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Abstract: The Antivirus (AV) products are utilized by home user’s 

community to attain protection. To some extent, the AV meets users' 

expectations by detecting previously known malware samples. In this 

study, we question the set of events which should trigger the AV to scan 

data. Scanning every single piece of data as it moves from one location 

into another could be a demanding and performance-killing task. The 

AV faces a design challenge when deciding what kind of data to scan 

and when to do so. Typically, the on-access scanner component of the 

AV scans data upon moving from/to hard drives. Other occurrences of 

data movements are of equal importance. For example, data moves 

between different memory locations or between memory and network. 

In this study, we are motivated to explore what it needs to be done by 

the AV upon various data movements. We design and implement a 

system that has a capability of scanning memory when necessary. We 

recognize and intercept the most effective API calls that involve 

memory. Afterwards, we extract involved data and scan it if it has not 

been scanned before. We test our system against 15 real malware and 

find out that our system is capable of detecting all malware samples. 

Furthermore, we provide a thorough performance study to present the 

overhead of our system. 
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Introduction 

Computer security is increasingly given attention all 

levels. Compared with other security tools, the Antivirus 

(AV) software proves useful and stands the test of time. 

Security products are usually evaluated against two main 

metrics: Detection effectiveness and performance 

overhead. The AV, in turn, tries to reach a good balance 

between these two factors. To be effective, the AV 

maintains a database of virus signatures against which it 

scans data. Not only that having a unique signature for a 

virus enables the AV to catch the corresponding virus, 

but also it\makes false positive rates almost negligible. 

In addition, even though the AV optimizes its scanning 

engine for performance, unfortunately it skips doing 

some very important actions for the sake of maintaining 

the bottom-line of acceptable performance overhead. For 

example, the AV seems to choose not to scan Only-In-

Memory Data. This is the kind of data that will never be 

written to a secondary storage such as Hard Drives (HD) 

(Al-Saleh et al., 2015; Al-Saleh and Shebaro, 2016; 

Gionta et al., 2014). Interestingly, according to a study 

(Gupta et al., 2010), popular AVs do not scan data 

received through network into memory. Furthermore, 

data that is sent from memory through network is not 

scanned by the AV. Apparently, the AV is triggered 

upon reading from or writing to files. This kind of AV is 

called on access scanner, where the AV scans data upon 

file access. However, this is not always the case. For 

example, an attacker might assemble a virus from 

malicious data obtained from several files, network data, 

other local processes, or from its own runtime data. 

What is common to all such cases is that malicious data 

is only assembled in memory from different sources and 

that it is not coming from or going to a single file. This 

research aims at finding an efficient way to address this 

problem by developing what we call Memory-On-

Access Scanner (MOAS). We design a system that 

basically tracks data where-ever a memory data is 

involved. Tracking data in memory at the byte-level 
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could not be efficient nor effective. Consequently, we 

track memory at the API-level, where we have a better 

view of data at much fewer intrusiveness. We design and 

implement a system that has a capability of scanning 

memory when necessary. In our system, we consider 

scanning data at three different situations that represent 

data movements: Memory-to-memory, memory-to-

network and network-to-memory. We recognize and 

intercept the most effective API calls that involve 

memory data. Afterwards, we extract the involved data 

and scan it if it has not been scanned before. We do that 

by keeping a database of hash values for already-scanned 

data. Performance can be further enhanced by 

developing a better interception methodology, choosing 

the right APIs to intercept, utilizing a high-performance 

scanning engine and whitening benign programs. 

This paper is organized as follows. In section 2, we 

give a brief background on different topics we use 

through this paper. Section 3 illustrates the threat model 

of the system which we try to address. In section 4 we 

overview the architecture of our system. Our 

experiments are detailed in section 5. Our results are 

shown in section 6. Then, discussion and future work are 

covered in section 7. This is followed by related work 

and the conclusion. 

Background 

This section gives a brief background about the 

following: 

 

• Malware types and infection techniques 

• AVs and detection techniques 

• ClamAV, a popular open-source AV that we use in 

this study to scan data 

• WinAppDbg, a general API interception frame-work 

that we use in this study 
 

This section is not meant to be complete in any way. 

