

© 2017 Jimoh Falilat Olaitan, Simon Parkinson and Thomas Leo McCluskey. This open access article is distributed under a

Creative Commons Attribution (CC-BY) 3.0 license.

Journal of Computer Science

Original Research Paper

A Hybrid Approach to Process Planning: The Urban Traffic

Controller Example

Jimoh Falilat Olaitan, Simon Parkinson and Thomas Leo McCluskey

Centre for High-Performance Intelligent Computing, Department of Informatics,

University of Huddersfield, Queensgate, Huddersfield, HD1 3DH, UK

Article history

Received: 02-01-2017

Revised: 10-07-2017

Accepted: 15-08-2017

Corresponding Author:

Falilat Olaitan Jimoha

Centre for High-Performance

Intelligent Computing,

Department of Informatics,

University of Huddersfield,

Queensgate, Huddersfield,

HD1 3DH, UK

Email: F.Jimoh@hud.ac.uk

Abstract: Automated planning and scheduling are increasingly utilised in

solving evsery day planning task. Planning in domains with continuous

numeric changes present certain limitations and tremendous challenges to

advanced planning algorithms. There are many pertinent examples to the

engineering community; however, a case study is provided through the

urban traffic controller domain. This paper introduce a novel hybrid

approach to state-space planning systems involving a continuous process

which can be utilised in several applications. We explore Model Predictive

Control (MPC) and explain how it can be introduce into planning with

domains containing mixed discrete and continuous state variables. This

preserves the numerous benefits of AI Planning approach by the use of

explicit reasoning and declarative modelling. It also leverages on the

capability of MPC to manage numeric computation and control of

continuous processes. The hybrid approach was tested on an urban traffic

control network to ascertain it practicability on a continuous domain; the

results show its potential to control and optimise heavy volumes of traffic.

Keywords: Automated Planning, Model Predictive Control, Urban Traffic

Control

Introduction

Process planning is the act of selecting and assigning

resources towards achieving a desired goal. Process

planning is performed programmatically and It involves

the design of autonomous computer program; such

computer programs are self-aware of their environment,

can adapt to change, generate and scrutinise goals

(Russell et al., 1995). There have been many successful

implementations of autonomous planning for processing

planning. There has been the successful implementation

of automated planning and scheduling for many

engineering processes. For example, early work by

Khoshnevis and Chen (1991) utilised automated

planning and scheduling in manufacturing processes for

comprehensive resource selection and allocation.

This early success motivated the use of autonomous
planning and scheduling for many different applications;
however, as each solution often contained tightly
coupled domain knowledge alongside the algorithms,
researchers were often spending large amounts of time
developing systems which shared similar core

algorithms. This resulted in the establishment of domain-

independent automated planning where state-of-the-art
algorithms are designed in isolation from the domain
knowledge. These algorithms are then used alongside an

action model representing the domain specific
knowledge. Also, the emerging development in the field
of automated planning with constraints processing has
facilitated the deployment of deliberative reasoning to
real-time control applications (Heinrich et al., 2015;
Chen et al., 2015). There are many successful

applications of domain-independent planning to real-
world problems. Example could be found in the
computer integrated manufacturing process (da Silva
Fonseca et al., 2016); relocation problem (Tierney et al.,
2012), calibration of machine tools (Parkinson and
Longstaff, 2015), clinical validation (Dinapoli et al.,

2016) and crowd sourcing (Machado et al., 2016).
It is vital to enable deliberative reasoning in systems.

Introducing deliberation into a controller enables it to

reason with its components, environment and functionality.

It enable the generation of effective plans towards achieving

desirable goal within the control system (Jimoh and

McCluskey, 2012). This facilitates its effectiveness to deal

with unexpected situations that might not have been learnt,

Jimoh Falilat Olaitan et al. / Journal of Computer Science 2017, 13 (8): 257.274

DOI: 10.3844/jcssp.2017.257.274

258

adopted nor programmed beforehand into such a system

Dusparic et al. (2016). Embedding automated planning into

urban traffic control systems will introduce deliberative

reasoning in urban traffic controllers. Deliberative

reasoning in a controller would introduce intelligence into

the UTC systems through the generation of plans and

schedules for self management. This will ultimately

contribute to the reduction of traffic congestion and carbon

emissions on roads.

However, as the variety of possible planning

applications increases so is the complexity of the domain

knowledge (Jimoh and McCluskey, 2016). The

complexity is significantly hindering the uptake of novel

automated planning applications due to limitations of

planning applications to handle continuous change in

numeric values. To avoid this limitation, the complexity

of the domain knowledge are currently being relaxed

through the discretisation of continuous transformation

into a discretised profile of linear change (Lhr et al.,

2012). For example, the application to machine tool

calibration, non-linear change in environmental

temperate is discretised to reduce complexity

(Parkinson et al., 2014). However, this discretisation is

often at a cost to the quality and accuracy of the

generated plan and a compromise has to be established.

This also motivates the requirement for a novel approach

to handling continuous processes in planning for control

systems. The next section explains a hybrid algorithm

that uses automated planning with an embedded MPC

strategy to create an algorithm that can reason with

planning problems containing numerics with continuous

change. The specific example provided is in the urban

traffic control environment to generate plans for a

controller to optimise the traffic situation.

In this study, a hybrid planning system is presented
through the introduction of Model Predictive Control
(MPC) approach into a classical state-based planning
system. It facilitates efficient planning in the presence of

complex numeric and logical changes within a problem
domain. The technique’s primary application is in
autonomous traffic management and will be provided as
an example throughout the paper. However, the traffic
management domain has many of the similar
characteristics with complex engineering and

manufacturing planning problems.
The layout of the paper is as follows: The first section

presents a survey of work related to this paper. This leads

to the description of the developed hybrid approach.

Following this, a case study is presented where the

technique is applied to the urban traffic controller.

Background

The increase in demand for innovative plan

generation techniques, plan execution, monitoring and

recovery; has stemmed awareness towards evolving

system designs which make use of advance planning and

implementation frameworks (Jimoh and McCluskey,

2015; Laguna et al., 2014). Teleo-Reactive Executive

(T-Rex) is an example of such design. T-Rex is a goal-

oriented autonomous underwater vehicles that integrates

automated planning technology for real-time plan

generation and execution. T-Rex framework is

designed to improve research in the field of oceanic

science (Pinto et al., 2012). Another example of

planning design is Planning and Execution L-Earning

Architecture (PELEA). PELEA introduce adaptable

modular design that integrates learning with planning

and execution. It also incorporates sensing and

monitoring for realtime re-planning (Jimnez et al.,

2013). We propose the use of Model Predictive Control

(MPC) design in continuous planning to create reasoning

in controllers that can solve problems in domains which

are modelled using variables whose values are changing

continuously. Similarly, Domain Predictive Control

(DPC) is another design that is proposed for continuous

(re-) planning in hybrid systems (Lhr et al., 2012). It

involves the extraction of a discretised domain model

from given MPC dynamic equation of a system to

control realtime applications. This is different from the

work in this study; which involves the creation of

symbolic continuous domain model of a system while

leveraging on MPC derived from a model of dynamical

equations of the same system as a heuristic to control the

search space in symbolic planning.

Control systems which support Urban Traffic Control
(UTC), such as those controlling networks of traffic
lights, have utilised AI techniques since the 1970’s
(Jimoh and McCluskey, 2014). These systems are
embedded in a real-time control environment and are

often based on algorithms that rely on feedback and
adaptation. They make use of road traffic data which
may be gathered every few seconds or gathered over
several years. Resulting in traffic control systems
operating with the fundamental of adaptive signal

control in road networks established from stored traffic
data. However, these approaches to traffic control has
some limitations during unprecedented situations such as
road accidents or an unexpected change in traffic
demand within short interval of time (De Oliveira and
Bazzan, 2009; Jimoh et al., 2013b). In such

circumstances, traffic control systems usually use fixed
traffic signal timing or apply some hardcoded approach
to revert into a recognised state. Therefore, there is a
need for intelligent controls that can effectively generate
plans and execution towards restoring an unpredicted
traffic situation to desired condition. One promising

direction is by creating a hybrid control design that will
support intelligent systems to spontaneously reason and
deliberate with their declarative knowledge, towards
managing themselves during unexpected situations
(Jimoh et al., 2013a). Such intelligent controls would be

Jimoh Falilat Olaitan et al. / Journal of Computer Science 2017, 13 (8): 257.274

DOI: 10.3844/jcssp.2017.257.274

259

an achievement in the urban traffic control domain and
this paper is a step towards realising such goal.

