

 © 2017 Talal Talib Jameel. This open access article is distributed under a Creative Commons Attribution (CC-BY)

3.0 license.

Journal of Computer Sciences

Investigations

Load Balancing For Cloud-Based Dynamic Data Processing

Talal Talib Jameel

Department of Dentistry, Al Yarmouk University College, Baghdad, Iraq

Article history

Received: 22-12-2016

Revised: 04-03-2017

Accepted: 20-05-2017

Email: talal.alhabeeb@gmail.com

Abstract: The Map/Reduce paradigm has dominated cloud computing

since its beginnings. However, there are some scenarios in which

Map/Reduce is not the best model. Once such situation is a system that

collects data dynamically, with intermittent arrival times. In this study, we

study a modified form of Map/Reduce that uses a load balancer to distribute

work, rather than simply assigning a Map node in an ad-hoc fashion. We

show that this approach performs significantly better than standard

Map/Reduce. In particular, it reduces the amount of time data is waiting in

a queue to be processed.

Keywords: Cloud Computing, Load Balancing, Map/Reduce, Dynamic

Data, Resource Allocation, Data Center

Introduction

Current Challenges

Given a parallelized algorithm A, a set of resources

R (typically a set of virtual machines and I/O channels

in the cloud) and a set of data D, it is usually

straightforward to distributed this data to the resources

R. Assuming that the resources are uniform and that the

number of resources is N = |R|, then the standard

approach would be to assign D/N data values to each

resource. This is what is referred to as a “static model,”

because all the data D is available in advance, before

the algorithm is run.

This simple approach will not work for the “dynamic

model,” where new data can arrive while the algorithm is

running. Simulated systems will typically follow the

static model, while production systems with live data

being produced by sensors will typically follow the

dynamic model (Darema, 2004). Furthermore, in the

dynamic data model the data may be arriving according

to a “smooth” distribution or a “punctuated” distribution.

In a smooth distribution, the number of data items that

arrive in a time interval T is always the same. In a

punctuated distribution, the data can arrive at any time

(Yin et al., 2013). As an example, consider CPU fan

speed. In a smooth distribution model, the CPU fan

speed would be adjusted according to the CPU

temperature sensor. The temperature sensor would be

read every T seconds, so that in this case there would

always be 1 new data point per measurement. In a

punctuated distributions model, the CPU fan speed

would be adjusted only if the CPU temperature

exceeded a certain threshold value V. In this model

there could be long intervals during which there is no

data (because the temperature is less than V during that

interval), followed by one or more data points in which

the fan speed has to be changed because the CPU

temperature has exceeded the threshold (Darema,

2005). Since the future history of the CPU temperature

is effectively unpredictable, it is also not possible to

determine the number of data points that will arrive

during the interval T.

For a system with dynamic data, the simple D/N

allocation algorithm is unlikely to work. Data must be

distributed uniformly to each resource (Chandra et al.,

2003). If time T has passed and the amount of data that

has arrived is Dactual < D/N, then it may be better to wait

before sending any of this data to a resource. If Dactual >

D/N then it may be better to partition the data, sending

some of it to one or more resources, while keeping the

rest of the data in a queue.

The fundamental question for a system with dynamic
data is “What is the best strategy for distributing this

data to the resources?” For the purposes f this document
we define the “best strategy” to be the one that finishes
processing a fixed amount of data D in the least amount
of time. This paper proposes a data distribution strategy
based on a specific form of load balancing and
demonstrates that this load balancing approach performs

significantly better than the static D/N approach.
This paper addressed the current challenges

associated with load balancing in cloud-based dynamic

data settings. It further introduced the load balancing to

provide some insights about the current problems in

resource allocations. Then, the simulation environment is

Talal Talib Jameel / Journal of Computer Sciences 2017, 13 (8): 301.306

DOI: 10.3844/jcssp.2017.301.306

302

introduced followed by the method and results. The

obtained result is discussed at the end of the paper from

different perspectives.

