

 © 2017 Dr. B. Ravi Prasad. This open access article is distributed under a Creative Commons Attribution (CC-BY) 3.0

license.

Journal of Computer Science

Original Research Paper

Real Time Density-Based Clustering (RTDBC) Algorithm for

Big Data

Dr. B. Ravi Prasad

Professor, Department of CSE, Marri Laxman Reddy Institute of Technology & Management, Dundigal (V&M),

Medchal Dist., Hyderabad, Telangana State India

Article history

Received: 28-06-2017

Revised: 21-07-2017

Accepted: 10-08-2017

Email: rprasad.boddu2017@gmail.com

Abstract: Density Based Spatial Clustering of Applications with Noise

(DBSCAN), a well-known Density-Based Clustering Algorithm is a

advanced data clustering method with various applications in numerous

fields like Satellites images, X-ray crystallography, Anomaly Detection in

Temperature Data. But its run time R(n
2
) complexity draws a major

challenge. In this research paper, we propose a new unique algorithm

called Real Time Density Based Clustering RTDBC to minimize the

problems in DBSCAN. In proposed algorithms, objects are allotted into

clusters using labels representatives than the method of propagating

directly to reduce propagation time of label considerably. In contrast,

RTDBC produce fast result and continuous process of runtime and

additionally users are permitted to suspend for testing the result and

continue as to enhance good results.

Keywords: DBSCAN, RTDBC, Data Clustering, Big Data

Introduction

DBSCAN, a familiar density based data clustering
algorithm introduced by Easter et al. (1996). It has a fast
solution for complicated clusters assigned one input
parameter and suggested the value of the parameter for
user. In huge data bases it was 1900 times faster and
expected improved final results ended up. DBSCAN
identify the clusters which are in arbitrary shape and
also for finding outliers. A set of Dense objects
connected and separated by a new created cluster with
low density region clusters while density object more
than p objects inside ε radius of neighborhood.
DBSCAN is mainly considerable clustering algorithm
with various applications and extension (Brecheisen et al.,
2004; Gan and Tao, 2015) like satellite images, x-ray
crystallography, anomaly detection in temperature data,
astronomy (Settles, 2009) and neuroscience (Mai et al.,
2012). Bur its real weakness complex data sets if they
located too close with each other even if they are
different densities.

During cluster extension process DBSCAN (Ester et al.,
1996) executes and determines the ε-radius of the
neighborhood queries of all objects for data grouping.
Thus, it has two sources:

• Range of n query process, ensuring as R(dxn
2
)

where dx = worst case complexity of distance, n =

no. of objects

• Propagation process of label with R(dxn
2
): it’s a time

complexity to allocate objects as labels.

These two sources rapidly turn to block while

increasing the volume and aims for various works for

improving DBSCAN. These techniques (both sources)

results to accelerate of DBSCAN by either of two

sources means without the data information exploited

the improved performance. A filter (Fast Lower Bound)

by source 2, the calculations of the true distance

reduced along with increased label propagation time to

maintain the order of initial list. The Data space divides

by grids in Grid Based Technique (GBT) for saving the

run time as each cell perform locally.

Information of the data is not utilized considerably by

all these techniques, they earn excessive distance

computation, thus tends to limit the performance

efficiency. Hence, we propose a new unique algorithm

called Real Time Density Based Clustering RTDBC to

minimize the problems in DBSCAN.

When compare to previous techniques, it upholds

accurate results always and reads the current structure

data then it considers a small object into subsets for

refining all iterations. So, it replace the label

propagating directly with objects are in to clusters by

the representative of the labels. Hence propagation

time of the label is decreased considerably.

Dr. B. Ravi Prasad / Journal of Computer Science 2017, 13 (10): 496.504

DOI: 10.3844/jcssp.2017.496.504

497

During execution in existing approaches works on

batch scheme, does not permit the user

communication (Brecheisen et al., 2004; Gan and

Tao, 2015). In other side, during the run time anytime

algorithm (Zhou et al., 2000) rapidly generate

approximate result and refine continuously and permit

the users to suspend for verifying the result, resume to

finding satisfactory result is obtained. So, RTDBC

algorithms have suitable method and broadly applied

for various areas (Zhou et al., 2000). But all existing

methods are designed mainly for small datasets due to

their space complexity and high time. Hence,

proposed RTDBS algorithm aiming to provide for

very large datasets.

There are very few algorithms works on complex

data like images and graphs (Brecheisen et al., 2004)

but facing a scalability problems. But in proposed

RTDBC algorithm effectively works on very large

complex data and minimize the high time and space

complexity.

