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Abstract: Automated planning and scheduling are increasingly utilised in 

solving evsery day planning task. Planning in domains with continuous 

numeric changes present certain limitations and tremendous challenges to 

advanced planning algorithms. There are many pertinent examples to the 

engineering community; however, a case study is provided through the 

urban traffic controller domain. This paper introduce a novel hybrid 

approach to state-space planning systems involving a continuous process 

which can be utilised in several applications. We explore Model Predictive 

Control (MPC) and explain how it can be introduce into planning with 

domains containing mixed discrete and continuous state variables. This 

preserves the numerous benefits of AI Planning approach by the use of 

explicit reasoning and declarative modelling. It also leverages on the 

capability of MPC to manage numeric computation and control of 

continuous processes. The hybrid approach was tested on an urban traffic 

control network to ascertain it practicability on a continuous domain; the 

results show its potential to control and optimise heavy volumes of traffic. 
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Introduction 

Process planning is the act of selecting and assigning 

resources towards achieving a desired goal. Process 

planning is performed programmatically and It involves 

the design of autonomous computer program; such 

computer programs are self-aware of their environment, 

can adapt to change, generate and scrutinise goals 

(Russell et al., 1995). There have been many successful 

implementations of autonomous planning for processing 

planning. There has been the successful implementation 

of automated planning and scheduling for many 

engineering processes. For example, early work by 

Khoshnevis and Chen (1991) utilised automated 

planning and scheduling in manufacturing processes for 

comprehensive resource selection and allocation. 

This early success motivated the use of autonomous 
planning and scheduling for many different applications; 
however, as each solution often contained tightly 
coupled domain knowledge alongside the algorithms, 
researchers were often spending large amounts of time 
developing systems which shared similar core 

algorithms. This resulted in the establishment of domain-

independent automated planning where state-of-the-art 
algorithms are designed in isolation from the domain 
knowledge. These algorithms are then used alongside an 

action model representing the domain specific 
knowledge. Also, the emerging development in the field 
of automated planning with constraints processing has 
facilitated the deployment of deliberative reasoning to 
real-time control applications (Heinrich et al., 2015; 
Chen et al., 2015). There are many successful 

applications of domain-independent planning to real-
world problems. Example could be found in the 
computer integrated manufacturing process (da Silva 
Fonseca et al., 2016); relocation problem (Tierney et al., 
2012), calibration of machine tools (Parkinson and 
Longstaff, 2015), clinical validation (Dinapoli et al., 

2016) and crowd sourcing (Machado et al., 2016). 
It is vital to enable deliberative reasoning in systems. 

Introducing deliberation into a controller enables it to 

reason with its components, environment and functionality. 

It enable the generation of effective plans towards achieving 

desirable goal within the control system (Jimoh and 

McCluskey, 2012). This facilitates its effectiveness to deal 

with unexpected situations that might not have been learnt, 
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adopted nor programmed beforehand into such a system 

Dusparic et al. (2016). Embedding automated planning into 

urban traffic control systems will introduce deliberative 

reasoning in urban traffic controllers. Deliberative 

reasoning in a controller would introduce intelligence into 

the UTC systems through the generation of plans and 

schedules for self management. This will ultimately 

contribute to the reduction of traffic congestion and carbon 

emissions on roads. 

However, as the variety of possible planning 

applications increases so is the complexity of the domain 

knowledge (Jimoh and McCluskey, 2016). The 

complexity is significantly hindering the uptake of novel 

automated planning applications due to limitations of 

planning applications to handle continuous change in 

numeric values. To avoid this limitation, the complexity 

of the domain knowledge are currently being relaxed 

through the discretisation of continuous transformation 

into a discretised profile of linear change (Lhr et al., 

2012). For example, the application to machine tool 

calibration, non-linear change in environmental 

temperate is discretised to reduce complexity   

(Parkinson et al., 2014). However, this discretisation is 

often at a cost to the quality and accuracy of the 

generated plan and a compromise has to be established. 

This also motivates the requirement for a novel approach 

to handling continuous processes in planning for control 

systems. The next section explains a hybrid algorithm 

that uses automated planning with an embedded MPC 

strategy to create an algorithm that can reason with 

planning problems containing numerics with continuous 

change. The specific example provided is in the urban 

traffic control environment to generate plans for a 

controller to optimise the traffic situation. 

In this study, a hybrid planning system is presented 
through the introduction of Model Predictive Control 
(MPC) approach into a classical state-based planning 
system. It facilitates efficient planning in the presence of 

complex numeric and logical changes within a problem 
domain. The technique’s primary application is in 
autonomous traffic management and will be provided as 
an example throughout the paper. However, the traffic 
management domain has many of the similar 
characteristics with complex engineering and 

manufacturing planning problems. 
The layout of the paper is as follows: The first section 

presents a survey of work related to this paper. This leads 

to the description of the developed hybrid approach. 

Following this, a case study is presented where the 

technique is applied to the urban traffic controller. 