It just explains need-to-know things for the reader of this 

paper to help simplify its contents. 

Malware 

Malware is any software that is developed with a 

harmful intent. Malware can be classified and named 

based on the infection technique, spreading technique, 

or kind of harm it causes. For example, a Worm is a 

malware that mainly exploits a security vulnerability of 

a awed program over the network. Then, it propagates 

itself by finding new victims recursively. A Virus is a 

malware that attaches itself into file such as EXE and 

DLL files. Its code stays inactive until the 

corresponding programs are executed. A Trojan horse 

is a malware that appears to be useful such as a 

downloadable game or a well-known utility program, 

but it hides malicious code inside, which can do any 

kind of harm. Spyware is a malware that steals 

information from a system and sends it to a remote 

attacker. There are obviously many types of 

information that can be interesting to the attacker such 

as credit card numbers, contacts, documents and 

emails. Rootkit is a malware modifies the kernel and 

hides itself inside. Being inside the kernel gives all 

privileges and capabilities to the rootkit to potentially do 

anything possible. A Virus infects files using many 

techniques. For example, Boot viruses (Rad et al., 2011) 

can infect any machine regardless of what OS is installed 

by exploiting the boot process of the computers. 

A memory resident malware stays in memory all 

time. It can be of different types (Szor, 2015): Direct-

action, temporary and swapping. Direct-action viruses do 

not make themselves visible in memory. They load into 

memory along with the host program and then they 

seek for new hosts programs to infect. These viruses 

may infect many files upon execution. The virus of this 

type can take control by allocating a block of memory, 

relocates its code in the allocated block and activates 

itself. It basically hooks the flow of execution, which 

makes it able to infect new files and systems. 

Temporary memory-resident viruses do not always 

reside in memory, but they stay in memory for a short 

period of time and wait for a particular event to occur. 

Swapping memory-resident viruses rely on loading a 

small part of the virus code into memory which enables 

them to stay active all time. However, this part of the 

code may be a hook event, so whenever the hook event 

is triggered, the virus gets a segment of its code from 

the disk and then infects a new file and finally clears 

the loaded segment from memory. 

Antivirus 

The Antivirus (AV) is the last line of defense for a 

computer system. It is one of the most widely used 

tools for malware detection. The AV scans data by 

comparing it against its database of known virus 

signatures. If a match is found, then the AV blocks the 

operation and takes appropriate actions to handle the 

situation (Al-Saleh, 2015). 

The AV utilizes different detection technique. These 

techniques can be classified into many types (Rad et al., 

2011; Szor, 2015): First-generation scanners, second-

generation scanners and algorithmic scanning. First-

generation scanners utilize techniques such as string 

matching, wildcards matching, hashing and fixed-point 

scanning. Second-generation scanners are more trustable 

and use smarter ways of detection, such as heuristic 

scanning. Algorithmic scanning methods (more 

accurately called virus-specific detection) is not a 

general technique, but rather it is a method that is created 

for detecting a specific malware. Code emulation 
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technique could be utilized in the algorithmic scanning. 

This is done by simulating the CPU, memory, storage 

resources and some of the important functions of the OS 

by a virtual machine. It runs malware in the virtual 

machine and then investigates its behavior in a 

controlled environment. 

ClamAV Antivirus 

ClamAV (Kojm, 2004) is the most popular, open-

source AV that is typically utilized by security 

researchers and practitioners. ClamAV has a very useful 

feature that enables scanning files from the command 

line and it can be integrated within a development 

framework (as we do in this study). An application can 

use ClamAV scanning capabilities by dynamically 

linking to it. In this case, ClamAV daemon along with its 

database are loaded once and then shared with the user 

agents, so that agents can scan files by calling various 

scanning functions. ClamAV functions can be called to 

mainly scan a file, directory, or buffer. Scanning results 

can be stored and interpreted easily. 

WinAppDbg Debugger 

WinAppDbg (Vilas) debugger is a python module 

that is used for general debugging purposes. It can be 

interfaced with python programs to manipulate 

processes, threads and libraries. It has many functions 

such as attaching a script as a debugger, tracing the 

execution of a script, setting breakpoints and hooking 

windows API calls. It is easier to modify and maintain 

than any other windows debuggers, because it does not 

have any native code. 