In this research paper, a proposed new RTDBC

algorithm for clustering very large complex datasets that

represents all described problems above. The proposed

RTDBC algorithm ahead with the advantages:

• RTDBC dynamically study the information of

data and apply to decrease the propagation time of

the label with number of range queries. So, it is

considerably speed up the runtime to extent level

of magnitude compared with DBSCAN and other

approaches

• RTDBC runs initial runtime very low for better

results compared and user interaction for to get good

considerations in arbitrary time

• RTDBC useful for clustering very large complex

datasets

Related Work

Density based Data Clustering Algorithm

Definition 1: ε-Neighborhood

Figure 1 describes ε-neighborhood of objects within

the radius of ε from an object, the ε neighborhood of an

object p represented by Nε (p) then:

() { }: | (.)N p q d p q ε≤
ε

Definition 2: High Density

Figure 2 describes ε-Neighborhood of an object

contains at least MinPts of objects.

Definition 3

Figure 3 describes core, Border and Outlier (Noise).

Fig. 1. ε-Neighborhood of p; ε-Neighborhood of q; MinPts = 4

(Density of p is “high”); MinPts = 4 (Density of q is

“low”)

Fig. 2. MinPts = 5, ε = 1unit; Core: core points are at inside of

the cluster and it has more than a specified number of

points (MinPts) within ε; Border: A border point has

fewer than MinPts within ε, but is in the neighborhood

of a core point; Outlier (Noise): A Outlier (Noise) point

is any point that is not a core point nor a border point

Fig. 3. MinPts = 4; q is directly density reachable from p; p is

not directly density reachable from q

Fig. 4. MinPts = 7; p ←p2 ←p1← q form a chain; p is

(indirectly) density reachable from q; q is not density

reachable from p

Dr. B. Ravi Prasad / Journal of Computer Science 2017, 13 (10): 496.504

DOI: 10.3844/jcssp.2017.496.504

498

Definition 4

Density Reachability

Figure 4 describes asymmetric object q is directly

density-reachable from object p if p is a core object and

q is in p’s ε -neighborhood

Density Connectivity:

• Point p is directly density-reachable from p2

• p2 is directly density-reachable from p1

• p1 is directly density-reachable from q

DBSCAN Algorithm

Algorithm1

for each o є D do

if o is not yet classified then

if o is a core-object then

 collect all objects density reachable from o

 and assign them to a new cluster

else assign o to NOISE

DBSCAN arbitrarily draws object p (unlabelled)

and executed q є Nε (p) while p is core object, then

objects are labeled for p including all density

connected objects of p.

Proposed Algorithm: RTDBC (Real Time

Density Based Clustering)

RTDBC algorithm is a solution for time consuming

in many areas like object recognition (Kobayashi et

al., 2013) and robotics (Zhou et al., 2000). The main

idea of this algorithm is to produce approximate

results immediately and continuously drawing the

results till to extract the acceptable results or

solutions. This algorithm also analyzes the

intermediate results on interruption while running and

resumed for extract acceptable solutions this

representation is shown in Fig. 5.

Figure 6 shows the development of different algorithms

of proposed RTDBC and observed that the performances of

a (Zhou et al., 2000) is better quality than others (B, C).

Hence A preferred for many works for better solution and

other side C stands on worst performance.

The main approach of proposed RTDBC algorithm is

shown in Fig. 7.

By illustrating the Fig. 7, C1 cluster is determined

completely while select the two objects f, g then:

• C1 and C2 are the final Clusters

• Two small clusters are formed inside C1, by a, b and

with their neighbors

• Two more small clusters form inside C2 by d, e and

with their neighbors

• Outlier is c

• a, b are density connected together while core object

is f

• border object g permits to find the core object h

without performing query as h having minimum µ

neighbors

• C2 also determined with d and e which are density

connected together.

Fig. 5. MinPts = 3, ε = 2 cm

Fig. 6. Performance of different algorithms of RTDBC (tb =

Runtime)

Fig. 7. Proposed RTDBC algorithm

Dr. B. Ravi Prasad / Journal of Computer Science 2017, 13 (10): 496.504

DOI: 10.3844/jcssp.2017.496.504

499

Hence the proposed RTDBC extract the same results

as in DBSCAN without executing all queries, result that

time reduced in clustering.

The pseudo code RTDBC algorithm shown in

algorithm 2 described in nine major steps.

