

© 2017 Mohammed I. Al-Saleh and Rasha K. Al-Huthaifi. This open access article is distributed under a Creative Commons

Attribution (CC-BY) 3.0 license.

Journal of Computer Science

Original Research Paper

On Improving Antivirus Scanning Engines: Memory On-

Access Scanner

Mohammed I. Al-Saleh and Rasha K. Al-Huthaifi

Department of Computer Science, Jordan University of Science and Technology, Jordan

Article history

Received: 02-06-2017

Revised: 15-07-2017

Accepted: 25-07-2017

Corresponding Author:

Mohammed I. Al-Saleh

Department of Computer

Science, Jordan University of

Science and Technology,

Jordan

Email: misaleh@just.edu.jo

Abstract: The Antivirus (AV) products are utilized by home user’s

community to attain protection. To some extent, the AV meets users'

expectations by detecting previously known malware samples. In this

study, we question the set of events which should trigger the AV to scan

data. Scanning every single piece of data as it moves from one location

into another could be a demanding and performance-killing task. The

AV faces a design challenge when deciding what kind of data to scan

and when to do so. Typically, the on-access scanner component of the

AV scans data upon moving from/to hard drives. Other occurrences of

data movements are of equal importance. For example, data moves

between different memory locations or between memory and network.

In this study, we are motivated to explore what it needs to be done by

the AV upon various data movements. We design and implement a

system that has a capability of scanning memory when necessary. We

recognize and intercept the most effective API calls that involve

memory. Afterwards, we extract involved data and scan it if it has not

been scanned before. We test our system against 15 real malware and

find out that our system is capable of detecting all malware samples.

Furthermore, we provide a thorough performance study to present the

overhead of our system.

Keywords: Antivirus, On-Access Scanner, Malware, Memory Scanner

Introduction

Computer security is increasingly given attention all

levels. Compared with other security tools, the Antivirus

(AV) software proves useful and stands the test of time.

Security products are usually evaluated against two main

metrics: Detection effectiveness and performance

overhead. The AV, in turn, tries to reach a good balance

between these two factors. To be effective, the AV

maintains a database of virus signatures against which it

scans data. Not only that having a unique signature for a

virus enables the AV to catch the corresponding virus,

but also it\makes false positive rates almost negligible.

In addition, even though the AV optimizes its scanning

engine for performance, unfortunately it skips doing

some very important actions for the sake of maintaining

the bottom-line of acceptable performance overhead. For

example, the AV seems to choose not to scan Only-In-

Memory Data. This is the kind of data that will never be

written to a secondary storage such as Hard Drives (HD)

(Al-Saleh et al., 2015; Al-Saleh and Shebaro, 2016;

Gionta et al., 2014). Interestingly, according to a study

(Gupta et al., 2010), popular AVs do not scan data

received through network into memory. Furthermore,

data that is sent from memory through network is not

scanned by the AV. Apparently, the AV is triggered

upon reading from or writing to files. This kind of AV is

called on access scanner, where the AV scans data upon

file access. However, this is not always the case. For

example, an attacker might assemble a virus from

malicious data obtained from several files, network data,

other local processes, or from its own runtime data.

What is common to all such cases is that malicious data

is only assembled in memory from different sources and

that it is not coming from or going to a single file. This

research aims at finding an efficient way to address this

problem by developing what we call Memory-On-

Access Scanner (MOAS). We design a system that

basically tracks data where-ever a memory data is

involved. Tracking data in memory at the byte-level

Mohammed I. Al-Saleh and Rasha K. Al-Huthaifi / Journal of Computer Science 2017, 13 (8): 290.300

DOI: 10.3844/jcssp.2017.290.300

291

could not be efficient nor effective. Consequently, we

track memory at the API-level, where we have a better

view of data at much fewer intrusiveness. We design and

implement a system that has a capability of scanning

memory when necessary. In our system, we consider

scanning data at three different situations that represent

data movements: Memory-to-memory, memory-to-

network and network-to-memory. We recognize and

intercept the most effective API calls that involve

memory data. Afterwards, we extract the involved data

and scan it if it has not been scanned before. We do that

by keeping a database of hash values for already-scanned

data. Performance can be further enhanced by

developing a better interception methodology, choosing

the right APIs to intercept, utilizing a high-performance

scanning engine and whitening benign programs.

This paper is organized as follows. In section 2, we

give a brief background on different topics we use

through this paper. Section 3 illustrates the threat model

of the system which we try to address. In section 4 we

overview the architecture of our system. Our

experiments are detailed in section 5. Our results are

shown in section 6. Then, discussion and future work are

covered in section 7. This is followed by related work

and the conclusion.