Threat Model 

Figure 1 illustrates the three directions of data while 

moving. Data flows between the following zones: 

 

• Memory and secondary storage 

• Memory and network 

• Memory and memory 
 

 
 
Fig. 1. Threat model 

Identifying these zones is essential for security 

assessment. Apparently, AVs scan data when transferred 

in the first zone only. This paper complements the AV's 

job by paying attention to the other zones and scanning 

the involved data. 

System Architecture 

This paper aims at developing an effective and 

efficient memory scanning AV component. Specifically, 

our goals can be concluded by the following: 

 

• Adding a security component to computing systems 

to scan memory when necessary 

• Our security component should be effective in 

catching malware. Consequently, testing against real 

malware instances is necessary 

• The performance impact of our system should be 

minimal. Performance study and enhancement 

strategy is provided 

• Based on the coming results, recommendations to the 

AV and Operating Systems vendors will be provided 

 

Even though several approaches to develop a MOAS 

can be suggested, our approach to the problem is through 

intercepting Windows API calls. This proposed approach 

is justifiable. Upon data transfer, a process's memory can 

be a source or a destination. In any case, an API call is 

needed to transfer data. Consequently, intercepting API 

calls to scan the involved data is necessary to prevent 

transferring malicious contents. Scanning data at the API 

call is efficient because scanning every single memory 

read or write obviously kills the system performance. 

However, scanning at the API granularity is more 

efficient because higher level of data is being scanned. In 

other words, triggering MOAS happens less frequently 

(performance gain) and more effectively (mature data is 

scanned) in case of intercepting API calls compared with 

scanning every single memory operation (read/write). 
Several frameworks are available to intercept API 

calls. We use WinAppDbg debugger (see section 2.4) to 

intercept API calls. It can be inter-faced with Python 

programs to manipulate processes, threads and libraries. 

It provides wrappers around API calls in a form of PRE 

(happens before) and POST (happens after) kind of 

controls. We utilize these capabilities to hook memory-

related API calls. Our system utilizes PRE (happens 

before) and POST (happens after) controls provided by 

WinAppDbg to decide whether scanning data is 

necessary or not. For example, when a monitored 

process wants to write into memory, it uses an API call 

(e.g., WriteProcessMemory()). This API call will be 

intercepted and our PRE control is triggered. In the PRE 

control, we can collect all information about the write 

operation, such as the involved range of addresses. Then, 
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we can extract such data for inspection before the 

operation is carried out and causes any harm. If the 

involved data is clean, the operation can pass as usual. 

Figure 2 explains the basic flow of our system. 

There are many types of APIs that can be 

intercepted by using WinAppDbg. But we are 

interested in two API categories: Memory-related and 

network-related. Memory-related APIs can also be 

classified into three types: 

 

• General Memory APIs: Used to copy data from a 

memory location into another as a result of 

(ultimately) calling RtlMoveMemory() 

• Virtual Memory APIs: Used in managing virtual 

memory (allocation/de-allocation). Newly allocated 

memory is necessarily benign because it has no 

contents yet. However, we keep track of allocated 

ranges to be used in scanning data later on when part 

of such ranges are accessed. In addition, we focus 

on memory de-allocation APIs. Basically these are: 

VirtualFree(), VirtualFreeEx() 

• Debugging APIs: Used in reading/writing from a 

process's memory. Both ReadProcessMemory() and 

WriteProcessMemory() are used to read/write data 

from/to another process's memory 

 

Network-related APIs are included in the WinSock 

library. There are many WinSock APIs, but we focus on 

the APIs that are related to sending and receiving data. 

These APIs are send(), sendTo(), recv() and recvFrom(). 

We intercept all these APIs in our PRE or POST 

mechanism. However, sometimes, it is necessary to 

extract and scan data before (i.e., in the PRE control) it 

moves to another location and sometimes it is necessary 

to extract and scan data after (i.e., in the POST control) it 

comes from another location. We extract and scan data 

in the PRE control for the following APIs: 

RtlMoveMemory(), VirtualFree(), VirtualFreeEx(), 

WriteProcessMemory(), send() and sendTo(). We extract 

and scan data in the POST control for the following 

APIs: Read-ProcessMemory(), recv() and recvFrom(). 