Step 1: Design a Structure of an initial cluster

Step 2: Developing the cluster graph as G = (V, E)

Step 3: Identifying the connected components

Step 4: Merging the connected components

Step 5: Verifying a stopping condition

Step 6: Choosing objects for queries

Step 7: Activating queries

Step 8: Updating cluster graph

Algorithm2: Pseudo Code of RTDBC Algorithm

function C = RTDBClu (R, ε, µ, α, β, d)

input: O dataset, ε, µ, parameters, d function of distance

DBSCAN

α, β block size of the query

output: C the result of final clustering

begin

/* step 1: Design a Structure of an initial cluster */

while there exist objects untouched in R do

S = set of α untouched objects

for all objects o in S do

perform range query on o and mark the state of o

if o is a core object then mark the states of its neighbors

in Nε(o)

if o is a noise object then put o and Nε(o) into the noise

list L

/* step 2: developing the cluster graph as G = (V, E)*/

put all primitive clusters into V as nodes

determine the states of all edges e in E

/* repeatedly select objects for range queries until

terminated */

do

/* step 3: identifying the connected components */

find all connected components of G via the yes states

/* step 4: merging the connected components */

merge each connected component of G into a single node

calculate the state of each edge of the new graph G

return an intermediate clustering result C’ if required

/* step 5: verifying a stopping condition */

b = check if G only contains edges with yes or no states

if b = false then

/* step 6: choosing objects for queries */

for all nodes v in V do

calculate the node statistic for v

calculate the node degree for v

calculate object scores for all unprocessed objects in O

S = set of β objects with highest scores

/* step 7: activating queries */

for all objects o in S do

perform range queries on the object o

update the states of o and its neighbors Nε(o)

merge Nε(o) to all nodes that contain o

/* step 8: updating cluster graph */

update the states of all edges e in E

while the stopping condition is not reached (b = false)

/* step 9: processing the outliers */

for all objects o in L do

check if o is truly a noise or a border object

return the final clustering result C

In step 1 RTDBC queries objects α in size of blocks

and β for step 6 to 7. Hence selection of objects α and β

for activating queries for all iterations of step 1 and 6, 7

as to provide main benefits;

• The quality of intermediate clustering at earlier steps

been enhancing with overlapping of primitive circles

• Anytime scheme of the overall overhead been

reducing as by using α = β

Assume that RTDBC is run at the end; its end results

are absolutely identical from DBSCAN.

Here we analyze a RTDBC algorithm of worst case

complexity. Lets assume:

• Number of objects = n

• Number of G initial nodes of G, |V| = v

• Number of nodes at iteration i = vi

• Number of nodes at iteration v0 = v = vi

• Noise list size L, |L| = l

• Number of RTDBC update iterations = b

Therefore:

Step 1: Time required for querying and initializing the

objects = R(vn)

Step 2: Time required for developing the structure graph

= R (v
2
n)

Step 3: Time required for identifying the connected

components = ()2

1
1

b

ii
R v

=
−= ∑

Step 4: Time required for merging the connected

components = ()11
n

b

ii
R v

−=
= ∑

Step 5: Time required for relabeling the edges states =

()2

1

b

ii
R v

=
= ∑

 Time required for updating the unprocessed

objects for all inside nodes = ()1

b

ii
nR v

=
= ∑

 Time required for verifying a stopping condition

= ()2

1

b

ii
O v

=
= ∑

Dr. B. Ravi Prasad / Journal of Computer Science 2017, 13 (10): 496.504

DOI: 10.3844/jcssp.2017.496.504

500

Step 6: Time required for calculating degrees of node =

()2

1

b

ii
R v

=
= ∑

 Time required for calculating score of the object

= ()()()1
1

b

ii
n v iR v β

=
− − −∑

 Time required for sorting objects unprocessed =

()()(1
1

b

i
n v iR β

=
− − −∑ log (n-v-(i-1)β))

Step 7: Time required for querying = R (bβn)

 Time required for merging = ()1

b

ii
R v nβ

=∑

 Time required for updating the size of the node =

()1

b

ii
R v n

=∑

Step 8: Time required for updating the cluster graph =

()2

1

b

ii
R v n

=∑

Step9: Time required for processing the outliers = R (l

µ,n)

The real time complexities in RTDBC are very

smaller than those illustrated above and consideration of

experimental analysis. Therefore:

• The maximum iterations in RTDBS = vi >> v >> n

and b>>bmax, where bmax = (n-v)/β and

• The run time complexity of RTDBS O(n
2
) very

smaller than DBSCAN

So, RTDBC requires:

• Space for storing the graph G = R (v
2

+ vn + n + v +

lµ)

• The space complexity of RTDBC in the worst case

= R (n
2
)…… v >> n

Experimental Results

We create larger data sets of 2D- 4 synthetic DS1 to

DS4 data sets having 16 to 32 clusters, contains 3254-

9554 points which are placed randomly

DS1 data set added 99 more objects which are placed

additionally to the original data sets for all objects

(DS1x100) for analyzing of arbitrarily clusters in

RTDBC. We also study the characteristics of RTDBC on

increasing the number of objects while maintained the

cluster structure.