Background

This section gives a brief background about the

following:

• Malware types and infection techniques

• AVs and detection techniques

• ClamAV, a popular open-source AV that we use in

this study to scan data

• WinAppDbg, a general API interception frame-work

that we use in this study

This section is not meant to be complete in any way.

It just explains need-to-know things for the reader of this

paper to help simplify its contents.

Malware

Malware is any software that is developed with a

harmful intent. Malware can be classified and named

based on the infection technique, spreading technique,

or kind of harm it causes. For example, a Worm is a

malware that mainly exploits a security vulnerability of

a awed program over the network. Then, it propagates

itself by finding new victims recursively. A Virus is a

malware that attaches itself into file such as EXE and

DLL files. Its code stays inactive until the

corresponding programs are executed. A Trojan horse

is a malware that appears to be useful such as a

downloadable game or a well-known utility program,

but it hides malicious code inside, which can do any

kind of harm. Spyware is a malware that steals

information from a system and sends it to a remote

attacker. There are obviously many types of

information that can be interesting to the attacker such

as credit card numbers, contacts, documents and

emails. Rootkit is a malware modifies the kernel and

hides itself inside. Being inside the kernel gives all

privileges and capabilities to the rootkit to potentially do

anything possible. A Virus infects files using many

techniques. For example, Boot viruses (Rad et al., 2011)

can infect any machine regardless of what OS is installed

by exploiting the boot process of the computers.

A memory resident malware stays in memory all

time. It can be of different types (Szor, 2015): Direct-

action, temporary and swapping. Direct-action viruses do

not make themselves visible in memory. They load into

memory along with the host program and then they

seek for new hosts programs to infect. These viruses

may infect many files upon execution. The virus of this

type can take control by allocating a block of memory,

relocates its code in the allocated block and activates

itself. It basically hooks the flow of execution, which

makes it able to infect new files and systems.

Temporary memory-resident viruses do not always

reside in memory, but they stay in memory for a short

period of time and wait for a particular event to occur.

Swapping memory-resident viruses rely on loading a

small part of the virus code into memory which enables

them to stay active all time. However, this part of the

code may be a hook event, so whenever the hook event

is triggered, the virus gets a segment of its code from

the disk and then infects a new file and finally clears

the loaded segment from memory.

Antivirus

The Antivirus (AV) is the last line of defense for a

computer system. It is one of the most widely used

tools for malware detection. The AV scans data by

comparing it against its database of known virus

signatures. If a match is found, then the AV blocks the

operation and takes appropriate actions to handle the

situation (Al-Saleh, 2015).

The AV utilizes different detection technique. These

techniques can be classified into many types (Rad et al.,

2011; Szor, 2015): First-generation scanners, second-

generation scanners and algorithmic scanning. First-

generation scanners utilize techniques such as string

matching, wildcards matching, hashing and fixed-point

scanning. Second-generation scanners are more trustable

and use smarter ways of detection, such as heuristic

scanning. Algorithmic scanning methods (more

accurately called virus-specific detection) is not a

general technique, but rather it is a method that is created

for detecting a specific malware. Code emulation

Mohammed I. Al-Saleh and Rasha K. Al-Huthaifi / Journal of Computer Science 2017, 13 (8): 290.300

DOI: 10.3844/jcssp.2017.290.300

292

technique could be utilized in the algorithmic scanning.

This is done by simulating the CPU, memory, storage

resources and some of the important functions of the OS

by a virtual machine. It runs malware in the virtual

machine and then investigates its behavior in a

controlled environment.

ClamAV Antivirus

ClamAV (Kojm, 2004) is the most popular, open-

source AV that is typically utilized by security

researchers and practitioners. ClamAV has a very useful

feature that enables scanning files from the command

line and it can be integrated within a development

framework (as we do in this study). An application can

use ClamAV scanning capabilities by dynamically

linking to it. In this case, ClamAV daemon along with its

database are loaded once and then shared with the user

agents, so that agents can scan files by calling various

scanning functions. ClamAV functions can be called to

mainly scan a file, directory, or buffer. Scanning results

can be stored and interpreted easily.

WinAppDbg Debugger

WinAppDbg (Vilas) debugger is a python module

that is used for general debugging purposes. It can be

interfaced with python programs to manipulate

processes, threads and libraries. It has many functions

such as attaching a script as a debugger, tracing the

execution of a script, setting breakpoints and hooking

windows API calls. It is easier to modify and maintain

than any other windows debuggers, because it does not

have any native code.