Model Predictive Control

Control engineering is a field of knowledge within

the engineering discipline, which applies control theory

to design and implement systems with desired

behaviours. Predictive Controls is a sub-set of Control

Engineering utilised in adopting and anticipating the

future pattern of control processes in other to control its

inputs for a desirable future goal.

MPC attracts remarkable consideration in the

control of dynamic systems which makes it an essential

aspect of control practice (Osusky and Vesely, 2015).

MPC was established within the industrial sector as an

alternative option of control compared with traditional

Proportional Integrate Derivative (PID) controls

(Bennett, 1993). MPC formulation incorporates optimal

control, multi-variable control, stochastic control,

deadtime processes and future references where

applicable (Camacho and Bordons, 1999).

MPC has several algorithms; they differ in the way

they represent the model of the process as well as the

cost function to be minimised. MPC algorithms have

been continually enhanced to increase its robustness

and scalability for instantaneous processes

(Al-Gherwi et al., 2011; Falugi et al., 2010; Tay,

2007; Osusky and Vesely, 2015).

MPC has been implemented in a variety of
applications ranging from production planning
(Mezghiche et al., 2015; Baldea et al., 2015); industrial
production (Zhu et al., 2015; Alanqar et al., 2017;
Grosso et al., 2016) and supply chain (Chu and You,
2015; Schildbach and Morari, 2016); intelligent
Transport Systems (Mahalingam and Agrawal, 2016;
Roncoli et al., 2016); agriculture (Graf Plessen and
Bemporad, 2017) and robot manipulation in path
planning (Ji et al., 2017; Joos et al., 2017).

The MPC Approach

The mathematical model of a controlled process, as

well as the assumed disturbances that might occur during

its operation, is built based on the past experience of

operation and past data from similar operations within the

same system. A cost function is derived from the available

resources and constraints that need to be optimised for the

entire duration of the process. The system uses the pre-

defined model as a guide to maximise the cost function

when given a set of varying input parameters, output

parameters and the dynamic changes in the state of the

environment. The system plans over a period of time,

which is known as the horizon. The generated plan is

applied to the system to control the process by changing

its current state to a desirable state for a given period of

time. The new state is sampled again. It re-plans for

another horizon taking the present state from the feedback

loop as well as all the system constraints into

consideration. This approach of planning is called

“receding the horizon”. This planning and re-planning

approach make MPC robust and able to keep a control

process in a desirable state over a given period. It also

allows it to function in a partially observable environment,

because of its ability to sample dynamic environment at

every sampling time during a re-plan.

The Store-and-Forward Model

In 1963, Gazis and Potts introduced the store-and-

forward traffic flow model with the aim of achieving a

sensible compromise between computational efforts and

precision control in dynamic systems. A store-and-

forward traffic flow model is utilised in this study to

formulate a state space predictive control model; it helps to

creates a dynamic mathematical formulation of the network

model (Guo et al., 2014). Figure 2 depicts a diagrammatic

representation of the application of MPC into a UTC

structure. The simplified store-and-forward traffic model

only allows for split optimisation. Cycle time and offsets

must be calculated by other control algorithms.

Roads networks is represented as sets of junctions j∈J

and links z∈Z and as shown in Fig. 1. Each signalised

junction j has sets of outgoing links OJ and incoming links

Ij. A sample of urban road is shown in Fig. 1. It has two

junctions M and N adjacent to each other, such that z ∈ IN

and z ∈ OM. The remaining fundamental variables are:

• i represents the stage identifier

• xz(t) is the state variable indicating the number of

vehicles in link z at step t

• j represents the junction identifier

• gj,i the control input indicating the green time of

stage i at junction j

• t discrete time index, t = 0,1,2...

• Sz represents the saturation flow of link Z

• vz represents the set of stages where link z has right

of way

• tw,z turning rate; towards link Z from the links w that

enter junction M

• T the control interval in discrete time step

• Cj junction j cycle time

Given that the cycle times Cj for all junctions j ∈ J

are the same and fixed such that Cj = C. Equation 1 can

consequently denote the dynamics of link z:

() ()
()

()

()

,

,

1

1

w

M

z

w N j

i v

z

w I

z z

z N j

i v

S g t

C
x t x t T

S g t

C

τ ∈

∈

∈

−
 + = +

 −

∑
∑

∑
 (1)

Jimoh Falilat Olaitan et al. / Journal of Computer Science 2017, 13 (8): 257.274

DOI: 10.3844/jcssp.2017.257.274

260

Fig. 1. Links and Junctions Illustration of an Urban Road

Fig. 2. Applying MPC to UTC Structure

Each z ∈ Z has an outflow capacity at specific green

times; this is represented by the Saturation flow Sz. Sz

could be fixed using a standard value or calculated by

another approach; we assumed it is known and constant.

Turning rates tw,z of z ∈ Oj and also w ∈ Ij, could be

calculated in real-time or estimated utilising statistical

values. Assuming T = C; a further simplification of the

variables (replacing both second and third term) from

Equation 1 will yield Equation 2:

() () () () () ()1z z z z z zx t x t T p t q t d t e t + = + − + − (2)

Such that, pz(t) represents inflow to link z, qz(t)

represents outflow from link z. Also, dz(t) represents

demand in the link z and ez(t) represents exit flow in the

link z; in the sample time [tT, (t +l)T]. The exit flow

ez(t) can be estimated by sz(t) = tzpz(t) while assuming

that the exit rates tz are known. The resulting outflow is

given in Equation 3:

()
(),

z

z N i

i v

z

S g t

q t
C

∈=
∑

 (3)

In a bit to reduce computational efforts, red-green

switching in a cycle is not taken into consideration in the

model. However, the modelled flow represents the

average real flow for each period.

A linear scalar equation that represents a specified

link is shown in Equation 1. Organising all

interconnected conservation equations in a state space

Jimoh Falilat Olaitan et al. / Journal of Computer Science 2017, 13 (8): 257.274

DOI: 10.3844/jcssp.2017.257.274

261

form (for individual link), equation 4 would represents a

state space model that defines an entire traffic network:

() () () ()1x t x t Bg t d t+ = + + (4)

Such that x(t) represents numbers of vehicles in each

link (state vector); g(t) represents all green time settings
(control vector) and d(t) represents any disturbance within
the network. B is the network characteristics, it is
represented by a constant coefficient matrix of proper
dimensions. For instance the network topology is
represented by B.

MPC Constraints on UTC

Given a UTC traffic model, there are some
constraints that have to be considered. The constraints
are formulated from the store-and-forward model
discussed in the previous section

Non-Negative Control Constraints

At any given time t there cannot be a negative
volume of traffic flowing through link z. Also, the green
split timing at any given junction falls between the
traffic light cycle at that junction:

, ,min ,j i jg g i J≥ ∀ ∈ (5)

Traffic Light Cycle Constraints

All green time constraint holds for every stage i at
junction j:

(),
,

jN

j i j

i I

g t C L j J
=

≤ − ∀ ∈∑ (6)

Such that Lj represents the set lost time and Nj

represents the value of stages, at the junction j.

Green Duration Constraints

Equation 7 represents the lower and upper bounds
constraints on the green time at a junction:

,min , ,max ,j j i jg g g j J≤ ≤ ∀ ∈ (7)

Such that gj,max represents maximum permissible time

and gj,min represents minimum permissible time at
junction j.

Flow Conflict Constraints

This is to avoid collision between links at a
junction. Given a connected link only one link could
be active at a time.

Non Negative Queue Constraints

The queues on a given link are restricted to length of
the link connecting two junctions:

,max0 ,z zx x z Z≤ ≤ ∀ ∈ (8)

such that xz,max value specifies the maximum number of

vehicles that can be admitted into link z. This

restriction helps to eliminate over saturation of a link

in rush hours. It also makes sure that the value of a

queue length on the road is nonnegative during the

computation of control input.

Capacity Constraints

The capacity of a link must not be exceeded. Thus,

the number of vehicles leaving any link will be limited

by the state and capacity of the downstream link.

