = n 

• Number of G initial nodes of G, |V| = v 

• Number of nodes at iteration i = vi 

• Number of nodes at iteration v0 = v = vi 

• Noise list size L, |L| = l 

• Number of RTDBC update iterations = b 

 

Therefore: 

 

Step 1: Time required for querying and initializing the 

objects = R(vn) 

Step 2: Time required for developing the structure graph 

= R (v
2
n)  

Step 3: Time required for identifying the connected 

components = ( )2

1
1

b

ii
R v

=
−= ∑  

Step 4: Time required for merging the connected 

components = ( )11
n

b

ii
R v

−=
= ∑   

Step 5: Time required for relabeling the edges states = 

( )2

1

b

ii
R v

=
= ∑  

 Time required for updating the unprocessed 

objects for all inside nodes = ( )1

b

ii
nR v

=
= ∑  

 Time required for verifying a stopping condition 

= ( )2

1

b

ii
O v

=
= ∑   
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Step 6: Time required for calculating degrees of node = 

( )2

1

b

ii
R v

=
= ∑   

 Time required for calculating score of the object 

= ( )( )( )1
1

b

ii
n v iR v β

=
− − −∑   

 Time required for sorting objects unprocessed = 

( )( )( 1
1

b

i
n v iR β

=
− − −∑ log (n-v-(i-1)β))  

Step 7: Time required for querying = R (bβn)  

 Time required for merging = ( )1

b

ii
R v nβ

=∑   

 Time required for updating the size of the node = 

( )1

b

ii
R v n

=∑  

Step 8: Time required for updating the cluster graph = 

( )2

1

b

ii
R v n

=∑   

Step9: Time required for processing the outliers = R (l 

µ,n)  

 

The real time complexities in RTDBC are very 

smaller than those illustrated above and consideration of 

experimental analysis. Therefore: 

 

• The maximum iterations in RTDBS = vi >> v >> n 

and b>>bmax, where bmax = (n-v)/β and  

• The run time complexity of RTDBS O(n
2
) very 

smaller than DBSCAN 

 

So, RTDBC requires: 

 

• Space for storing the graph G = R (v
2 

+ vn + n + v + 

lµ)  

• The space complexity of RTDBC in the worst case 

= R (n
2
)…… v >> n 

 

Experimental Results 

We create larger data sets of 2D- 4 synthetic DS1 to 

DS4 data sets having 16 to 32 clusters, contains 3254-

9554 points which are placed randomly  

DS1 data set added 99 more objects which are placed 

additionally to the original data sets for all objects 

(DS1x100) for analyzing of arbitrarily clusters in 

RTDBC. We also study the characteristics of RTDBC on 

increasing the number of objects while maintained the 

cluster structure. 

 

We use α = β = 512 

µ = 5,  

є = 1 

 

The performance of RTDBC is shown in Fig. 8 by 

increasing objects for DS1 to DS4. It is observed that in 

Fig. 8b, RTDBC significantly faster than DBSCAN. It 

means denser of the clusters, speedup factors are high 

and the solutions are found in Fig 8c and 8d. 

First, RTDBC used very few queries compared to 

DBSCAN. Therefore, it needs only 0.25% (6964.4) 

range queries for clustering DS1x300 on average with 

objects of 2783567. Second, graph nodes initial numbers 

of are much small, 0.12% (3441.6) for clustering on 

average DS1x300. 

However, the graph nodes are considerably reduced 

during runtime on all iterations shown in Fig. 8e and the 

time of label propagation also reduced. Thus the RTDBC 

is significantly the faster at the end than the DBSCAN. 

Normalized - Mutual Information (NMI) used for 

extracting the results of intermediate clustering and 

compare real results. If the Result is perfect clustering 

means 1 and respectively. The results of perfect 

clustering is shown in Fig. 9 even at first step with 

high scores. 

NMI of the DBSCAN is 0.009 where RTDBC starts 

with 0.998. It is noted that RTDBC requires only 4.4 sec 

and the DBSCAN needs 252.4 sec in DS1x0200 

(1855767). It means RTDBC is 57.3 times faster than 

DBSCAN i.e., it gives efficient method for very large 

data sets Illustrate the Fig. 10, RTDBC cumulative run 

time and NMI on selecting objects and random method 

in DS1x0200: 

 

For selecting objects in Step 6 

• Number of iterations: 7 

• Time required: 8.3 sec 

• Number of queries: 6149 

For random objects in step 6 

• Number of iterations: 225 

• Time required on selecting objects: 87.7 

• Number of queries: 117761 

 

The initial nodes in G increases with respect to α 

because the primitive circles are overlapped in step 1 

shown in Fig. 11b and due to merging in step 4 leads to 

faster reduction in graph nodes. The nodes of the graph 

also decreases more rapidly on all iterations shown in 

Fig. 11d. Hence the RTDBC cumulative run times 

reduced considerably shown in Fig. 11a. Hence the 

numbers of states edges identification required more 

queries and increased queries are stable while β is large. 

Therefore, more or additional core objects are identified 

on each step and thus making to rapid detection the 

“yes” states of the edges shown in Fig. 11c. So the 

increased queries effect is very small on operation cost 

and the cumative run times of RTDBC are still reduced. 

Overall performance decreases from redundant queries 

while α, β are very large. Hence in RTDBC prefer the 

method that for maximum iterations while α = β.  
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Fig. 8. The performance of RTDBC  

 

 
 

Fig. 9. NMI results 

 

 
 

Fig. 10. Performance of RTDBC for DS1x0200 (active selection) 
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Fig. 11. Role of α and β 

 

 
 

Fig. 12. Effect on RTDBC performance by µ and є 

 

The RTDBC runtime slightly increases by increasing 

the parameter µ and more queries needed to find 

unprocessed objects shown in Fig. 12. Thus the graph 

size decreases tends to reduce the cost. In other hand this 

is happen while noise objects are more. 