To be able to scan data online, we built our own 

MOAS based on ClamAV. Whenever our system 

determines that certain data needs to be scanned, 

ClamAV is called to scan data. We run ClamAV as a 

background service so that we can communicate with it 

on demand. 

To enhance the performance of our system, some 

optimizations are needed. For example, already- scanned 

data (if not changed) should not be scanned again should 

it be involved in future operations. Doing so saves a lot 

of unneeded memory scanning. In order to account for 

already-scanned data, our Memory Database Manager 

(MDBM) component maintains a database through 

which it checks whether the data has already been 

scanned or not. The database contains memory range of 

addresses and a hashed value of the data to indicate if 

data has been changed since the last scan. Initially, when 

a new memory is allocated, the corresponding memory 

ranges are registered in the database during the PRE 

control of the memory allocation API. 

 

 
 

Fig. 2. The basic flow of our protection system 
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When data is to be transferred, its database entry will be 

checked whether it is scanned or not. The hash of data 

will be computed and compared to the database hash 

value. If a match is found, then there is no need to scan 

the data again. A database entry is removed upon 

memory deal location. It is worth mentioning that it is 

not necessary to monitor every single process in the 

system. Some processes might be white-listed to avoid 

performance degradation. 

Experiments 

In this section, we design the following experiments 

to handle these goals set in the previous section. 

Basically, we want to check the effectiveness and 

performance impact of our solution on the system. 

Experiment I: Testing Effectiveness 

To test the effectiveness of our scanner, we test our 

system against 15 different malware types in all APIs 

which we are interested in. Table 1 summarizes the APIs 

that are tested. In order to do that, we created nine 

programs, each of which has a call to one of the nine API 

routines. An API call involves copying a malware 

instance from/to memory. We collected these popular 

malware samples from Internet repositories that are 

available to the public. We used the same naming 

convention of these mal-ware samples as ClamAV. We 

test all 15 malware instances on every API call to check 

the scanner's capability to detect malware. We run each 

program under the control of our system. 

Experiment II: Measuring Performance Overhead 

In this experiment, we want to expose the 

performance impact of our system. Our system works by 

intercepting specific APIs and then scanning the data 

involved in these APIs. Consequently, in order to 

measure the performance impact, we deal with two 

different scenarios: 

 

• Scenario 1: Performance impact of both intercepting 

APIs and scanning data in the APIs 

• Scenario 2: Performance impact of only intercepting 

APIs (i.e., without scanning) 

For Scenario 1, we design 9 programs. Each program 

utilizes one of the 9 memory-related APIs. We vary data 

sizes to be used in each API to be 1 KB, 10 KB, 100 KB, 

1 MB and 10 MB. This is to show the curve of overhead 

when the involved data becomes bigger. Our system 

intercepts an API in the PRE control, records a 

timestamp (t1), extracts and scans data when necessary 

and passes the API through. After the operating system 

completes the API, our system gets the control again in 

the POST control, extracts and scans data when 

necessary, takes a timestamp (t2), computes the elapsed 

time (difference between t1 and t2) and passes the API 

through. Figure 3 illustrates this process. 

Sometimes, the same data can be read or written 

several times. In this case, there will be no need to scan 

the same data over and over again. In order to avoid 

unneeded scanning, our system maintains a database of 

Message Digests hashes (using MD5 algorithm) of the 

already-scanned data. Prior to scan data, an MD5 hash of 

the data is computed and looked up in the database of 

hashes. In case of a match, scanning will not be triggered. 

To evaluate this performance enhancement, we design our 

experiment to call the same API twice in a row such that 

in the two calls the same data will be involved. We want 

to measure how much performance over-head our system 

could avoid in case of facing the same data again. 

One important aspect of measuring the performance of 

our system is the AV engine that is used to scan data. In 

this study, we use ClamAV because it can be integrated in 

our test programs easily. However, in terms of 

performance, ClamAV might not be the best choice 

because other commercial AVs are optimized for 

performance and dedicated to fulfill users' expectations. 