The Objective Function

The objective of this MPC formulation is to reduce

the number of vehicles waiting in line at a junction. This

is evaluated as the total time it requires to exit the

vehicles waiting at individually connected junctions

within a network of connected links. Thus, to reduce

queuing distance on links, Equation 9 represents a

quadratic costs function that satisfies Equation 4, 6 and

7; with the aim of minimising queues and optimising

green times at a junction:

() ()()2 2

1

|| || || ||
pN

Q R

t

J x t g t
=

= +∑ (9)

Automated Planning

The ability to reason with the dynamics of life and its

environment by creating and implementing plans to

solve challenges is one of the uniqueness of human race.

Embedding this quality of man into artificial entities

such as machines, is the foundation of Automated

Planning. AI planning is a field that involve the

formation of sequence or partially ordered plans whose

execution solves a given problem; from an initial state or

situation to a state that satisfies it specified goals

conditions (Gupta et al., 1998; Fox and Long, 2003;

Garrido et al., 2001). To embed deliberative property in

control system, it is essential for the controller to be

situationally aware of its components, its operating

environment and the correlation between its component

and environment (Jimoh et al., 2013b). This is

accomplished through the extraction of the operational

knowledge of a given domain, in this case, a road traffic

domain. The extracted knowledge is declaratively

represented in a language that can be understood by the

planning system. The domain knowledge employed in

the implementation of this work is represented in a

language that is close to PDDL+ (Fox and Long, 2006).

This structural language provides a formal declarative

representation of the problem and domain entities along

with all the operational policies of the domain.

Jimoh Falilat Olaitan et al. / Journal of Computer Science 2017, 13 (8): 257.274

DOI: 10.3844/jcssp.2017.257.274

262

Modelling UTC Domain

Given a domain of interest with facts and description

of the environment and problems within that domain, a

UTC model could be defined as a symbolic system

which has inference and rules that represent the domain

of interest. Traffic flow models are of three distinguished

types: Macroscopic model; microscopic model and

mesoscopic model. Refer to the work of Hoogendoorn and

Bovy (2001) for a detailed overview of existing traffic

models. A macroscopic model is considered in this

analysis through the use of aggregated variables to

describe traffic flows.

The syntax and semantics of the domain description

language used in this implementation are similar to

PDDL+. Detailed explanation of PDDL+ syntaxes and

semantics is in the work of (Fox and Long, 2006); this

includes the semantics for the construction and

implementation of state representation and progression.
A domain model has been encoded from a case study

town centre area in the United Kingdom as shown in Fig.
3. The domain model is made up of static and dynamic
part (Jimoh et al., 2013a). The static part represents road
network topology, such as road name, road capacity,
road length and junctions linking the roads. A directed
graph is used to represent the road network layout,
edges represent roads and vertices represent either
source road, sink road or junction. Vehicles enter the
network through the source road and exit the network
through the sink road. The dynamic aspect of the model
is represented by the flow rate of vehicles on each road
and the queuing distance such road.

Fig. 3. Excerpt of map showing the network blocked roads, source road and sink roads within a town center area of Huddersfield,

West Yorkshire, United Kingdom

Jimoh Falilat Olaitan et al. / Journal of Computer Science 2017, 13 (8): 257.274

DOI: 10.3844/jcssp.2017.257.274

263

Fig. 4. Sample declaration of an action operator

Fig. 5. An excerpt from a process declaration

Fig. 6. Sample declaration of an event

The dynamic aspect of the model is continuously

changing due to movement of vehicles in the road

network. The UTC environment is modelled with

predicates and fluents. The relationship between objects

are represented with predicates. For example, given a

predicate (link nLSouth wDStr) in a state S, it indicate

that the road nLSouth is connected to wDStr in that state.

Thus, traffic is allowed to flow from nLSouth to wDStr,

provided all given constraints are satisfied. Fluents could

be logical or numeric; it status are subject to changes

within the model. Rich numeric expressions are possible

with the use of numeric fluents. For example, a fluent =

(queueLenght (nLNorth 300.0) indicates the current

value of the queue in nLNorth to be equal to 300 m.

A UTC Planning Problem involves the effective

navigation of vehicles within a network of roads with the

purpose of optimising traffic flow. In our model, we

consider action operators, grounded processes and events.

Figure 4-6 shows a sample declaration of an action

operator, grounded processes and events respectively.

The Hybrid Approach

Exploiting the relationship and building on the

synthesis of MPC and AI planning techniques to solve

problems involving both discrete and continuous state

variables lies at the heart of this research work. The

hybrid approach uses an A
*
 search algorithm technique

for node exploration. The point within search space

where search frontiers intersect or branch is referred to

as the Node. State information and transitions are also

stored in a node. The current node is expanded by

comparing the preconditions of each operator with the

proposition and numeric fluent; if it is satisfied given

all other constraint are fulfilled; the effect of the

operator is applied at the node. The declared numeric

resource and constraints within the model are computed

and updated at selected nodes during node exploration.

Applicable operators are chosen and applied, in a

receding horizon, to each state until the goal condition

is satisfied or the expanded set of nodes becomes

empty. Some essential definitions in the design and

implementation of the hybrid algorithm are explained

in the next section.

Preliminary Definitions

Definition 1 (State)

Assuming a Close World Assumption (CWA) on S, a

state S gives a description, at any given snapshot of time,

Jimoh Falilat Olaitan et al. / Journal of Computer Science 2017, 13 (8): 257.274

DOI: 10.3844/jcssp.2017.257.274

264

the true situation of some world. Given that N is an

assignment for the numeric variable to values and P are

the set of atomic propositions. S is a pair 〈P,N〉.

Definition 2 (Initial State)

Given that N is an assignment of values to numeric

variables and P is the set of atomic propositions that are true

at the start of a planning problem. Initial State I = 〈P,N〉.

Definition 3 (Goal Condition)

Given that N is a set of numeric variables and P is

a set of atomic propositions then, a Goal Condition G

= 〈P,N〉. For a goal G to be satisfied in some state S

values v satisfies some numeric constraints vL < v <

vU specified by G. Thus, S satisfies the goal condition

if S satisfies every proposition in P and ∃v = c ∈ N:

VL < c < VU for all v in N. Here c is a constant

representing a value between the lower and upper

bound of v.

Definition 4 (Domain Model)

The Domain Model (DM), consist of:

• Set of Functions {n1,...,nk} ∈ N

• Set of Propositions {p1,..., pk} ∈ P

• Set of numeric Resources {r1,..., rk} ∈ R and

• Set of Actions {a1,...,ak} ∈ A

• Set of Events {e1,...,ek} ∈ E

• Set of Processes {c1,...,ck} ∈ C

Definition 5 (Action)

An instantaneous action is characterised by sets of

preconditions that must be true prior to the execution

of the action and effects that becomes true after the

execution of the action. The logical basis for actions

is modelled using a collection of propositions, with

vectors of numeric variables. Both P and v are

manipulated and referred to by actions. The

executability of an action is determined by its

preconditions.

For example, the action switch to green has the

precondition that the light is red with an effect that the

light is green. A durative action A has three sets of

preconditions: The condition that must hold at start

pre⇐A, at the end pre⇒A and throughout the execution of

the action pre⇔A. Effect could be durative or

instantaneous, instantaneous effects are bound to the

start e f f +
⇐ and e f f −

⇐ or end of the action e f f +
⇒ and e f

f −
⇒ where positive and negative denote the propositions

added and deleted at the start and end of A respectively.

Also numeric effect e f nf⇐ and e f nf⇒ are updated at the

start and end respectively. An example of action

declaration is shown in Fig. 4.

Definition 6 (Processes)

A process p comprises of a precondition, C and a set

of continuous effects, E, such that, if S |= C then the

continuous effects are active at state S.

For instance, the inflow process of vehicles V to a road

R through a junction J. This process has a precondition that

a given phase at junction J is active that is ‘Green’ and that

the road use level of R less than the road-capacity-level; and

the constraint that J is a connected inflow junction to road

R. Once R is filled or blocked, an event is triggered that

stops the process. The effect of Inflow process increases R

traffic level at the flow rate of V as shown in Fig. 5. The

derivative of traffic level in R is the summation the active

inflow processes rates of the at any given time.

Definition 7 (Event)

The event e is activated in a state S such that S |= C,

where C is an assertion expressing what triggers the

event e. Given that E describes the effects of C on event

e; then event e is defined as a state transition of (C, E).

The application of effect E on state S produce a new state

s′ such that s′ -| E. For example, an event ‘upstreamFilled’

to be triggered, it requires the estimated number of

vehicles on such road to be equal or greater that the road

capacity limit of such road as shown in Fig. 6.