We use α = β = 512

µ = 5,

є = 1

The performance of RTDBC is shown in Fig. 8 by

increasing objects for DS1 to DS4. It is observed that in

Fig. 8b, RTDBC significantly faster than DBSCAN. It

means denser of the clusters, speedup factors are high

and the solutions are found in Fig 8c and 8d.

First, RTDBC used very few queries compared to

DBSCAN. Therefore, it needs only 0.25% (6964.4)

range queries for clustering DS1x300 on average with

objects of 2783567. Second, graph nodes initial numbers

of are much small, 0.12% (3441.6) for clustering on

average DS1x300.

However, the graph nodes are considerably reduced

during runtime on all iterations shown in Fig. 8e and the

time of label propagation also reduced. Thus the RTDBC

is significantly the faster at the end than the DBSCAN.

Normalized - Mutual Information (NMI) used for

extracting the results of intermediate clustering and

compare real results. If the Result is perfect clustering

means 1 and respectively. The results of perfect

clustering is shown in Fig. 9 even at first step with

high scores.

NMI of the DBSCAN is 0.009 where RTDBC starts

with 0.998. It is noted that RTDBC requires only 4.4 sec

and the DBSCAN needs 252.4 sec in DS1x0200

(1855767). It means RTDBC is 57.3 times faster than

DBSCAN i.e., it gives efficient method for very large

data sets Illustrate the Fig. 10, RTDBC cumulative run

time and NMI on selecting objects and random method

in DS1x0200:

For selecting objects in Step 6

• Number of iterations: 7

• Time required: 8.3 sec

• Number of queries: 6149

For random objects in step 6

• Number of iterations: 225

• Time required on selecting objects: 87.7

• Number of queries: 117761

The initial nodes in G increases with respect to α

because the primitive circles are overlapped in step 1

shown in Fig. 11b and due to merging in step 4 leads to

faster reduction in graph nodes. The nodes of the graph

also decreases more rapidly on all iterations shown in

Fig. 11d. Hence the RTDBC cumulative run times

reduced considerably shown in Fig. 11a. Hence the

numbers of states edges identification required more

queries and increased queries are stable while β is large.

Therefore, more or additional core objects are identified

on each step and thus making to rapid detection the

“yes” states of the edges shown in Fig. 11c. So the

increased queries effect is very small on operation cost

and the cumative run times of RTDBC are still reduced.

Overall performance decreases from redundant queries

while α, β are very large. Hence in RTDBC prefer the

method that for maximum iterations while α = β.

Dr. B. Ravi Prasad / Journal of Computer Science 2017, 13 (10): 496.504

DOI: 10.3844/jcssp.2017.496.504

501

Fig. 8. The performance of RTDBC

Fig. 9. NMI results

Fig. 10. Performance of RTDBC for DS1x0200 (active selection)

Dr. B. Ravi Prasad / Journal of Computer Science 2017, 13 (10): 496.504

DOI: 10.3844/jcssp.2017.496.504

502

Fig. 11. Role of α and β

Fig. 12. Effect on RTDBC performance by µ and є

The RTDBC runtime slightly increases by increasing

the parameter µ and more queries needed to find

unprocessed objects shown in Fig. 12. Thus the graph

size decreases tends to reduce the cost. In other hand this

is happen while noise objects are more.

Increased the value of є will impact to decrease the

initial graph nodes while more objects are labeled

inside the primitive circle. However, number of

queries and runtimes are decreased. Thus, the larger

of є tends RTDBC to obtain faster clustering results of

all iterations.

RTDBC performance on different synthetic datasets

created by DBSCANR (DBSCAN variant) (Gan and

Tao, 2015) shown in Fig. 13 with synthetic 1 (9 with

2000000 points) and synthetic 2 (11 with 2000000

points) dimensions on different values of є with µ = 5. It

is observed that the performance of RTDBC very faster

compared to DBSCAN and its variant DBSCANR.