Threat Model

Figure 1 illustrates the three directions of data while

moving. Data flows between the following zones:

• Memory and secondary storage

• Memory and network

• Memory and memory

Fig. 1. Threat model

Identifying these zones is essential for security

assessment. Apparently, AVs scan data when transferred

in the first zone only. This paper complements the AV's

job by paying attention to the other zones and scanning

the involved data.

System Architecture

This paper aims at developing an effective and

efficient memory scanning AV component. Specifically,

our goals can be concluded by the following:

• Adding a security component to computing systems

to scan memory when necessary

• Our security component should be effective in

catching malware. Consequently, testing against real

malware instances is necessary

• The performance impact of our system should be

minimal. Performance study and enhancement

strategy is provided

• Based on the coming results, recommendations to the

AV and Operating Systems vendors will be provided

Even though several approaches to develop a MOAS

can be suggested, our approach to the problem is through

intercepting Windows API calls. This proposed approach

is justifiable. Upon data transfer, a process's memory can

be a source or a destination. In any case, an API call is

needed to transfer data. Consequently, intercepting API

calls to scan the involved data is necessary to prevent

transferring malicious contents. Scanning data at the API

call is efficient because scanning every single memory

read or write obviously kills the system performance.

However, scanning at the API granularity is more

efficient because higher level of data is being scanned. In

other words, triggering MOAS happens less frequently

(performance gain) and more effectively (mature data is

scanned) in case of intercepting API calls compared with

scanning every single memory operation (read/write).
Several frameworks are available to intercept API

calls. We use WinAppDbg debugger (see section 2.4) to

intercept API calls. It can be inter-faced with Python

programs to manipulate processes, threads and libraries.

It provides wrappers around API calls in a form of PRE

(happens before) and POST (happens after) kind of

controls. We utilize these capabilities to hook memory-

related API calls. Our system utilizes PRE (happens

before) and POST (happens after) controls provided by

WinAppDbg to decide whether scanning data is

necessary or not. For example, when a monitored

process wants to write into memory, it uses an API call

(e.g., WriteProcessMemory()). This API call will be

intercepted and our PRE control is triggered. In the PRE

control, we can collect all information about the write

operation, such as the involved range of addresses. Then,

Mohammed I. Al-Saleh and Rasha K. Al-Huthaifi / Journal of Computer Science 2017, 13 (8): 290.300

DOI: 10.3844/jcssp.2017.290.300

293

we can extract such data for inspection before the

operation is carried out and causes any harm. If the

involved data is clean, the operation can pass as usual.

Figure 2 explains the basic flow of our system.

There are many types of APIs that can be

intercepted by using WinAppDbg. But we are

interested in two API categories: Memory-related and

network-related. Memory-related APIs can also be

classified into three types:

• General Memory APIs: Used to copy data from a

memory location into another as a result of

(ultimately) calling RtlMoveMemory()

• Virtual Memory APIs: Used in managing virtual

memory (allocation/de-allocation). Newly allocated

memory is necessarily benign because it has no

contents yet. However, we keep track of allocated

ranges to be used in scanning data later on when part

of such ranges are accessed. In addition, we focus

on memory de-allocation APIs. Basically these are:

VirtualFree(), VirtualFreeEx()

• Debugging APIs: Used in reading/writing from a

process's memory. Both ReadProcessMemory() and

WriteProcessMemory() are used to read/write data

from/to another process's memory

Network-related APIs are included in the WinSock

library. There are many WinSock APIs, but we focus on

the APIs that are related to sending and receiving data.

These APIs are send(), sendTo(), recv() and recvFrom().

We intercept all these APIs in our PRE or POST

mechanism. However, sometimes, it is necessary to

extract and scan data before (i.e., in the PRE control) it

moves to another location and sometimes it is necessary

to extract and scan data after (i.e., in the POST control) it

comes from another location. We extract and scan data

in the PRE control for the following APIs:

RtlMoveMemory(), VirtualFree(), VirtualFreeEx(),

WriteProcessMemory(), send() and sendTo(). We extract

and scan data in the POST control for the following

APIs: Read-ProcessMemory(), recv() and recvFrom().

To be able to scan data online, we built our own

MOAS based on ClamAV. Whenever our system

determines that certain data needs to be scanned,

ClamAV is called to scan data. We run ClamAV as a

background service so that we can communicate with it

on demand.

To enhance the performance of our system, some

optimizations are needed. For example, already- scanned

data (if not changed) should not be scanned again should

it be involved in future operations. Doing so saves a lot

of unneeded memory scanning. In order to account for

already-scanned data, our Memory Database Manager

(MDBM) component maintains a database through

which it checks whether the data has already been

scanned or not. The database contains memory range of

addresses and a hashed value of the data to indicate if

data has been changed since the last scan. Initially, when

a new memory is allocated, the corresponding memory

ranges are registered in the database during the PRE

control of the memory allocation API.