Load Balancing

The problem of resource allocation is a common

problem that arises in many different scenarios

(Shirazi et al., 1995). In our particular situation we are

faced with a resource allocation problem that is very

similar to the problem of web server architecture in the

face of high traffic. Heavily used web sites (for example

cnn.com) may have millions of page load requests per

minute (Bharadwaj, 1996). The typical solution that is

used features replication (putting the page data on

multiple servers), caching (keeping a copy of a formatted

web page so long as the content has not changed) and

load balancing (Ranganathan et al., 2002). For our

purposes replication and caching are not needed, but load

balancing is needed. In the server case, a load balancer is

an algorithm that routes tasks to the least busy machine

that it can locate. Unfortunately the concept of “least

busy” is not well defined. It depends on a number of

factors, including CPU load, memory availability and

I/O bandwidth. When we specify our particular form of

load balancer algorithm we will provide a precise

definition of how a machine (typically a virtual

machine) can compute its own “busy factor” so that the

load balancer can decide how to distribute data to

available machine resources.

There is another critical way in which our distributed

algorithm differs from web server load balancing. This is

the issue of granularity. For a web browser loading a

web page, the user is unlikely to notice the difference

between 0.5 sec to load and 0.6 sec to load, but will

certainly notice the difference between 0.5 and 5 sec.

Thus, for page loads, the granularity is very small,

because it is based on the human perception of time.

The distributed algorithms we use often need to

perform complex cryptographic operations. These

operations put high demands on the CPU, since even a

single operation may take seconds (Cardellini et al.,

1999). Thus, these algorithms have a very large

granularity. They also put high demand on memory,

because the algorithms need to allocate very large

blocks of memory in order to run. The I/O bandwidth

requirements are different, however. Typical algorithms

will require very high I/O bandwidth during

initialization, in order to distribute the key material.

After the initialization phase is complete, however, I/O

requirements are typically very low. During this steady

state phase of the algorithm the I/O packets will consist

of new data elements or partial results, which will

require far less bandwidth than key exchange. When we

describe our load balanced algorithm we will show how

initialization cost is handled.

Simulation Environment

In order to validate our load balancing algorithm to

the greatest extent we wish to perform experiments on

many different configurations. In an actual cloud

deployment it may be difficult to adjust some of the

parameters that we wish to vary. For this reason we

chose to implement and test our algorithm on a

simulated cloud environment, namely cloudsim 4.0.

Cloudsim is a Java-based cloud simulation environment

that allows the developer control of all parameters within

a configuration, from the most local parameters

(individual characteristics of a single virtual machine) to

the most global parameters (network configuration

within a data center). This environment is ideal for

research on cloud algorithms without incurring the

development limitations one would encounter in a

specific cloud deployment.

Using cloudsim also allowed us to build a generic

plugin architecture to represent any algorithm. To do this

we defined a Java interface named Ialgorithm. This

interface defines methods for initialization, sending data,

receiving data and also performing a computation based

on data already received. Any Java class that implements

this interface can be deployed to a computational

resources. This allows us the flexibility to test the

responsiveness of the load balancing algorithm for

situations in which the computational resources have

different algorithms deployed to them. This approach

makes it easy to simulate a map/reduce framework, in

which the control node is running one algorithm, the

map nodes are running a second algorithm and the

reduce node(s) are running a third algorithm. Since most

of the algorithm work done so far has used a map/reduce

paradigm, the idea of subclassing from the Ialgorithm

interface has proven very useful in quickly setting up a

simulation. Algorithms are packaged as Java jar files, so

that it is easy to load them at compile time or runtime.

Method

The system architecture for our simulation work is

shown in Fig. 1.

The simulation has three operational phases:

Initialization, run and termination. When the

simulation is started it reads a fixed configuration file.

From this file it learns the names of the jar files that

will be used by itself, the load balancer, the map

nodes and the reduce node(s). The control node sends

a message to each node, commanding the node to load

and run the appropriate jar file. The control node then

performs its own initialization (such as the generation

of crypto key material) and then commands the load

balancer to gather initialization statistics. The load

balancer then uses an algorithm named Init (describe

below) to assign each computational node a score.

Talal Talib Jameel / Journal of Computer Sciences 2017, 13 (8): 301.306

DOI: 10.3844/jcssp.2017.301.306

303

Fig. 1. System architecture

It sorts these scores from lowest to highest and delivers

the sorted list to the control node. The control node then

uses this list to command each computational node to

perform its own initialization. Once the control node has

received acknowledgments from each computational

node that initialization is done, the control node reads the

data source information from the configuration file and

connects to the corresponding data source. Note that the

control node may implement an immediate connection

protocol, in which all data sources are connected during

initialization, or it my implement a deferred connection

protocol, in which some data sources can be added

during runtime. Once the control node has finished

connecting to data sources, it transitions to run mode.