Dr. B. Ravi Prasad / Journal of Computer Science 2017, 13 (10): 496.504

DOI: 10.3844/jcssp.2017.496.504

503

Fig. 13. RTDBC performance on different synthetic datasets

It is also noted that in Synthetic 1 data set while є =

4000 RTDBC needs 3.68 sec where DBSCAN and

DBSCANR needs 1093.6 sec and 221 sec respectively.

Thus, RTDBC is 297.1 times faster than DBSCAN and

60 from DBSCANR.

Scalability of RTDBC with respect to DBSCANR

shown in Fig. 13b with µ = 5 and є = 5000 and µ = 5 and

є = 4000 of number of objects and data dimension

respectively. It is noted that the efficient performance of

RTDBC on higher values of objects and data dimension.

Thus, for clustering of 5000000 objects RTDBC

completes in bellow 9.3 sec where as 505.4 sec and

19388.8 sec in DBSCANR and DBSCAN respectively.

However, overall RTDBC is nearly 55.5 faster compared

to DBSCANR and DBSCAN.

Conclusion

Though DBSCAN, a well-known Density-Based

Clustering Algorithm is a advanced data clustering

method with various applications in numerous fields,

but its run time R(n
2
) complexity draws a major

challenge. RTDBC is a solution to minimize the

problems in DBSCAN. In RTDBC objects are allotted

into clusters using labels representatives than the

method of propagating directly to reduce propagation

time of label considerably. In contrast, RTDBC

produce fast result and continuous process of runtime and

additionally users are permitted to suspend for testing the

result and continue as to enhance good results. RTDBC is

297.1 times faster than DBSCAN and 60 from

DBSCANR. Clustering of 5000000 objects RTDBC

completes in bellow 9.3 sec where as 505.4 sec and

19388.8 sec in DBSCANR and DBSCAN respectively.

However, overall RTDBC is nearly 55.5 faster compared

to DBSCANR and DBSCAN.

Acknowledgment

The author expresses his appreciation of the Mrs

Battula Sridevi to his valuable helps in this research.

Ethics

This article is original and contains unpublished
materials. The corresponding author confirms that all of
the other authors have read and approved the manuscript

and there are no ethical issues involved.

References

Brecheisen, S., H. Kriegel and M. Pfeie, 2004. Efficient

density-based clustering of complex objects.

Proceedings of the 4th IEEE International

Conference on Data Mining, Nov. 1-4, IEEE Xplore

Press, Brighton, UK, pp: 43-50.

 DOI: 10.1109/ICDM.2004.10082

Ester, M., H.P. Kriegel, J. Sander and X. Xu, 1996. A

density-based algorithm for discovering clusters in

large spatial databases with noise. Proceedings of

the 2nd International Conference on Knowledge

Discovery and Data Mining, Aug. 02-04, AAAI

Press, Portland, Oregon, pp: 226-231.

Dr. B. Ravi Prasad / Journal of Computer Science 2017, 13 (10): 496.504

DOI: 10.3844/jcssp.2017.496.504

504

Gan, J. and Y. Tao, 2015. DBSCAN revisited: Mis-

claim, un-fixability and approximation. Proceedings

of the ACM SIGMOD International Conference on

Management of Data, May 31-Jun. 04, ACM,

Melbourne, pp: 519-530.

 DOI: 10.1145/2723372.2737792

Kobayashi, T., M. Iwamura, T. Matsuda and K. Kise,

2013. An anytime algorithm for camera-based

character recognition. Proceedings of the 12th

International Conference on Document Analysis and

Recognition, Aug. 25-28, IEEE Xplore Press,

Washington, DC, USA, pp: 1140-1144.

 DOI: 10.1109/ICDAR.2013.231

Mai, S.T., S. Goebl and C. Plant, 2012. A similarity

model and segmentation algorithm for white matter

fiber tracts. Proceedings of the IEEE 12th

International Conference on Data Mining, Dec. 10-

13, IEEE Xplore Press, Brussels, Belgium, pp:

1014-1019. DOI: 10.1109/ICDM.2012.95

Settles, B., 2009. Active learning literature survey.

Computer Sciences Technical Report 1648,

University of Wisconsin, Madison.

Zhou, S., A. Zhou, J. Cao, W. Jin and Y. Fan et al.,

2000. Combining sampling technique with

DBSCAN Algorithm for clustering large spatial

databases. Proceedings of the Pacific-Asia

Conference on Knowledge Discovery and Data

Mining, pp: 169-172.

 DOI: 10.1007/3-540-45571-X_20