Fig. 2. The basic flow of our protection system

Mohammed I. Al-Saleh and Rasha K. Al-Huthaifi / Journal of Computer Science 2017, 13 (8): 290.300

DOI: 10.3844/jcssp.2017.290.300

294

When data is to be transferred, its database entry will be

checked whether it is scanned or not. The hash of data

will be computed and compared to the database hash

value. If a match is found, then there is no need to scan

the data again. A database entry is removed upon

memory deal location. It is worth mentioning that it is

not necessary to monitor every single process in the

system. Some processes might be white-listed to avoid

performance degradation.

Experiments

In this section, we design the following experiments

to handle these goals set in the previous section.

Basically, we want to check the effectiveness and

performance impact of our solution on the system.

Experiment I: Testing Effectiveness

To test the effectiveness of our scanner, we test our

system against 15 different malware types in all APIs

which we are interested in. Table 1 summarizes the APIs

that are tested. In order to do that, we created nine

programs, each of which has a call to one of the nine API

routines. An API call involves copying a malware

instance from/to memory. We collected these popular

malware samples from Internet repositories that are

available to the public. We used the same naming

convention of these mal-ware samples as ClamAV. We

test all 15 malware instances on every API call to check

the scanner's capability to detect malware. We run each

program under the control of our system.

Experiment II: Measuring Performance Overhead

In this experiment, we want to expose the

performance impact of our system. Our system works by

intercepting specific APIs and then scanning the data

involved in these APIs. Consequently, in order to

measure the performance impact, we deal with two

different scenarios:

• Scenario 1: Performance impact of both intercepting

APIs and scanning data in the APIs

• Scenario 2: Performance impact of only intercepting

APIs (i.e., without scanning)

For Scenario 1, we design 9 programs. Each program

utilizes one of the 9 memory-related APIs. We vary data

sizes to be used in each API to be 1 KB, 10 KB, 100 KB,

1 MB and 10 MB. This is to show the curve of overhead

when the involved data becomes bigger. Our system

intercepts an API in the PRE control, records a

timestamp (t1), extracts and scans data when necessary

and passes the API through. After the operating system

completes the API, our system gets the control again in

the POST control, extracts and scans data when

necessary, takes a timestamp (t2), computes the elapsed

time (difference between t1 and t2) and passes the API

through. Figure 3 illustrates this process.

Sometimes, the same data can be read or written

several times. In this case, there will be no need to scan

the same data over and over again. In order to avoid

unneeded scanning, our system maintains a database of

Message Digests hashes (using MD5 algorithm) of the

already-scanned data. Prior to scan data, an MD5 hash of

the data is computed and looked up in the database of

hashes. In case of a match, scanning will not be triggered.

To evaluate this performance enhancement, we design our

experiment to call the same API twice in a row such that

in the two calls the same data will be involved. We want

to measure how much performance over-head our system

could avoid in case of facing the same data again.

One important aspect of measuring the performance of

our system is the AV engine that is used to scan data. In

this study, we use ClamAV because it can be integrated in

our test programs easily. However, in terms of

performance, ClamAV might not be the best choice

because other commercial AVs are optimized for

performance and dedicated to fulfill users' expectations.

To pinpoint this issue, we design Scenario 2 to completely

disable scanning while intercepting an API call. Here, we

only want to measure the performance overhead of just

intercepting the APIs and taking control of running

programs. This way we create a performance base-line for

our intercepting methodology and isolate the scanning

time because it directly depends on the AV scanning

engine. We still compute elapsed time as in Scenario 1,

but without scanning data. Because we don’t scan data,

there is no point of varying data sizes in Scenario 2. We

also use the same 9 programs we design for Scenario 1.

Table 1. Memory-related APIs and their description according to Microsoft Software Developer Network (MSDN)

API Description

MoveMemory() Used to transfer data from one memory into another.

VirtualFree() Used to free a "region of pages" in virtual address space of a process.

VirtualFreeEX() Used to free a "region of memory" in virtual address space of a process.

WriteProcessMemory() Used to write data into another processs memory.

ReadProcessMemory() Used to read data from another processs memory.

Send() Used to send data through network sockets.

Recv() Used to receive data through network sockets.

SendTo() Used to sends data to a specific target.

RecvFrom() Used to receive data from a specific source.