Definition 8 (Operators)

Given a set of proposition P(s) and numeric fluents

N(s), a numeric operator δ = 〈pre(δ);e f f (δ)〉 given that:

• The condition for applicability pre(δ) of an operator

δ consist of:

• A proposition or set of propositions prepropδ

define over P

• A numeric or set of numeric comparisons

prenumδ in the form of (exp{>, ≥,<,≤, =}exp′).

• The effect of an operator e f f (δ) consists of:

• An additional proposition e f f
+
(δ) produced and

A deleted proposition e f f
−
(δ) removed after the

operator execution.

• Set of numeric operations e f ()numf δ+ in the

form (n, op, exp)

In this definition, the arithmetic expression exp and

exp′ involves variables from N. These are recursively

defined among expressions in the form of arithmetical

combination of {+, *, −,/}, numeric fluent and constants.

Definition 9 (Operators Applicability)

An operator δ is applicable in a state S iff, s is

satisfied the operators propositional and numeric

preconditions. That is:

Jimoh Falilat Olaitan et al. / Journal of Computer Science 2017, 13 (8): 257.274

DOI: 10.3844/jcssp.2017.257.274

265

• preprop(δ) ⊆ P(s) and

• prenum(δ) must be valid(i.e., equal or in range of

values) in all n where n ∈ N(s)

Definition 10 (Plan)

A plan comprises of action sequences and initiated

processes; that could lead the initial state into a state

satisfying the goal conditions, taken all the stipulated

constraints into consideration. Given a continuous

planning problem Y = {I, G, DM} where, I is the initial

state, G is a set of goal conditions and DM comprises of

a set of operators. A solution for Ψ is a total ordered set

of operators from δ, such that the ordered sequence of

execution of these operators transforms I into a state

where G is satisfied.

UTCPLAN: Top Level Algorithm

The planner input five components. These are: (a)

The initial state (b) the goal condition (c) the domain

model (d) the horizon prediction value and (e) the

control horizon. The initial state “S” comprises of a set

of propositions “P” and a sequence of the numerical

variable “R”. The Goal condition “G” is satisfied in a

state S, if S satisfies every proposition in P and ∃v = c ∈

N: VL < c < VU for all v in N. Assuming c is a constant

representing a value between the upper and lower bound

of v. A detail component of the domain model is defined

in the preliminary definitions.

The fixed horizon prediction value Np represents the

period for which the MPC component will generate a

new future prediction values to guide the search space.

The control horizon value Nc represents the number of

nodes frontiers that are searched at every control horizon

window after an MPC prediction episodes. Np and Nc are

tailored to the domain and the nature of the problem that

the planner is intended to solve.

A node is initialised in Lines 1-2. There are four

components that constitute a node in the search space:

(a) the set of propositions “P” component of “S” (b) the

numerical variable components in the “R” component of

“S” (c) the variable “I” that updates and saves the

dynamic prediction values over successive horizons; “I”

is initially set to null (d) a partial plan.

The search space is initialised within the outer loop

of Line 4. Line 5 utilises the MPC numeric optimisation

and prediction process to generate numeric control

variables. The output of Line 5 could be inferred as a set

of predicted actions whose execution fulfills the

stipulated objective function and guides the search space

towards satisfying the goal condition.

Algorithm 1 UTCPLAN: Top Level Algorithm

Input:
DM: Domain Model
Np: prediction horizon
Nc: control horizon
(P,R): initial state
G: Goal Condition
Output: Plan.
1: S := []; ℑ: = null; ℘:= [R]
2: n := (P,℘, S, ℑ)
3: repeat
4: Q := {n}; x: = 1
5: ℑ := UtiliseMPC(n, Nc, Np, ℑ, DM)
6: while x ≤ Nc and Q ≠ {} and noSolutionFound(Q) do
7: n := retrieveBest(Q, ℑ)
8: N := Expand(n)
9: Q := moveTo(N, Q)
10: x := x +1
11: end while
12: if Q ≠ {} and noSolutionFound(Q) then
13: n: = retrieveBest(Q, ℑ)
14: end if
15: until SolutionFound(Q)orQ = {}

The inner loop of Line 6 11 expands the search
frontiers over a fixed horizon window Nc. The selection
of the best node is informed by the output of

UtiliseMPC procedure. The closest node to the given
trajectory specified by the partial plan in the current ℑ
is picked as the best node “n” and removed from “Q”.
The selected node “n” is expanded in Line 8 and
returns a set of successor node “N”. Line 9 adds “N” to
the open set as detailed in Algorithm 5.3. There is

currently no built-in specific heuristics for pruning the
search space in UTCPLAN.

Given that the goal condition is not met upon the exit
of the inner loop of Line 6-11; the best node is retrieve
from Q informed by ℑ. The best node “n” becomes the
start node for a new search for the next control horizon
window. The selection of a single node might create
incompleteness in the algorithm, but it restricts the
search and utilise the guidance of the MPC approach to
select the best node for pruning the search space. The
search and optimisation procedure is repeated from the
current node in Line 15 until the goal conditions are
satisfied, or the open node set becomes empty.

Nodes Expansion

The current node n is expanded by selecting the
appropriate operator that satisfies the condition at the
node. The effect of the operator changes the state at a
node from ‘n’ into a new state ‘N’ as explained in
Algorithm 5.3. The procedure for the application of an
action, initiation of a process and the triggering of an
event is explained in Algorithm ?? respectively. Certain
assumptions are made with regards to the event
semantics. For instance, there is no different in the

Jimoh Falilat Olaitan et al. / Journal of Computer Science 2017, 13 (8): 257.274

DOI: 10.3844/jcssp.2017.257.274

266

orders occurrence of simultaneous events. The detailed
procedure for the application of an operator, grounded
process and event is explained in Jimoh (2015).

Action Application

Definition 11 (Apply Action). Given an action a and
a state s, if a is applicable in s, then a new state s′ is
produces and denoted by s[a] as shown in Algorithm 3.

Algorithm 2 Expand(n) Algorithm

Input: n

Output: N

 N := {}

 E := {e′|e′ represent instantiation of some event e ∈

DM and n makes e′:pre true};

 n := apply all events in E chronologically to n

 O: = {o′|o′ represent instantiation of some operator o

∈ DM and n make o′:pre true}

 for all o′ ∈ O do

 n′: = apply o′ to n

 N := N [{(n′.I, n′.ℑ, [o′]++n′.S)}

 end for

 P := {p′|p′ is an instantiation of some process p ∈ DM

and n make p′:pre true}

 for all p ∈ P do

 n := apply p for a unit of time to n

 end for

 N := N∪{n}

A action consist of logical or numeric

preconditions. The effect of an action operator could

be logical propositions; numeric updates of the current

state after the execution of the action or both. An

example is given in Fig. 4. The action ‘switchGreen’

has a logical precondition that ‘roadA’ and ‘roadB’

must be connected by at the same junction. The two

roads are also controlled by the same signal phase.

The action in Fig. 4 also indicate numeric

preconditions of an interrupt level seven for the linked

roads. This means that the connect roads must not be a

congested road. The action effect alters the signal

phase at this junction, which consequently initiates a

flow process at the connected junction.

Algorithm 3 Action Application

Input: s,a

Output: s′.
1: s′ is initialised to be s;

2: All propositions in e f f
+
 a that are not already in s are

added to P(s)

3: All proposition in e f f
−

a are deleted from P(s)

4: All numeric fluent f where (f, op, exp) ∈ e f fnum(δ) are

updated

5: All state s ∈ S obtained by a non applicable operator

is undefined and does not satisfy any condition.

Simulate Process

Definition 12 (Simulate Process)

Given a ground process c and a state s, such that c is

applicable in s, the application of c in s, denoted by s[c
+
]

to simulate continuous numeric changes in s for a period

of time is as shown in Algorithm 4.

Whenever processes are initiated within a given node,

it will run for a period of time at a single discretisation of

a step count. For instance, time t becomes t =1, 2, 3...tn

given that tn is the duration of the process simulation.

Processes are initiated as an effect of an action or event

trigger. The preconditions of process simulation are

logical or numeric inequalities, but its effects produces a

numeric update of the current state at the node. For

instance, the effect of an action “switchGreen” in Fig. 4

could initiate a vehicles flow process at the flow rate of

traffic on the connected roads as depicted by Fig. 5.

Once a process is initiated at a node, it will continuously

run for the specified duration of time, except if it is

halted by an event. The current numeric status of the

process is updated at the node upon the completion or

halting of the process.