Run mode is straightforward. The control node

queries each data source in a round robin fashion to see

if data is available. If any data is available it reads that

data. It then commands the load balancer to gather

runtime data from each compute node. The load balancer

then uses its algorithm Run, described below, to sort the

runtime information into an array of triples of the form

<NodeId, Load, HowMany>. Here NodeId is the

identifier for each Map or Reduce node; Load is the load

factor on that node; and, HowMany is the maximum

number of data points that can be accepted by that node.

The load balancer also collects the round trip time of the

command/response sequence to each node and includes

that information with the array. The array is then sent to

the control node. The control node then typically

implements a greedy allocation algorithm for the data

points in its queue. The maximum number possible is

sent to the least busy node; if there is any data left then

the maximum amount of data is sent to the second least

busy node and so forth. It may be the case that the

greedy algorithm is unable to distribute all the newly

arrived data because all the nodes are too heavily loaded.

In this case, the control node queues up the remaining

data points for the next iteration. Once the data has been

received by the Map and Reduce nodes, each node

processes it according to the selected algorithm. This

may involve Map nodes sending partial data to Reduce

nodes and also for Reduce node(s) to send partial data

back to the control nodes. Then transmissions are

handled using asynchronous I/O, since the amount of

data in these packets is typically very small.

The termination phase can be triggered by two

events. If all data sources report that they have sent all

available data, the control node closes the connections to

the data sources and sends a termination command to all

nodes. The termination phase can also be entered if there

is an iteration counter present in the configuration file.

Such a counter indicates the maximum number of

Talal Talib Jameel / Journal of Computer Sciences 2017, 13 (8): 301.306

DOI: 10.3844/jcssp.2017.301.306

304

iterations of the simulation may run. Once this counter is

reached, the control node again close all data

connections and sends a termination command to all

nodes. Note that the load balancer is not used for

termination processing. Once all the Map nodes have

completed processing, they will send their final data,

along with a termination command, to the Reduce

node(s). Once the Reduce node(s) have finished all their

processing, they will send the final data to the control

node and append a termination flag to indicate that all

processing is done. At this point it is the responsibility of

the control node to handle the results according to the

configuration file. This may involve generation of

graphs, construction of tables, logging, or any other

supported termination action's from each node: CPU

load average L, percentage of available memory M,

number of connections C and the time it takes the node

to read a block (4096 bytes) from global storage R. The

score for that node is then computed as C*(k1*R + k2*M

+ k3*L), where k1, k2 and k3 are configurable constants.

This approach is sometimes called connection-based

load balancing, because the more data connections a

node has, the higher its score will be. The algorithm Run

requests the following information from each node: L,

M, C; the amount of time it takes to read a small block

(512) bytes from a network socket; and the number of

available data slots in the node D. It is assumed that each

computational node implements a slot allocation policy,

where newly arrived data is placed into an array of slots.

As data is processed by the computational algorithm,

slots are emptied. Thus we can write D = TD-TI, where

TD is the total number of slots and TI is the number f

slots currently in use. It is certainly not necessary to use

a slot based allocation policy, but simple experiments

have shown that this is the best memory allocation

strategy. When each node starts up it requests a single

allocation large enough to hold all slots. If, instead, each

node were to allocated memory when needed and free

memory when not needed then the memory utilization

percentage M would fluctuate wildly and it would be

very unlikely to achieve optimum allocation. The run

algorithm uses the score of C*(k1*S + k2*M + k3*L) and

provides D as the value of HowMany.

Results

In evaluating the results of the simulation, we

compare computation time and other factors versus the

naive D/N allocation strategy discussed in the first part

of this document. In particular comparative data will be

presented for scenarios with 10-100 Vms allocated to

Map nodes, 1 VM allocated for both the control

algorithm and the load balancer and 1 VM allocated for

the Reduce node. We will compare total time of

execution (Fig. 2) and also the average time spent in a

blocked state waiting for data (Fig. 3). These figures

clearly show that the load balancing approach provides a

significant improvement in resource allocation for

dynamic data. In our simulations data delivery (size and

timing) is modeled as random, although alternative

scenarios using different data delivery strategies yield

almost identical results.