Mohammed I. Al-Saleh and Rasha K. Al-Huthaifi / Journal of Computer Science 2017, 13 (8): 290.300

DOI: 10.3844/jcssp.2017.290.300

295

Fig. 3. Elapsed time computation

Experimental Setup

Here are more information about machine

specification and how we conduct our experiments:

• Machine specifications:

• OS: Microsoft Windows 7 Enterprise edition

with Service Pack 1

• RAM: 8 GB

• Hard Drive: 500 GB

• CPU: Core i7-860 at 2.80 GHZ

• Scenario 1: For each API (of the nine), we

developed a program that utilizes that API while

varying data sizes: 1 KB, 10 KB, 100 KB, 1 MB and

10 MB. The execution of each program is repeated

10 times for each data size and the average elapsed

time is computed for the 10 runs. A machine restart

is conducted right after each run to ensure a fresh

starting point

• Scenario 2: We use the same setup of Scenario 1

except that we do not vary data sizes and we do not

scan data

Results

In this Section, we present our results for the

experiments which are explained in the previous section.

Our aim is to check how effective our system is and how

much performance overhead it imposes on programs.

Results for Experiment I

The purpose of this experiment is to check the

effectiveness of our system in malware detection when

a memory API is involved. We tested each memory

API against 15 different malware samples. For

example, ReadProcessMemory() API was used to read

all the 15 malware samples. Similarly,

WriteProcessMemory() was used in the same manner.

The same applies for the remaining APIs. Table 2

shows the overall results of this experiment. It is

obvious that our system was able to detect all of the

mal-ware samples inside all APIs. This indicates that

our system is pretty effective in malware detection.

Results for Experiment II

This experiment measures the performance impact of

our system. As explained in the previous section, this

experiment has two scenarios. So, we present their

results separately.

Scenario 1 results

In this scenario, we want to show how much over-

head our system imposes on the API calls. This includes

the overhead of intercepting an API and scanning data

that is involved in that API. The interception depends

directly on the methods of interception (WinAppDbg in

our case). After interception, we utilized ClamAV to

scan the involved data. Apparently, our system depends

directly on these two frameworks. Enhancing them

would has a direct improvement on the overall

performance of our system. Furthermore, a piece of data

might be transferred several times in the system. In that

case, we should not re-scan the same data again. Keeping

hash values of scanned data could save us time by looking

it up before scanning it. To expose this fact, in each run,

we call an API twice on the same data. Our goal is to

check how the performance of the second call (call2)

could be different from that of the first call (call1).

Figure 4 shows the elapsed times of each API

separately. We have "Avg. call1 (P)" and "Avg. call2

(P)" when our system is applied (P in the figures is for

Protected). Also, we have ”Avg. call1(V)” when our

system is not applied (V in the figures is for Vanilla).

The average is taken over 10 different runs where a

machine restart is conducted between runs. We also vary

the data sizes to expose overhead increase over data

growth. In all the figures, the overhead imposed by call1

is obvious. It is less than half a second except for the

network-related APIs, which are comprise non-

deterministic factors that affect delay while sending or

receiving data. It is also obvious from the figures that

hash lookups improves call2 compared with call1.

Scenario 2 Results

In this scenario, we want to show how much over-

head our system incurs on the API calls by only

intercepting API and without scanning data. This

establishes a performance baseline and shows a room

for scanning enhancement. Trying AVs other than

Mohammed I. Al-Saleh and Rasha K. Al-Huthaifi / Journal of Computer Science 2017, 13 (8): 290.300

DOI: 10.3844/jcssp.2017.290.300

296

ClamAV could substantially improve performance. To

get accurate results for the elapsed time of an API, we

call it 1000 times in a raw and compute the elapsed

time. Then, we divide the elapsed time over 1000 to

report an average elapsed time over each API. Table 3

shows the elapsed times for all API calls. Table 3

Average times (in seconds) and over-head of calling

APIs as in Scenario 2.

 (a) (b)

 (c) (d)

 (e) (f)

 (g) (h)

Mohammed I. Al-Saleh and Rasha K. Al-Huthaifi / Journal of Computer Science 2017, 13 (8): 290.300

DOI: 10.3844/jcssp.2017.290.300

297

 (i)

Fig. 4. Average elapsed times for all APIs; (a) MoveMemory() case; (b) ReadProcessMemory() case; (c) WriteProcessMemory()

case; (d) VirtualFree() case; (e) VirtualFreeEx() case; (f) Send() case; (g) Recv() case; (h) SendTo() case; (i) RecvFrom() case

Table 2. Results for Experiment I

Malware name Malware size (in bytes) Detected in all APIs?