Algorithm 4 Simulate Process

Input: s, c

Output: s′.
1: initialise process duration time count = dur

2: repeat

3: All numeric fluent f such that (f, op, exp) ∈ e f

fnum(c) is updated and modified according to the

defined op

 and exp involved

4: Time #t and other primitive numeric variables are

updated

5: until event e is triggered or dur exceeded.

Event Application

Definition 13 (Apply Event)

Given a ground event e and a state s, such that e is

applicable in s, represented by s[e], the application of e

in s lead to a new state s′ as shown in Algorithm 5.

Event application share some similarities with an

action operator, except that, the unique difference is the

fact that an action may occur if its preconditions hold, an

event, on the other hand, must occur if its precondition

hold. An event in the domain could be internally

triggered from within a process, or outside the control of

a process. Internally triggered event are interrupts that

are activated while a process is running, it preconditions

are usually numeric inequalities and their effect are also

numeric assignments. These numeric assignments are set

as preconditions for some actions in the domain. This

means that the interrupts tell the planner to execute an

Jimoh Falilat Olaitan et al. / Journal of Computer Science 2017, 13 (8): 257.274

DOI: 10.3844/jcssp.2017.257.274

267

emphaction that could change the emphstate of the

system or flag a display.

An example of event is to manage the constraint of

traffic spill-over at junctions during rush hour as shown

in Fig. 6. It has a precondition to check the capacity of

the connected road during the process of traffic flow at a

junction. The effect of this event stops the currently

running process from transferring queue to the upstream

road. This is achieved by an interrupt trigger that halts

the process and pushes the current state of the node to

the priority queue node.

Externally triggered event are a result of interaction

between domain objects. An example of such external

event is the activation of connectors that link two

separate roads. Once the condition for the connector is

satisfied, the queue from the previous road flows to the

connected routes. This is outside the control of a

junction, but the ripple effect of such event (traffic flow)

affects the queues at downstream of the junctions. The

different between this connecting event and an action is

that once the event precondition is satisfied, it has to be

activated, computed and updated to the current state,

however, an action might only be selected if it necessary

get the state closer to the goal state.

Algorithm 5 Apply Event

Input: s,e

Output: s′.
1: s′is initialised to be s;

2: All proposition in e f f
−
e are removed from P(s)

3: All propositions in e f f
+
e that are not already in s are

added to P(s)

4: All numeric fluent f where (f, op, exp) ∈ e f fnum(δ) is

updated

5: Time #t and other primitive numeric variables are

updated

The UtiliseMPC(n, DM, Nc, Np, ℑ) Procedure

Numeric fluents R are stored in the node; the stored

numeric are utilised in generating a dynamic prediction

table (look ahead table) for a duration of control horizon

Np window within the UtiliseMPC procedure. A numeric

optimisation procedure takes into consideration all

constraints in the domain DM and the generated values

from the prediction table to compute the best control

values ℑ within the horizon window Nc, over a period of

Np. The computed value ℑ is the updated at the node n

and use as a guide for the next set of alterations.

The numeric optimisation procedure is implemented

as Satisfiability (SAT) problem solver in AI planning,

formerly used in Shin and Davis (2005); Audemard et al.

(2002). Such that, the continuous numeric variables with

their associated constraints are converted to a linear

programming problem within the search node. The best

combination of input satisfying the stipulated numeric

constraint is returned and updated at the node. Given a

domain of problem for instance, assume Nc is set at 300

node count and Np is set at 30 sec. At every 300 node

counts, the planner retrieves past numeric fluents, sent it

to the UtiliseMPC procedure and update the result at the

node. This means that the past numeric fluents are

utilised during the generation of a new set of predicted

numeric values over a prediction horizon period of 30

sec. The predicted new generated set of values serve as

an input to the numeric optimiser; to obtain the best

option of numeric combination that would be used

during the next successive search frontiers.

Implementation Assumptions

It is assumed that the continuous approximation of
numeric counts(queue length) is maintained within the
network. This is obtained at different level of
abstractions based on the following: Route (R) explored
by the planner during search space; queue (Q) denoting
the numeric value of each road object at any instance of
time; Source (Sc) which represents the entering road to
the networks and sink (Si) which represents the exit
roads. Vehicles originate from the source, passes through
roads, connectors and junctions, then end up in sink.

A road could be active or inactive at every time

instance. Vehicles are assumed to move on an active road at

the flow rate of unit value per seconds of time veh/sec. We

assumed the flow rate of the roads were known and fixed at

the initial state. The flowrate of inactive road is assume to

be zero; due to no movement of vehicles on such road.

Each of the junctions has two phase (1 and 2). Traffic

can move from north to south or from east to west at

junctions. Two conflicting roads cannot be activated at the

same time at a junction. The domain model, incorporate

declarative descriptions of grounded event that monitors

the movement of traffic within linking roads. The planner

selects the appropriate green phase duration to controls the

traffic of roads connected at a junction.

All dynamic inputs, such as turning rates are assumed

constant; with an exception of the state variables (xz(t)) and

controlled variables (gj,i). The flow rate of individual

junctions is also assumed to be constant. The rate of flow of

vehicles is represented as a unit value per seconds of time

(veh/sec). We assume we cannot control drivers behaviour;

thus, we only control the green split (the controlled

variable). We also assumed that the traffic flow dynamics

are fully defined and included in the domain file.

We consider a linearised version of the quadratic

problem that simplifies real-time calculations. Linearised

methods often led to suboptimal solutions and could not

consider the limits of some constraints exhaustively.

Therefore, exploring more complex optimisation

solution that can scale better in preferred for future

purpose. The main objective of this implementation is

not to scale the output metrics, but to investigate the

Jimoh Falilat Olaitan et al. / Journal of Computer Science 2017, 13 (8): 257.274

DOI: 10.3844/jcssp.2017.257.274

268

feasibility of using our UTCPLAN approach in this

domain of interest (UTC).

Evaluation

The main evaluation criterion is to show that

UTCPLAN can indeed accept inputs expressive domain

descriptions within urban traffic domain and output

solution plans containing continuous processes, events and

actions through the integration of MPC with AI search -

based planning techniques. This is measured by creating

an expressive description of a UTC domain with traffic

flow problems of various degree to test if UTCPLAN can

generate execution plans that can control and manage

traffic situation base on specified traffic goals.

The experimental traffic network (domain) is designed

to have more than one connected junctions in other to test

the centralise reasoning of UTCPLAN to manage upstream

and downstream of traffic from connected road to the

junction. This also allows us to test the feasibility of

junction to junction traffic relationship within the network.

Each junction in the model is designed to have more than

one signal phase, for the purpose of evaluating the

effectiveness of UTCPLAN at splitting the green times of

the signal phases within a junction. There are several

connected roads without a signaled junction within the

network model; for the purpose of evaluating the

effectiveness of UTCPLAN at reasoning with the

dynamics of traffic flow in those linked roads not

directly controlled by a signaled junction.

The effectiveness of the embedded MPC approach in

UTCPLAN algorithm is tested with sample traffic domains;

to evaluate the performance of UTCPLAN at controlling

the signaled junctions while optimising the flow of traffic

within the given network, during unexpected changes to the

traffic situation. To achieve this, two signaled situation were

created for experimental purpose:

Fixed

Signal duration are fixed for every junction within
the network. The planner cannot alter the signal duration

during search space. The planner reasons with the
domain and problem information to generate solution
plans using the fix signal value at every junction.

Controlled

Signal control is entirely at the discretion of the

planner. The signal durations are set at initial state;

however, the planner alters the signal duration whenever

it anticipates a better control performance during search

space; utilising the embedded MPC approach.

The speed of UTCPLAN was assessed with different

volume of traffic with bottlenecks to investigation the

plan generation time during light and heavy traffic

situation. Numerous traffic flows were generated by

altering the values of queuing distance on roads to create

a heavier flow of traffic in the test suite. The quality of

plan generated by UTCPLAN was evaluated for both

controlled and fixed signal experiment. This is achieved

by computing the total number of executable actions and

initiated processes within the output plans, for both fixed

and controlled signal.

Evaluation Criteria

To investigate the applicability and effectiveness of
UTCPLAN, we use three evaluation criteria for
comparison: Total time taken to generate a plan; the
average number of processes initiated and the average
number of actions sequence in the output plan. Makespan is
not considered in this criteria because this implementation
does not include a scheduler for makespan optimisation in
the plan. Thus, using makespan as a major metric would not
be suitable as criteria for evaluation of the planner.