Fig. 2. Normalized execution time for D/N (red) and LB (blue) algorithms

Talal Talib Jameel / Journal of Computer Sciences 2017, 13 (8): 301.306

DOI: 10.3844/jcssp.2017.301.306

305

Fig. 3. Average blocking time

The obtained result enrich previous findings on the

role of graph partitioning of (Khayyat et al., 2013) in

which using single method is considered to be

insufficient for minimizing end-to-end computation. This

is usually apply when the data is very large or the

runtime behavior of the algorithm is unknown, an

adaptive approach is needed. The result also provide

more support to the work of previous work in (Hao et al.,

2009) who argued about the effectiveness of a basic

network infrastructure to migrate virtual machines across

multiple networks without losing service continuity.

Authors in Hao et al. (2009) assumed that providing a

mechanisms using a network-virtualization architecture

that relies on a set of distributed forwarding elements

with centralized control would help enhancing dynamic

cloud-based services. As such, the present work extend

the previous efforts on the potential of Map/Reduce in

cloud related applications.

Conclusion

In this study we have presented a novel method for

distribution and processing of dynamic data, particularly

in the case of computationally difficult algorithms that

take a long time to process. We have used a load balancer

algorithm to mediate the distribution of data. By every

performance measure this approach performs better and a

naive strategy of distributing the data evenly over all

compute nodes. We have also developed a simulation

framework that is easily extensible to simulations of other

cloud-based algorithms. Future works can further study

the feasibility of the proposed method in various cloud

related systems. This include extending the simulation

environment to include additional settings.

Ethics

This article is original and contains unpublished

material. The corresponding author confirms that all of

the other authors have read and approved the manuscript

and no ethical issues involved.

References

Bharadwaj, V., 1996. Scheduling Divisible Loads in
Parallel and Distributed Systems. 1st Edn., John
Wiley and Sons, Los Alamitos,

 ISBN-10: 0818675217, pp: 292.
Cardellini, V., M. Colajanni and S.Y. Philip, 1999.

Dynamic load balancing on web-server systems.
IEEE Internet Comput., 3: 28-39.

 DOI: 10.1109/4236.769420
Chandra, A., W. Gong and P. Shenoy, 2003. Dynamic

resource allocation for shared data centers using
online measurements. Proceedings of the
International Workshop on Quality of Service, Jun.
02-04, Springer-Verlag, Berkeley, pp: 381-398.

Talal Talib Jameel / Journal of Computer Sciences 2017, 13 (8): 301.306

DOI: 10.3844/jcssp.2017.301.306

306

Darema, F., 2004. Dynamic data driven applications

systems: A new paradigm for application

simulations and measurements. Proceedings of the

International Conference on Computational Science,

(CCS’ 04), Springer, Berlin, Heidelberg, pp: 662-669.

DOI: 10.1007/978-3-540-24688-6_86

Darema, F., 2005. Grid computing and beyond: The

context of dynamic data driven applications

systems. Proc. IEEE, 93: 692-697.

 DOI: 10.1109/JPROC.2004.842783

Hao, F., T. Lakshman, S. Mukherjee and H. Song, 2009.

Enhancing dynamic cloud-based services using

network virtualization. Proceedings of the 1st ACM

Workshop on Virtualized Infrastructure Systems and

Architectures, Aug. 17-17, ACM., Barcelona, Spain,

pp: 37-44. DOI: 10.1145/1592648.1592655

Khayyat, Z., K. Awara, A. Alonazi, H. Jamjoom and

D. Williams et al., 2013. Mizan: A system for

dynamic load balancing in large-scale graph

processing. Proceedings of the 8th ACM European

Conference on Computer Systems, Apr. 15-17,

ACM, Prague, Czech Republic, pp: 169-182.

 DOI: 10.1145/2465351.2465369

Ranganathan, K., A. Iamnitchi and I. Foster, 2002.

Improving data availability through dynamic model-

driven replication in large peer-to-peer communities.

Proceedings of the 2nd IEEE/ACM International

Symposium on Cluster Computing and the Grid,

May 21-24, IEEE Xplore Press, pp: 376-376.

 DOI: 10.1109/CCGRID.2002.1017164

Shirazi, B.A., K.M. Kavi and A.R. Hurson, 1995.

Scheduling and Load Balancing in Parallel and

Distributed Systems. 1st Edn., Wiley, Los Alamitos,

ISBN-10: 0818665874, pp: 520.

Yin, S., S.X. Ding, A.H. Abandan Sari and H. Hao,

2013. Data-driven monitoring for stochastic systems

and its application on batch process. Int. J. Syst.

Sci., 44: 1366-1376.

 DOI: 10.1080/00207721.2012.659708