Win.Torgan.Zeus-2 676 yes

Win.Worm.Blaster-1 5,408 yes

Win.Worm.CodeRed-1 2,196 yes

Win.Worm.kido-22 158,843 yes

Win.Trojan.FlashBack-19 171,286 yes

Win.Worm.Stuxnet-9 15,198 yes

Win.Trojan.Dexter-1 3,967 yes

Win.Trojan.Zmist-2 13,923 yes

Win.Trojan.Agent.1395295 57,112 yes

Win.Trojan.Fari-481 49,094 yes

Win.Trojan.Clicker-1995 611,672 yes

Win.Worm.Koobface-22 11,624 yes

Win.Trojan.Bancos-8327 220,041 yes

Trojan.JS.StartPage.A 522 yes

Trojan.Downloader-88603 74,911 yes

Table 3. Results for experiment I

API name Vanilla (no interception) With interception

ReadProcessMemory() 0.000116234 0.000326422

WriteProcessMemory() 0.000117641 0.000331643

MoveMemory() 0.000138767 0.000324888

VirtualFree() 0.000194849 0.000428281

VirtualFreeEx() 0.000196746 0.000323634

Send() 0.001067821 0.000327566

Recv() 0.000963239 0.000325270

SendTo() 0.001068574 0.000325150

RecvFrom() 0.000885000 0.000329546

It is clear in the table that the imposed overhead is

less than a millisecond per an API of interest. Given

that this overhead is only imposed on the APIs of

interest and not any other API, this can be considered

minimal given the importance of scanning data inside

these APIs. Network-related APIs show almost no

difference because of the reason that calling such

functions depends directly on the responsiveness of

the system network stack, which is non-deterministic.

Study Recommendation

This study show that scanning only-in-memory
data is necessary and doable. Scanning at the API
level can be effective as most applications need to
utilize the API provided by the Operating System
(OS) to accomplish their tasks. Consequently, we
recommend that the AV and OS vendors cooperate
towards providing an efficient MOAS. The OS could
support the AV by natively integrating a more

Mohammed I. Al-Saleh and Rasha K. Al-Huthaifi / Journal of Computer Science 2017, 13 (8): 290.300

DOI: 10.3844/jcssp.2017.290.300

298

effective intercepting technique than using the general
debugging technique in order to intercept API calls.
The AV could register their own callback code with
the AV to be integrated inside the API functions
directly. Doing so could make the interception process
much more reliable and efficient.

Discussion and Future Work

The effectiveness and performance of our system can

be further enhanced:

Enhancing Effectiveness

Commercially-grade AVs can be utilized to scan

memory data. The AV vendors could modify their

scanning engines to specially deal with memory data.

Furthermore, because our system works at the user-mode

level, kernel memory is not being scanned. As a future

work, we intend to develop a kernel module that is

capable of tracing memory API calls at the kernel level.

Enhancing Performance

To enhance the performance and scalability of our

system, some genuine programs that are tagged by the

OS or by administrators should run without any

intervention. Furthermore, centric database of scanned

data should be created instead of having a separate

database for each process. Finally, scanning data with

the help of the Graphics Processing Units (GPUs) could

greatly enhance the overall performance.

Related Work

Generally, the AV research has got a little attention

from the security research community. Part of that is the

fact that AVs are commercial, closed-source products.

This has a negative impact on the general

security of systems. Having deep insights from security

researchers and engineers could enrich these products

and enhance their performance and security.

AVs have been researched from two perspectives:

Security and performance. Each one has almost the equal

importance with respect to end users. Consequently,

getting into a balanced point between these two aspects

is a vital goal for AV vendors. In the AV research,

proposals are usually to enhance the scanning engine of

AVs, to provide an efficient way to analyze malware, to

attack the AV itself, or to measure the AVs overhead.

Research has been conducted to enhance the AVs

scanning capability based on software solutions

(Al-Saleh and Shebaro, 2016; Edwards et al., 2001;

Edwards and Turner, 2010; Gassoway, 2013). Al-Saleh and

Shebaro (2016) proposed an enhancement to the AV to

make it scan memory-to-network and network-to-

memory data. Their solution is based on an AV add-on

feature that is capable of collecting TCP flows and

scanning them incrementally upon flow changes. They

showed that their method is effective and practical for

scanning network data. Edwards et al. (2001) scanned

the process's memory each time the process runs.

Furthermore, the work in this study is an extension to the

project we have started (Al-Huthai and Al-Saleh, 2017).

Edwards and Turner (2010) produced an on-access

scanner that delays writing to files until getting scanned.

Gassoway (2013) developed a methodology to detect

malware in the kernel memory (rootkits).

Several works deal with the problem of memory

investigation for the purpose of malware analysis or

disinfection (Sallam, 2013; Lengyel et al., 2014;

Jiang et al., 2007; Gupta et al., 2010). Gionta et al.