To pinpoint this issue, we design Scenario 2 to completely 

disable scanning while intercepting an API call. Here, we 

only want to measure the performance overhead of just 

intercepting the APIs and taking control of running 

programs. This way we create a performance base-line for 

our intercepting methodology and isolate the scanning 

time because it directly depends on the AV scanning 

engine. We still compute elapsed time as in Scenario 1, 

but without scanning data. Because we don’t scan data, 

there is no point of varying data sizes in Scenario 2. We 

also use the same 9 programs we design for Scenario 1. 

 
Table 1. Memory-related APIs and their description according to Microsoft Software Developer Network (MSDN) 

API Description 

MoveMemory() Used to transfer data from one memory into another. 

VirtualFree() Used to free a "region of pages" in virtual address space of a process. 

VirtualFreeEX() Used to free a "region of memory" in virtual address space of a process. 

WriteProcessMemory() Used to write data into another processs memory. 

ReadProcessMemory() Used to read data from another processs memory. 

Send() Used to send data through network sockets. 

Recv() Used to receive data through network sockets. 

SendTo() Used to sends data to a specific target. 

RecvFrom() Used to receive data from a specific source. 
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Fig. 3. Elapsed time computation 

 

Experimental Setup 

Here are more information about machine 

specification and how we conduct our experiments: 
 

• Machine specifications: 

• OS: Microsoft Windows 7 Enterprise edition 

with Service Pack 1 

• RAM: 8 GB 

• Hard Drive: 500 GB 

• CPU: Core i7-860 at 2.80 GHZ 

• Scenario 1: For each API (of the nine), we 

developed a program that utilizes that API while 

varying data sizes: 1 KB, 10 KB, 100 KB, 1 MB and 

10 MB. The execution of each program is repeated 

10 times for each data size and the average elapsed 

time is computed for the 10 runs. A machine restart 

is conducted right after each run to ensure a fresh 

starting point 

• Scenario 2: We use the same setup of Scenario 1 

except that we do not vary data sizes and we do not 

scan data 
 

Results 

In this Section, we present our results for the 

experiments which are explained in the previous section. 

Our aim is to check how effective our system is and how 

much performance overhead it imposes on programs. 

Results for Experiment I 

The purpose of this experiment is to check the 

effectiveness of our system in malware detection when 

a memory API is involved. We tested each memory 

API against 15 different malware samples. For 

example, ReadProcessMemory() API was used to read 

all the 15 malware samples. Similarly, 

WriteProcessMemory() was used in the same manner. 

The same applies for the remaining APIs. Table 2 

shows the overall results of this experiment. It is 

obvious that our system was able to detect all of the 

mal-ware samples inside all APIs. This indicates that 

our system is pretty effective in malware detection. 

Results for Experiment II 

This experiment measures the performance impact of 

our system. As explained in the previous section, this 

experiment has two scenarios. So, we present their 

results separately. 

Scenario 1 results 

In this scenario, we want to show how much over-

head our system imposes on the API calls. This includes 

the overhead of intercepting an API and scanning data 

that is involved in that API. The interception depends 

directly on the methods of interception (WinAppDbg in 

our case). After interception, we utilized ClamAV to 

scan the involved data. Apparently, our system depends 

directly on these two frameworks. Enhancing them 

would has a direct improvement on the overall 

performance of our system. Furthermore, a piece of data 

might be transferred several times in the system. In that 

case, we should not re-scan the same data again. Keeping 

hash values of scanned data could save us time by looking 

it up before scanning it. To expose this fact, in each run, 

we call an API twice on the same data. Our goal is to 

check how the performance of the second call (call2) 

could be different from that of the first call (call1). 

Figure 4 shows the elapsed times of each API 

separately. We have "Avg. call1 (P)" and "Avg. call2 

(P)" when our system is applied (P in the figures is for 

Protected). Also, we have ”Avg. call1(V)” when our 

system is not applied (V in the figures is for Vanilla). 

The average is taken over 10 different runs where a 

machine restart is conducted between runs. We also vary 

the data sizes to expose overhead increase over data 

growth. In all the figures, the overhead imposed by call1 

is obvious. It is less than half a second except for the 

network-related APIs, which are comprise non-

deterministic factors that affect delay while sending or 

receiving data. It is also obvious from the figures that 

hash lookups improves call2 compared with call1. 