A variation of UTCPLAN was created for the
purpose of comparison and experimental analysis. This
variation creates a planner version without integrating
MPC approach. This version produces a Fixed Signal
approach; it reasons with numerics within the domain
similar to a classical numeric planner Hoffmann (2003).
The Fixed Signal and the Controlled Signal are tested with
the same formulation of domain and problems. Several
traffic problems of increasing complexities were
abstracted and modelled within the UTC domain. The
modelled traffic problems are suitable for UTCPLAN
evaluation because it highlights the advantages of the
controlled signal (with MPC integration) over the fixed
signal approach. The time discretisation of t = 1.0, is used
in the two test cases (Fixed and Controlled); and the entire
task in the UTC domain. The time taken to solve problems
in our experiment is shown in Fig. 7. The performance of
the planner (controlled signal) is compared with fixed
signal value. The results of the fixed time duration
compared with the controlled approach are reported in
Table 1. Given that x2 is the new average value and x1 is
the previous average value, the percentage change in value
y% is measured by Equation 10 and recorded in Table 1:

() 2 1

2

100
% *

1

x x
y

x

−
= (10)

This helps to visually illustrate the trend in plan

quality of both the fixed and the controlled experiment.

A decreasing (↓) trend in the value of y implies a good

quality plan while a continuous increase (↑) in the value

of y means that the planner output is affected by the

complexity of the problem in the domain. The more

complex the problem becomes the more the challenge to

generate quality plan at a reasonable time. Moreover,

when y is zero, it means the output plan is steady and

stable despite an increase in problem complexity.

Jimoh Falilat Olaitan et al. / Journal of Computer Science 2017, 13 (8): 257.274

DOI: 10.3844/jcssp.2017.257.274

269

Fig. 7. The run-times for both Controlled (left) and Fixed (right) Signal. The y-axis indicate the time taken to output a complete plan

(run-time) in microseconds, the queue length size is represented by the x-axis. An increasing queue length signifies a more

congested network; consequently, an increasing problem complexity.

Table 1. Planner result showing the percentage increase in number of vehicles in the network and the corresponding percentage

changes(effect) in the plan metrics. Fixed duration means the duration of the green split is fixed at the initial state and would

be the same throughout the planning time. Controlled means that the duration is fixed at the initial state, but subject to

changes during search space whenever the planner anticipate a better optimised green time than the fixed value

 Increase in Change in Avg. planning time (%) Change in Avg. No. of processes (%) Change in Avg. No. of actions (%)

QueueLenght Queue -- -- ---------------------------------------

Variation Lenght(%) Fixed Controlled Fixed Controlled Fixed Controlled

5 ↑ 100 ↑ 100 ↑ 100 ↑ 100 ↑ 100 ↑ 100 ↑ 100

20 ↑ 75 ↑ 31.3 ↑ 56.5 ↑ 35.0 ↑ 45.8 ↑ 50 ↑ 58.3

40 ↑ 50 ↑ 61.2 ↑ 22.5 ↑ 41.2 0.0 ↑ 50 ↑ 42.9

80 ↑ 50 ↑ 48.1 ↓ 13.2 ↑ 45.2 0.0 ↑ 50 0.0

60 ↑ 50 ↑ 34.5 ↑ 3.9 ↑ 25.3 0.0 ↑ 34.4 0.0

200 ↑ 20 ↑ 42.1 ↑ 8.7 ↑ 29.7 ↑ 4.0 ↑ 29.1 0.0

300 ↑ 33.3 ↑ 28.5 ↓ 5.7 ↑ 22.9 0.0 ↑ 22.5 0.0

Test Environment

The UTCPLAN algorithm is implemented in

Netbeans Java 8.0 which involves the creation of a

continuous planner with an embedded MPC approach.

The domain and problem representation (traffic

description) are also developed in Java to facilitate easy

data transfer between planner and network information

description. The experiment was run on Ubuntu 15.04,

Intel Core i7 on a 16GB RAM at 2.20GHz.

Result

The plan contains the sequence of action operators

needed to optimise traffic flow within an urban traffic

network until the goal condition is satisfied. Figure 7

shows an excerpt of a sample plan generated by

UTCPLAN for a controller to solve a UTC control

problem instance.

Empirical Analysis

A output plan is the sequence of steps needed to get

to a goal condition from an initial problem situation. The

total length of a plan for a given problem varies from

planner to planner. The shorter the length of the

generated plan, the better the quality of the plan. The

lesser the number of actions and processes needed to

achieve a goal condition the better the quality of the plan

for such problem domain.

The average total time taken to generate a plan is a

metric that shows the efficacy and speed of the planner.

The total time depends majorly on the planner algorithm.

It is also dependent on some other factors such as the

language used to implement the planner and the

hardware configuration of the system that the planner

resides on. The faster it is to achieve the goal condition

the lesser the total time to generate a plan and vice versa.

The total time taken to generate a plan is an essential

Jimoh Falilat Olaitan et al. / Journal of Computer Science 2017, 13 (8): 257.274

DOI: 10.3844/jcssp.2017.257.274

270

criterion for the evaluation of planners in AI planning. A

planner is effective in a domain of problem if the total

time to generate a plan for problems in that domain

remains steady and stable. However, if the total time to

produce a solution in a domain of problem is

astronomically increasing with an increase in the

complexity of the problem, it means the planner might get

stuck during certain problem situation in such domain.

Table 1 presents the percentage rate of increase in

queues within the network and the effect of those

percentage increase on the average total time as illustrated

in Fig. 7. It is observed that the average total time required

to generate a plan varies with a variation in queuing

distance and the green split values. The percentage change

in total time increases with an increase in queue length at

fixed signal. However, the percentage change in the total

time of controlled signal is remarkable at a low increase

rate with increase in queue length.

The trend in the percentage change in average

number of processes initiated by generated plans is also

shown in Table1. The percentage change in the average

number of processes increases with increase in queue

length at fixed signal. However, the percentage change

in the average number of processes is reduced to zero

percent despite an increase in queue length when the

signal is controlled by UTCPLAN. It increases a little

when the length of the queue reaches close to 200 m but

later drop back to zero percent despite a further increase

in queue length. The total number of processes

initiated by the planner to achieve the goal condition

increases with an increase in the congestion rate

whenever the signal is fixed as shown in Fig. 8.

However, the changes are minimum and often

becomes steady despite the increasing queues in the

network when the green split is controlled by the

UTCPLAN approach within the traffic network.

Similarly, Table 1 shows the trend in percentage

change in the average number of action operator within

the plans. This increases with an increase in queue length

at fixed signal. However, the percentage change in the

average number of action operator is reduced to zero

percent despite an increase in queue length when the

signal is controlled by UTCPLAN. The total number of

actions generated by the planner to achieve the goal

condition increases with an increase in the traffic

congestion rate whenever the signal is fixed. However,

the changes are also minimum and often becomes steady

despite the increasing queues in the network when the

green split is controlled by UTCPLAN approach within

the traffic network as illustrated in Fig. 9.

Discussion

The percentage change in output value gives a visual

illustration of the trend in plan quality of both the fixed

and the controlled experiment. A decreasing (↓) trend in

the output value implies a good quality plan while a

continuous increase (↑) in output value means that the

planner output is affected by the complexity of the

problem in the domain. The more the complexity of the

problem, the higher the challenge to generate quality

plan at a reasonable time. Moreover, when the

percentage change in output value is zero, it means the

output plan is steady and stable despite an increase in

problem complexity as illustrated by Fig. 7-9.

Stability in plan metrics can not be achieved by a

planner with fixed duration. It can only be achieved by a

planner that can establish a unique approach to numeric

fluents during search space. The stability in the

controlled output plan metric is achieved through the

novel integration of MPC approach with AI planning.

Fig. 8. Average number of processes initiated by UTCPLAN plans with fixed and controlled traffic signal. The y-axis shows the

average number of processes, the x-axis represents the size of the queue length

Jimoh Falilat Olaitan et al. / Journal of Computer Science 2017, 13 (8): 257.274

DOI: 10.3844/jcssp.2017.257.274

271

Fig. 9. Average Number of Action steps in UTCPLAN Plans with Fixed and Controlled Traffic Signal. The y-axis shows the

Average Number of Actions, the x-axis represents the size of the queue length

This implies that the time to generate a valid plan, as well

as the quality of plan generated, becomes stable at some

point irrespective of the increase in complexity of the

problem domain. For instance, the result shows that a

controlled approach is required to optimise any traffic

situation. The effectiveness of UTCPLAN approach at

tracking and predicting numeric changes, while evaluating

the effect of those changes during search space, helps to

anticipate increasing or decreasing queue trends within the

network. The controlled green time is always suited to the

changes in the network. This helps to keep the network in

a stable state despite increasing congestion.