Increased the value of є will impact to decrease the 

initial graph nodes while more objects are labeled 

inside the primitive circle. However, number of 

queries and runtimes are decreased. Thus, the larger 

of є tends RTDBC to obtain faster clustering results of 

all iterations. 

RTDBC performance on different synthetic datasets 

created by DBSCANR (DBSCAN variant) (Gan and 

Tao, 2015) shown in Fig. 13 with synthetic 1 (9 with 

2000000 points) and synthetic 2 (11 with 2000000 

points) dimensions on different values of є with µ = 5. It 

is observed that the performance of RTDBC very faster 

compared to DBSCAN and its variant DBSCANR. 
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Fig. 13. RTDBC performance on different synthetic datasets 
 

It is also noted that in Synthetic 1 data set while є = 

4000 RTDBC needs 3.68 sec where DBSCAN and 

DBSCANR needs 1093.6 sec and 221 sec respectively. 

Thus, RTDBC is 297.1 times faster than DBSCAN and 

60 from DBSCANR. 

Scalability of RTDBC with respect to DBSCANR 

shown in Fig. 13b with µ = 5 and є = 5000 and µ = 5 and 

є = 4000 of number of objects and data dimension 

respectively. It is noted that the efficient performance of 

RTDBC on higher values of objects and data dimension. 

Thus, for clustering of 5000000 objects RTDBC 

completes in bellow 9.3 sec where as 505.4 sec and 

19388.8 sec in DBSCANR and DBSCAN respectively. 

However, overall RTDBC is nearly 55.5 faster compared 

to DBSCANR and DBSCAN. 

Conclusion 

Though DBSCAN, a well-known Density-Based 

Clustering Algorithm is a advanced data clustering 

method with various applications in numerous fields, 

but its run time R(n
2
) complexity draws a major 

challenge. RTDBC is a solution to minimize the 

problems in DBSCAN. In RTDBC objects are allotted 

into clusters using labels representatives than the 

method of propagating directly to reduce propagation 

time of label considerably. In contrast, RTDBC 

produce fast result and continuous process of runtime and 

additionally users are permitted to suspend for testing the 

result and continue as to enhance good results. RTDBC is 

297.1 times faster than DBSCAN and 60 from 

DBSCANR. Clustering of 5000000 objects RTDBC 

completes in bellow 9.3 sec where as 505.4 sec and 

19388.8 sec in DBSCANR and DBSCAN respectively. 

However, overall RTDBC is nearly 55.5 faster compared 

to DBSCANR and DBSCAN. 

Acknowledgment 

The author expresses his appreciation of the Mrs 

Battula Sridevi to his valuable helps in this research. 

Ethics 

This article is original and contains unpublished 
materials. The corresponding author confirms that all of 
the other authors have read and approved the manuscript 

and there are no ethical issues involved. 

References 

Brecheisen, S., H. Kriegel and M. Pfeie, 2004. Efficient 

density-based clustering of complex objects. 

Proceedings of the 4th IEEE International 

Conference on Data Mining, Nov. 1-4, IEEE Xplore 

Press, Brighton, UK, pp: 43-50. 

 DOI: 10.1109/ICDM.2004.10082 

Ester, M., H.P. Kriegel, J. Sander and X. Xu, 1996. A 

density-based algorithm for discovering clusters in 

large spatial databases with noise. Proceedings of 

the 2nd International Conference on Knowledge 

Discovery and Data Mining, Aug. 02-04, AAAI 

Press, Portland, Oregon, pp: 226-231.  



Dr. B. Ravi Prasad / Journal of Computer Science 2017, 13 (10): 496.504 

DOI: 10.3844/jcssp.2017.496.504 

 

504 

Gan, J. and Y. Tao, 2015. DBSCAN revisited: Mis-

claim, un-fixability and approximation. Proceedings 

of the ACM SIGMOD International Conference on 

Management of Data, May 31-Jun. 04, ACM, 

Melbourne, pp: 519-530. 

 DOI: 10.1145/2723372.2737792 

Kobayashi, T., M. Iwamura, T. Matsuda and K. Kise, 

2013. An anytime algorithm for camera-based 

character recognition. Proceedings of the 12th 

International Conference on Document Analysis and 

Recognition, Aug. 25-28, IEEE Xplore Press, 

Washington, DC, USA, pp: 1140-1144. 

 DOI: 10.1109/ICDAR.2013.231 

Mai, S.T., S. Goebl and C. Plant, 2012. A similarity 

model and segmentation algorithm for white matter 

fiber tracts. Proceedings of the IEEE 12th 

International Conference on Data Mining, Dec. 10-

13, IEEE Xplore Press, Brussels, Belgium, pp: 

1014-1019. DOI: 10.1109/ICDM.2012.95 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Settles, B., 2009. Active learning literature survey. 

Computer Sciences Technical Report 1648, 

University of Wisconsin, Madison. 

Zhou, S., A. Zhou, J. Cao, W. Jin and Y. Fan et al., 

2000. Combining sampling technique with 

DBSCAN Algorithm for clustering large spatial 

databases. Proceedings of the Pacific-Asia 

Conference on Knowledge Discovery and Data 

Mining, pp: 169-172. 

 DOI: 10.1007/3-540-45571-X_20 