Scenario 2 Results 

In this scenario, we want to show how much over-

head our system incurs on the API calls by only 

intercepting API and without scanning data. This 

establishes a performance baseline and shows a room 

for scanning enhancement. Trying AVs other than 
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ClamAV could substantially improve performance. To 

get accurate results for the elapsed time of an API, we 

call it 1000 times in a raw and compute the elapsed 

time. Then, we divide the elapsed time over 1000 to 

report an average elapsed time over each API. Table 3 

shows the elapsed times for all API calls. Table 3 

Average times (in seconds) and over-head of calling 

APIs as in Scenario 2. 

 

    
 (a) (b) 

 

     
 (c) (d) 

 

    
 (e) (f) 

 

    
 (g) (h) 
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 (i) 

 
Fig. 4. Average elapsed times for all APIs; (a) MoveMemory() case; (b) ReadProcessMemory() case; (c) WriteProcessMemory() 

case; (d) VirtualFree() case; (e) VirtualFreeEx() case; (f) Send() case; (g) Recv() case; (h) SendTo() case; (i) RecvFrom() case 

 
Table 2. Results for Experiment I 

Malware name Malware size (in bytes) Detected in all APIs? 

Win.Torgan.Zeus-2 676 yes 

Win.Worm.Blaster-1 5,408 yes 

Win.Worm.CodeRed-1 2,196 yes 

Win.Worm.kido-22 158,843 yes 

Win.Trojan.FlashBack-19 171,286 yes 

Win.Worm.Stuxnet-9 15,198 yes 

Win.Trojan.Dexter-1 3,967 yes 

Win.Trojan.Zmist-2 13,923 yes 

Win.Trojan.Agent.1395295 57,112 yes 

Win.Trojan.Fari-481 49,094 yes 

Win.Trojan.Clicker-1995 611,672 yes 

Win.Worm.Koobface-22 11,624 yes 

Win.Trojan.Bancos-8327 220,041 yes 

Trojan.JS.StartPage.A 522 yes 

Trojan.Downloader-88603 74,911 yes 

 
Table 3. Results for experiment I 

API name Vanilla (no interception) With interception 

ReadProcessMemory() 0.000116234 0.000326422 

WriteProcessMemory() 0.000117641 0.000331643 

MoveMemory() 0.000138767 0.000324888 

VirtualFree() 0.000194849 0.000428281 

VirtualFreeEx() 0.000196746 0.000323634 

Send() 0.001067821 0.000327566 

Recv() 0.000963239 0.000325270 

SendTo() 0.001068574 0.000325150 

RecvFrom() 0.000885000 0.000329546 

 

It is clear in the table that the imposed overhead is 

less than a millisecond per an API of interest. Given 

that this overhead is only imposed on the APIs of 

interest and not any other API, this can be considered 

minimal given the importance of scanning data inside 

these APIs. Network-related APIs show almost no 

difference because of the reason that calling such 

functions depends directly on the responsiveness of 

the system network stack, which is non-deterministic. 

Study Recommendation 

This study show that scanning only-in-memory 
data is necessary and doable. Scanning at the API 
level can be effective as most applications need to 
utilize the API provided by the Operating System 
(OS) to accomplish their tasks. Consequently, we 
recommend that the AV and OS vendors cooperate 
towards providing an efficient MOAS. The OS could 
support the AV by natively integrating a more 
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effective intercepting technique than using the general 
debugging technique in order to intercept API calls. 
The AV could register their own callback code with 
the AV to be integrated inside the API functions 
directly. Doing so could make the interception process 
much more reliable and efficient. 

Discussion and Future Work 

The effectiveness and performance of our system can 

be further enhanced: 

Enhancing Effectiveness 

Commercially-grade AVs can be utilized to scan 

memory data. The AV vendors could modify their 

scanning engines to specially deal with memory data. 

Furthermore, because our system works at the user-mode 

level, kernel memory is not being scanned. As a future 

work, we intend to develop a kernel module that is 

capable of tracing memory API calls at the kernel level. 