(2014) provides an efficient cloud service for virtual

machines' memories. Szor and Ferrie (2009) analyze

memory dumps looking for malware. Furthermore,

studying malware behaviors by watching the API calls

that called has been proposed (Ravi and Manoharan, 2012;

Alazab et al., 2011; Grégio et al., 2012; Fujino et al.,

2015; Ahmed et al., 2009). The difference between our

work and all the above mentioned ones is that they

either scan memory offline for malware analysis or

they scan virtual machines' memories from

hypervisors, which they are not always the case. Our

solution provides real-time MOAS.

An attack vector on the AV software is conducted by

bypassing the whole scanning process. Al-Saleh et al.
(2015) showed that AVs can be bypassed through
concurrent attacks. Rad et al. (2012) showed that
polymorphism, metamorphism, encryption and
obfuscation techniques can be utilized to bypass AVs.
Ramilli et al. (2011) showed that the detection of Avs

can be avoided by splitting it into parts that are
distributed over several processes. Finally, performance
studies on AVs to find their bottlenecks or improve
scanning times have also been conducted (Vasiliadis and
Ioannidis, 2010; Miretskiy et al., 2004; Lin et al., 2011;
Al-Saleh et al., 2013).

Conclusion

In this study, we developed a framework(MOAS)

which scans data that is sourced from or destined to a

computer memory. Only-In-Memory Data can be

dangerous if not scanned. We recognized and intercepted

9 APIs that involve memory data. The data involved in

these APIs are extracted and scanned using ClamAV.

Testing our system, we were capable of detecting 15 real

malware samples when used with the APIs of interest.

Furthermore, we examined the system performance and

presented the overhead imposed by it. To even enhance

performance, we maintained a database of data hashes to

track already-scanned data so that we do not scan the

same data again. In addition, we found out that replacing

ClamAV with a more efficient AV will have substantial

Mohammed I. Al-Saleh and Rasha K. Al-Huthaifi / Journal of Computer Science 2017, 13 (8): 290.300

DOI: 10.3844/jcssp.2017.290.300

299

performance improvement as our results suggested.

Performance can be further enhanced by whitening

benign programs so that there is no need to intercept or

scan data when marked as benign. This paper could have

a potential effect on systems security.

Author’s Contributions

All authors equally contributed in this work.

Ethics

This paper is an extension to the work presented in the

CSCEET2017 conference (Al-Huthai and Al-Saleh, 2017).

References

Ahmed, F., H. Hameed, M.Z. Shafiq and M. Farooq,

2009. Using spatiotemporal information in API calls

with machine learning algorithms for malware

detection. Proceedings of the 2nd ACM Workshop

on Security and Artificial Intelligence, Nov. 09-09,

ACM, Chicago, Illinois, USA, pp: 55-62.

 DOI: 10.1145/1654988.1655003

Al-Huthai, R.K. and M.I. Al-Saleh, 2017. Towards

providing memory on-access scanners. Proceedings

of the International Conference on Computer

Science, Computer Engineering and Education

Technologies, (CSCEET’ 17).

Al-Saleh, M.I., 2015. Towards extending the antivirus

capability to scan network traffic. Proceedings of the

International Technology Management Conference,

(TMC’ 15), Antalya, Turkey, pp: 18-23.

Al-Saleh, M.I., F.M. AbuHjeela and Z.A. Al-Sharif,

2015. Investigating the detection capabilities of

antiviruses under concurrent attacks. Int. J. Inform.

Security, 14: 387-396.

 DOI: 10.1007/s10207-014-0261-x

Al-Saleh, M.I., A.M. Espinoza and J.R. Crandall, 2013.

Antivirus performance characterisation: System-

wide view. IET Inform. Security, 7: 126-133.

 DOI: 10.1049/iet-ifs.2012.0192

Al-Saleh, M.I. and B. Shebaro, 2016. Enhancing

malware detection: Clients deserve more protection.

Int. J. Electr. Security Digital Forens., 8: 1-16.

 DOI: 10.1504/IJESDF.2016.073728

Alazab, M., S. Venkatraman, P. Watters and M. Alazab,

2011. Zero-day malware detection based on

supervised learning algorithms of API call

signatures. Proceedings of the 9th Australasian Data

Mining Conference, Dec. 1-2, Australian Computer

Society, Inc., Australia, pp: 171-182.

Edwards, J. and S. Turner, 2010. Method and system for

delayed write scanning for detecting computer

malwares. US Patent 7,757,361.

Edwards, J., S. Turner and J. Spurlock, 2001. Method

and system for detecting computer malwares by

scan of process memory after process initialization.