The result indicates a favourable output in both signal

test cases when planning with tasks of less complexities.

It is inferred from the result that the fixed and controlled

signal approach produce excellent control performance

during a lesser traffic situation. However, a vast output

difference is observed between the two instances when

planning with tasks of higher complexities. It is inferred

from the result that the run-time of controlled signal

increases initially, then become steady despite an increase

in traffic congestion and bottleneck. While the run-time of

the fixed signal gets worse with increasing traffic

congestions and bottleneck as shown in Fig. 7 (right side),

because large traffic demand generates huge search space

and, therefore, the solution requires more computational

time especially at lower fix duration.

The total number of actions sequence and initiated

simulation in the plan generated by the fixed signal is

45% above the controlled signal plan. Thus, the

controlled plan is has a lesser plan length in over 80% of

the tasks in the test suite compared with the fixed

generated plan. This evidence confirms that UTCPLAN

generates a more quality plans. Another benefit of the

controlled instance is the ability to reach the goal

condition in lesser time for most of the problem

instances, though the domain courage is the same for

both configurations (both test instances solved all the

modelled problems in the domain).

The creation of a rich declarative representation of

the UTC model facilitates reasoning with logical

constants, variables and constraints within the model; but

a classical MPC formulation might not take logical

formalities into consideration. However, the MPC

mathematical formulation and computation of UTC

numerics within the model, facilitate dynamic control of

traffic signal and vehicle routing; this might not be

effectively achieved by classical AI planning search

mechanism. Integrating and utilising the two approaches

create an effective control of continuous numerics

combined with the logical component within a model.

Scaling Difficulties

UTCPLAN currently, does not have a built-in

specific heuristics for pruning the search space.

Integrating advanced planning solvers into the search

pattern of this implementation would boost the speed of

planner. The implementation made use of a simple

classical numeric solver; the use of a state-of-the-art

commercial solver would enhance the robustness and

scalability of UTCPLAN to deal with a larger network of

constraints in future implementation.

Conclusion

We introduce UTCPLAN, a planning system that

embeds model predictive approach into an AI planning

search paradigm. UTCPLAN supports the analysis of

domain descriptions containing continuously changing

processes, events and actions. Experimental evaluation

shows that our novel approach can control traffic and

reduce congestion when tested on a sample road

Jimoh Falilat Olaitan et al. / Journal of Computer Science 2017, 13 (8): 257.274

DOI: 10.3844/jcssp.2017.257.274

272

network. The application to Urban Traffic domain is

utilised to validate the practicability of this novel hybrid

integration on a continuous domain with logical

preferences. The result shows that UTCPLAN can

reason with continuous processes in the domain and has

the potential to generate control and execution plans and

schedules that will keep such domain in a desirable state.

Acknowledgement

The authors acknowledge the European Commission
for Science and Technology (COST) funding for the
Autonomic Road Transport Supports grant (Grant Ref:
COST-ARTS/TU1102).

Author’s Contributions

Dr. Jimoh Falilat Olaitan: Made considerable
contributions to the conception of this hybrid
technology; she contributed to the original design and
revamping of the algorithms. She also contributes in
critical reviewing of the manuscript for significant
intellectual content.

Professor Thomas Leo McCluskey: Made
considerable contributions during the design of this
hybrid technology. He contributed to the revamping of
the algorithms. He also contributes in critical reviewing
of the manuscript for significant intellectual content.

Dr. Simon Parkinson: Made considerable
contribution to the drafting of this article; he contributed
to the presentation and analysis of result; he made
critical review for significant intellectual content and
also added genuine content where applicable.

Ethics

This article is original and contains unpublished
material. The corresponding author confirms that all of
the other authors have read and approved the manuscript
and there are no ethical issues involved.

References

Al-Gherwi, W., H. Budman and A. Elkamel, 2011. A
robust distributed model predictive control
algorithm. J. Process Control, 21: 1127-1137.

 DOI: 10.1016/j.jprocont.2011.07.002
Alanqar, A., H. Durand and P.D. Christofides, 2017. Error-

triggered on-line model identification for model-based
feedback control. AIChE J., 63: 949-966.

 DOI: 10.1002/aic.15430
Audemard, G., P. Bertoli, A. Cimatti, A. Kornilowicz

and R. Sebastiani, 2002. A SAT based approach for
solving formulas over boolean and linear
mathematical propositions. Proceedings of the 18th
International Conference on Automated Deduction,
Jul. 27-30, Springer, UK., pp: 193-208.

 DOI: 10.1007/3-540-45620-1_17

Baldea, M., J. Du, J. Park, I. Harjunkoski, 2015.

Integrated production scheduling and model

predictive control of continuous processes. AIChE

J., 61: 4179-4190. DOI: 10.1002/aic.14951

Bennett, S., 1993. A History of Control Engineering

1930-1955. 1st Edn., Peter Peregrinus, Hitchin,

Herts., UK, UK.

Camacho, E. and C. Bordons, 1999. Model Predictive

Control. 1st Edn., Springer, London, ISBN-10:

3540762418, pp; 280.

Chen, Y., L. Cheng, H. Wu, X. Zhao and J. Han, 2015.

Knowledge-driven path planning for mobile robots:

Relative state tree. Soft Comput., 19: 763-773.
 DOI: 10.1007/s00500-014-1299-4

Chu, Y. and F. You, 2015. Model-based integration of

control and operations: Overview, challenges,

advances and opportunities. Comput. Chem. Eng.,

83: 2-20.

 DOI: 10.1016/j.compchemeng.2015.04.011

da Silva Fonseca, J.P., A.R. de Sousa, M.V.M. Ferreira

and J.J.P.Z. de Souza Tavares, 2016. Planpas: Plc

and automated planning integration. Int. J. Comput.

Integrated Manufact., 29: 1200-1217.

 DOI: 10.1080/0951192X.2015.1067909

De Oliveira, D. and A.L.C. Bazzan, 2009. Multiagent

learning on traffic lights control: Effects of using

shared information.
Dinapoli, N., G. Chiloiro, G. Mattiucci, L. Azario and

M. Gambacorta et al., 2016. Ep-1636: Clinical
validation of automated planning process in rectal
cancer imrt treatment. Radiotherapy Oncol., 119:
S763-S764. DOI: 10.1016/s0167-8140(16)32887-0

Dusparic, I., J. Monteil and V. Cahill, 2016. Towards

autonomic urban traffic control with collaborative

multi-policy reinforcement learning. Proceedings

of the IEEE 19th International Conference on

Intelligent Transportation Systems, IEEE Xplore

Press, pp: 2065-2070. DOI:

10.1109/ITSC.2016.7795890

Falugi, P., S. Olaru and D. Dumur, 2010. Robust multi-

model predictive control using LMIs. Int. J. Control,

Automat. Syst., 8: 169-175.

 DOI: 10.1007/s12555-010-0122-y

Fox, M. and D. Long, 2003. PDDL2.1: An extension of

PDDL for expressing temporal planning domains. J.

Art. Int. Res., 20: 61-124.

Fox, M. and D. Long, 2006. Modelling mixed discrete-

continuous domains for planning. J. Art. Int. Res.,

27: 235-297.

Garrido, A., E. Onaindia and F. Barber, 2001. A temporal

planning system for time-optimal planning.

Proceedings of the Portuguese Conference on Artificial

Intelligence, (CAI’ 01), Springer, Berlin, Heidelberg,

pp: 379-392. DOI: 10.1007/3-540-45329-6_37

Jimoh Falilat Olaitan et al. / Journal of Computer Science 2017, 13 (8): 257.274

DOI: 10.3844/jcssp.2017.257.274

273

Graf Plessen, M.M. and A. Bemporad, 2017. Reference
trajectory planning under constraints and path tracking
using linear time-varying model predictive control for
agricultural machines. Biosyst. Eng., 153: 28-41.

 DOI: 10.1016/j.biosystemseng.2016.10.019
Grosso, J.M., C. Ocampo-Martinez and V. Puig, 2016.