Enhancing Performance 

To enhance the performance and scalability of our 

system, some genuine programs that are tagged by the 

OS or by administrators should run without any 

intervention. Furthermore, centric database of scanned 

data should be created instead of having a separate 

database for each process. Finally, scanning data with 

the help of the Graphics Processing Units (GPUs) could 

greatly enhance the overall performance. 

Related Work 

Generally, the AV research has got a little attention 

from the security research community. Part of that is the 

fact that AVs are commercial, closed-source products. 

This has a negative impact on the general 

security of systems. Having deep insights from security 

researchers and engineers could enrich these products 

and enhance their performance and security.  

AVs have been researched from two perspectives: 

Security and performance. Each one has almost the equal 

importance with respect to end users. Consequently, 

getting into a balanced point between these two aspects 

is a vital goal for AV vendors. In the AV research, 

proposals are usually to enhance the scanning engine of 

AVs, to provide an efficient way to analyze malware, to 

attack the AV itself, or to measure the AVs overhead. 

Research has been conducted to enhance the AVs 

scanning capability based on software solutions       

(Al-Saleh and Shebaro, 2016; Edwards et al., 2001; 

Edwards and Turner, 2010; Gassoway, 2013). Al-Saleh and 

Shebaro (2016) proposed an enhancement to the AV to 

make it scan memory-to-network and network-to-

memory data. Their solution is based on an AV add-on 

feature that is capable of collecting TCP flows and 

scanning them incrementally upon flow changes. They 

showed that their method is effective and practical for 

scanning network data. Edwards et al. (2001) scanned 

the process's memory each time the process runs. 

Furthermore, the work in this study is an extension to the 

project we have started (Al-Huthai and Al-Saleh, 2017). 

Edwards and Turner (2010) produced an on-access 

scanner that delays writing to files until getting scanned. 

Gassoway (2013) developed a methodology to detect 

malware in the kernel memory (rootkits). 

Several works deal with the problem of memory 

investigation for the purpose of malware analysis or 

disinfection (Sallam, 2013; Lengyel et al., 2014;   

Jiang et al., 2007; Gupta et al., 2010). Gionta et al. 

(2014) provides an efficient cloud service for virtual 

machines' memories. Szor and Ferrie (2009) analyze 

memory dumps looking for malware. Furthermore, 

studying malware behaviors by watching the API calls 

that called has been proposed (Ravi and Manoharan, 2012; 

Alazab et al., 2011; Grégio et al., 2012; Fujino et al., 

2015; Ahmed et al., 2009). The difference between our 

work and all the above mentioned ones is that they 

either scan memory offline for malware analysis or 

they scan virtual machines' memories from 

hypervisors, which they are not always the case. Our 

solution provides real-time MOAS. 

An attack vector on the AV software is conducted by 

bypassing the whole scanning process. Al-Saleh et al. 
(2015) showed that AVs can be bypassed through 
concurrent attacks. Rad et al. (2012) showed that 
polymorphism, metamorphism, encryption and 
obfuscation techniques can be utilized to bypass AVs. 
Ramilli et al. (2011) showed that the detection of Avs 

can be avoided by splitting it into parts that are 
distributed over several processes. Finally, performance 
studies on AVs to find their bottlenecks or improve 
scanning times have also been conducted (Vasiliadis and 
Ioannidis, 2010; Miretskiy et al., 2004; Lin et al., 2011; 
Al-Saleh et al., 2013). 

Conclusion 

In this study, we developed a framework(MOAS) 

which scans data that is sourced from or destined to a 

computer memory. Only-In-Memory Data can be 

dangerous if not scanned. We recognized and intercepted 

9 APIs that involve memory data. The data involved in 

these APIs are extracted and scanned using ClamAV. 

Testing our system, we were capable of detecting 15 real 

malware samples when used with the APIs of interest. 

Furthermore, we examined the system performance and 

presented the overhead imposed by it. To even enhance 

performance, we maintained a database of data hashes to 

track already-scanned data so that we do not scan the 

same data again. In addition, we found out that replacing 

ClamAV with a more efficient AV will have substantial 
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performance improvement as our results suggested. 

Performance can be further enhanced by whitening 

benign programs so that there is no need to intercept or 

scan data when marked as benign. This paper could have 

a potential effect on systems security. 
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