US Patent App. 10/014,874.

Fujino, A., J. Murakami and T. Mori, 2015. Discovering

similar malware samples using API call topics.

Proceedings of the 12th Annual IEEE Consumer

Communications and Networking Conference, Jan.

9-12, IEEE Xplore Press, USA, pp: 140-147.

 DOI: 10.1109/CCNC.2015.7157960

Gassoway, P.A., 2013. Discovery of kernel root kits with

memory scan. US Patent 8,572,371.

Gionta, J., A. Azab, W. Enck, P. Ning and X. Zhang,

2014. Seer: Practical memory virus scanning as a

service. Proceedings of the 30th Annual Computer

Security Applications Conference, Dec. 08-12,

ACM, Louisiana, USA, pp: 186-195.

 DOI: 10.1145/2664243.2664271

Grégio, P.L. De Geus, C. Kruegel and G. Vigna, 2012.

Tracking memory writes for malware classification

and code reuse identification. Proceedings of the 9th

International Conference on Detection of Intrusions

and Malware and Vulnerability Assessment,

Jul. 26-27, Springer, Greece, pp: 134-143.

 DOI: 10.1007/978-3-642-37300-8_8

Gupta, D., S. Lee, M. Vrable, S. Savage and

A.C. Snoeren et al., 2010. Difference engine:

Harnessing memory redundancy in virtual machines.

Commun. ACM, 53: 85-93.

 DOI: 10.1145/1831407.1831429

Jiang, X., X. Wang and D. Xu, 2007. Stealthy malware

detection through VMM-based "out-of-the-box"

semantic view reconstruction. Proceedings of the

14th ACM Conference on Computer and

Communications Security, Oct. 29-Nov. 02, ACM,

Virginia, USA, pp: 128-138.

 DOI: 10.1145/1315245.1315262

Kojm, T., 2004. Clamav.

Lengyel, T.K., S. Maresca, B.D. Payne, G.D. Webster

and S. Vogl et al., 2014. Scalability, fidelity and

stealth in the drakvuf dynamic malware analysis

system. Proceedings of the 30th Annual Computer

Security Applications Conference, Dec. 08-12,

ACM, Louisiana, USA, pp: 386-395.

 DOI: 10.1145/2664243.2664252

Lin, P.C., Y.D. Lin and Y.C. Lai, 2011. A hybrid

algorithm of backward hashing and automaton

tracking for virus scanning. IEEE Trans. Comput.,

60: 594-601. DOI: 10.1109/TC.2010.95

Miretskiy, Y., A. Das, C.P. Wright and E. Zadok, 2004.

Avfs: An on-access anti-virus file system.

Proceedings of the 13th Conference on USENIX

Security Symposium, Aug. 09-13, USENIX

Association Berkeley, San Diego, CA., pp: 73-88.

Mohammed I. Al-Saleh and Rasha K. Al-Huthaifi / Journal of Computer Science 2017, 13 (8): 290.300

DOI: 10.3844/jcssp.2017.290.300

300

Rad, B.B., M. Masrom and S. Ibrahim, 2011. Evolution

of computer virus concealment and antivirus

techniques: a short survey. arXiv preprint

arXiv:1104.1070.

Rad, B.B., M. Masrom and S. Ibrahim, 2012. Camouage

in malware: from encryption to metamorphism. Int.

J. Comput. Sci. Netw. Security, 12: 74-83.

Ramilli, M., M. Bishop and S. Sun, 2011. Multiprocess

malware. Proceedings of the 6th International

Conference on Malicious and Unwanted Software,

Oct. 18-19, IEEE Xplore Press, Fajardo, Puerto

Rico, pp: 8-13.

 DOI: 10.1109/MALWARE.2011.6112320

Ravi, C. and R. Manoharan, 2012. Malware detection

using windows API sequence and machine learning.

Int. J. Comput. Applic., 43: 12-16.

 DOI: 10.5120/6194-8715

Sallam, A.S., 2013. System and method for proactive

detection and repair of malware memory infection

via a remote memory reputation system. US Patent

8,474,039.

Szor, P., 2015. The art of computer virus research and

defense. Pearson Education.

Szor, P. and P. Ferrie, 2009. Detecting malicious soft-

ware through process dump scanning. US Patent

7,568,233.

Vasiliadis, G. and S. Ioannidis, 2010. Gravity: A

massively parallel antivirus engine. Proceedings of

the 13th International Conference on Recent

Advances in Intrusion Detection, Sept. 15-17,

Springer, Ontario, Canada, pp: 79-96.

Vilas, M., Winappdbg. http://winappdbg.sourceforge.net