Reliability–based economic model predictive
control for generalised flow–based networks
including actuators’ health–aware capabilities. Int. J.
Applied Math. Comput. Sci. 26: 641-654.

 DOI: 10.1515/amcs-2016-0044

Guo, C., X. Gang and M. Zhang, 2014. Model predictive

control implementation and simulation for urban

traffic networks. Proceedings of the IEEE

International Conference on Service Operations and

Logistics and Informatics, Oct. 8-10, IEEE Xplore

Press, Qingdao, China, pp: 334-340.

 DOI: 10.1109/SOLI.2014.6960746

Gupta, S.K., D.S. Nau and W.C. Regli, 1998. IMACS: A

case study in real-world planning. IEEE Intell. Syst.

Applic., 13: 49-60. DOI: 10.1109/5254.683210

Heinrich, B., M. Klier, S. Zimmermann, 2015.

Automated planning of process models: Design of a

novel approach to construct exclusive choices.

Decis. Support Syst., 78: 1-14.
 DOI: 10.1016/j.dss.2015.07.005

Hoffmann, J., 2003. The metric-FF planning system:

Translating “ignoring delete lists” to numeric state

variables. J. Art. Int. Res., 20: 291-341.

 DOI: 10.1613/jair.1144
Hoogendoorn, S.P. and P.H.L. Bovy, 2001. State-of-the-

art of vehicular traffic flow modelling. Delft
University of Technology, Delft.

Ji, J., A. Khajepour, W.W. Melek and Y. Huang,

2017. Path planning and tracking for vehicle

collision avoidance based on model predictive

control with multiconstraints. IEEE Trans.

Vehicular Technol., 66: 952-964.

 DOI: 10.1109/TVT.2016.2555853

Jimoh, F., 2015. A synthesis of automated planning and

model predictive control techniques and its use in

solving urban traffic control problem. PhD Thesis,

University of Huddersfield.

Jimoh, F., L. Chrpa, T. McCluskey, 2014. The

application of planning to urban traffic control.

Proceedings of the 24th International Conference on

Automated Planning and Scheduling, Jun. 21-26,

Portsmouth, NH, USA.

Jimoh, F., L. Chrpa, T. McCluskey and M.M.S. Shah,

2013a. Towards application of automated planning

in urban traffic control. Proceedings of the 16th

International IEEE Conference on Intelligent

Transportation Systems, Oct. 6-9, IEEE Xplore

Press, The Hague, Netherlands, pp: 985-990.

 DOI: 10.1109/ITSC.2013.6728360

Jimoh, F., L. Chrpa and M. Vallati, 2013b. Autonomic

system architecture: An automated planning

perspective. Proceedings of the IFIP International

Conference on Artificial Intelligence Applications

and Innovations, Springer, Berlin, pp: 121-130.

DOI: 10.1007/978-3-642-41142-7_13

Jimoh, F. and T. McCluskey, 2012. Using automated

planning to enable autonomic properties in

computer systems.

Jimoh, F. and T.A.A.P.P. McCluskey, 2015. Self-

Management in Urban Traffic Control. 1st Edn.,

Autonomic Systems, Springer, Birkhuser Basel.

Jimoh, F. and T.L. McCluskey, 2016. Towards the

integration of model perdictive control into an AI

planning framework. Proceedings of the 34th UK

Workshop on Planning and Scheduling, (WPG’ 16).

Jimnez, S., F. Fernndez and D. Borrajo, 2013.

Integrating planning, execution and learning to

improve plan execution. Comput. Intell., 29: 1-36.

DOI: 10.1111/j.1467-8640.2012.00447.x

Joos, A., C. Seiferth, L. Schmitt and W. Fichter, 2017.

Parameters for nonlinear model predictive control in

unmanned aerial vehicle path-planning applications.

J. Guidance Control Dynam., 40: 484-492.

 DOI: 10.2514/1.G000311

Khoshnevis, B. and Q. Chen, 1991. Integration of

process planning and scheduling functions. J. Intell.

Manufact., 2: 165-175. DOI: 10.1007/BF01471363

Laguna, J.O., A.G. Olaya, D.B. Millan, 2014. Building

planning action models using activity recognition.

Ph.D. Thesis, Universidad Carlos III de Madrid.

Lhr, J., P. Eyerich, T. Keller and B. Nebel, 2012. A

planning based framework for controlling hybrid

systems. Proceedings of the Twenty-Second

International Conference on International

Conference on Automated Planning and Scheduling,

Jun. 25-29, AAAI Press, Atibaia, São Paulo, Brazil,

pp: 164-171.

Machado, L., R. Prikladnicki, F. Meneguzzi, C. de Souza

and E. Carmel, 2016. Task allocation for

crowdsourcing using ai planning. Proceedings of the

3rd International Workshop on CrowdSourcing in

Software Engineering, May 14-22, ACM, Austin,

Texas, pp: 36-40. DOI: 10.1145/2897659.2897666

Mahalingam, V. and A. Agrawal, 2016. Learning agents
based intelligent transport and routing systems for
autonomous vehicles and their respective vehicle
control systems based on Model Predictive Control

(MPC). Proceedings of the International Conference
on Recent Trends in Electronics, Information and
Communication Technology, May 20-21, IEEE
Xplore Press, Bangalore, India, pp: 284-290.

 DOI: 10.1109/RTEICT.2016.7807828

Jimoh Falilat Olaitan et al. / Journal of Computer Science 2017, 13 (8): 257.274

DOI: 10.3844/jcssp.2017.257.274

274

Mezghiche, A., M. Moula and L. Tadj, 2015. Model

predictive control of a forecasting production

system with deteriorating items. Int. J. Operat.

Res. Inform. Syst., 6: 19-37.

 DOI: 10.4018/IJORIS.2015100102

Osusky, J. and V. Vesely, 2015. Design of robust

controller with input constraints. Proceedings of the

20th International Conference on Process Control,

Jun. 9-12, IEEE Xplore Press, Strbske Pleso,

Slovakia, pp: 261-265.

 DOI: 10.1109/PC.2015.7169973

Parkinson, S. and A.P. Longstaff, 2015. Multi-

objective optimisation of machine tool error

mapping using automated planning. Expert Syst.

Applic., 42: 3005-3015.

 DOI: 10.1016/j.eswa.2014.11.066

Parkinson, S., A.P. Longstaff and S. Fletcher, 2014.

Automated planning to minimise uncertainty of

machine tool calibration. Eng. Applic. Artificial

Intell., 30: 63-72.

 DOI: 10.1016/j.engappai.2014.02.002

Pinto, J., J. Sousa, F. Py, K. Rajan, 2012. Experiments

with deliberative planning on autonomous

underwater vehicles. Proceedings of the IROS

Workshop on Robotics for Environmental

Modeling, (REM’ 12), Algarve, Portugal.

Roncoli, C., I. Papamichail and M. Papageorgiou, 2016.

Hierarchical model predictive control for multi-lane

motorways in presence of vehicle automation and

communication systems. Transport. Res. Part C, 62:

117-132. DOI: 10.1016/j.trc.2015.11.008

Russell, S.J., P. Norvig, J.F. Canny, J.M. Malik and D.D.

Edwards, 1995. Artificial Intelligence: A Modern

Approach. 1st Edn., Prentice Hall, Englewood Cliffs.

Schildbach, G. and M. Morari, 2016. Scenario-based model

predictive control for multi-echelon supply chain

management. Eur. J. Operat. Res., 252: 540-549.
 DOI: 10.1016/j.ejor.2016.01.051

Shin, J. and E. Davis, 2005. Processes and continuous

change in a SAT-based planner. Artificial Int., 166:

194-253. DOI: 10.1016/j.artint.2005.04.001

Tay, M., 2007. Model predictive cost control. Control

Eng., 54:, IE9-IE9.

Tierney, K., A.J. Coles, A. Coles, C. Kroer and A.M.

Britt et al., 2012. Automated planning for liner

shipping fleet repositioning. Proceedings of the

22nd International Conference on International

Conference on Automated Planning and Scheduling,

Jun. 25-29, AAAI Press, Brazil, pp: 279-287.

Zhu, J., Q. Yang, X. Xu and J. Lu, 2015. A LPV model-

based chilled water temperature controller for

HVAC systems. Build. Services Eng. Res. Technol.,

36: 368-385. DOI: 10.1177/0143624414555811