Background 

The increase in demand for innovative plan 

generation techniques, plan execution, monitoring and 

recovery; has stemmed awareness towards evolving 

system designs which make use of advance planning and 

implementation frameworks (Jimoh and McCluskey, 

2015; Laguna et al., 2014). Teleo-Reactive Executive 

(T-Rex) is an example of such design. T-Rex is a goal-

oriented autonomous underwater vehicles that integrates 

automated planning technology for real-time plan 

generation and execution. T-Rex framework is 

designed to improve research in the field of oceanic 

science (Pinto et al., 2012). Another example of 

planning design is Planning and Execution L-Earning 

Architecture (PELEA). PELEA introduce adaptable 

modular design that integrates learning with planning 

and execution. It also incorporates sensing and 

monitoring for realtime re-planning (Jimnez et al., 

2013). We propose the use of Model Predictive Control 

(MPC) design in continuous planning to create reasoning 

in controllers that can solve problems in domains which 

are modelled using variables whose values are changing 

continuously. Similarly, Domain Predictive Control 

(DPC) is another design that is proposed for continuous 

(re-) planning in hybrid systems (Lhr et al., 2012). It 

involves the extraction of a discretised domain model 

from given MPC dynamic equation of a system to 

control realtime applications. This is different from the 

work in this study; which involves the creation of 

symbolic continuous domain model of a system while 

leveraging on MPC derived from a model of dynamical 

equations of the same system as a heuristic to control the 

search space in symbolic planning. 

Control systems which support Urban Traffic Control 
(UTC), such as those controlling networks of traffic 
lights, have utilised AI techniques since the 1970’s 
(Jimoh and McCluskey, 2014). These systems are 
embedded in a real-time control environment and are 

often based on algorithms that rely on feedback and 
adaptation. They make use of road traffic data which 
may be gathered every few seconds or gathered over 
several years. Resulting in traffic control systems 
operating with the fundamental of adaptive signal 

control in road networks established from stored traffic 
data. However, these approaches to traffic control has 
some limitations during unprecedented situations such as 
road accidents or an unexpected change in traffic 
demand within short interval of time (De Oliveira and 
Bazzan, 2009; Jimoh et al., 2013b). In such 

circumstances, traffic control systems usually use fixed 
traffic signal timing or apply some hardcoded approach 
to revert into a recognised state. Therefore, there is a 
need for intelligent controls that can effectively generate 
plans and execution towards restoring an unpredicted 
traffic situation to desired condition. One promising 

direction is by creating a hybrid control design that will 
support intelligent systems to spontaneously reason and 
deliberate with their declarative knowledge, towards 
managing themselves during unexpected situations 
(Jimoh et al., 2013a). Such intelligent controls would be 
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an achievement in the urban traffic control domain and 
this paper is a step towards realising such goal. 

Model Predictive Control 

Control engineering is a field of knowledge within 

the engineering discipline, which applies control theory 

to design and implement systems with desired 

behaviours. Predictive Controls is a sub-set of Control 

Engineering utilised in adopting and anticipating the 

future pattern of control processes in other to control its 

inputs for a desirable future goal. 

MPC attracts remarkable consideration in the 

control of dynamic systems which makes it an essential 

aspect of control practice (Osusky and Vesely, 2015). 

MPC was established within the industrial sector as an 

alternative option of control compared with traditional 

Proportional Integrate Derivative (PID) controls 

(Bennett, 1993). MPC formulation incorporates optimal 

control, multi-variable control, stochastic control, 

deadtime processes and future references where 

applicable (Camacho and Bordons, 1999). 

MPC has several algorithms; they differ in the way 

they represent the model of the process as well as the 

cost function to be minimised. MPC algorithms have 

been continually enhanced to increase its robustness 

and scalability for instantaneous processes             

(Al-Gherwi et al., 2011; Falugi et al., 2010; Tay, 

2007; Osusky and Vesely, 2015). 

MPC has been implemented in a variety of 
applications ranging from production planning 
(Mezghiche et al., 2015; Baldea et al., 2015); industrial 
production (Zhu et al., 2015; Alanqar et al., 2017; 
Grosso et al., 2016) and supply chain (Chu and You, 
2015; Schildbach and Morari, 2016); intelligent 
Transport Systems (Mahalingam and Agrawal, 2016; 
Roncoli et al., 2016); agriculture (Graf Plessen and 
Bemporad, 2017) and robot manipulation in path 
planning (Ji et al., 2017; Joos et al., 2017). 

The MPC Approach 

The mathematical model of a controlled process, as 

well as the assumed disturbances that might occur during 

its operation, is built based on the past experience of 

operation and past data from similar operations within the 

same system. A cost function is derived from the available 

resources and constraints that need to be optimised for the 

entire duration of the process. The system uses the pre-

defined model as a guide to maximise the cost function 

when given a set of varying input parameters, output 

parameters and the dynamic changes in the state of the 

environment. The system plans over a period of time, 

which is known as the horizon. The generated plan is 

applied to the system to control the process by changing 

its current state to a desirable state for a given period of 

time. The new state is sampled again. It re-plans for 

another horizon taking the present state from the feedback 

loop as well as all the system constraints into 

consideration. This approach of planning is called 

“receding the horizon”. This planning and re-planning 

approach make MPC robust and able to keep a control 

process in a desirable state over a given period. It also 

allows it to function in a partially observable environment, 

because of its ability to sample dynamic environment at 

every sampling time during a re-plan. 

The Store-and-Forward Model 

In 1963, Gazis and Potts introduced the store-and-

forward traffic flow model with the aim of achieving a 

sensible compromise between computational efforts and 

precision control in dynamic systems. A store-and-

forward traffic flow model is utilised in this study to 

formulate a state space predictive control model; it helps to 

creates a dynamic mathematical formulation of the network 

model (Guo et al., 2014). Figure 2 depicts a diagrammatic 

representation of the application of MPC into a UTC 

structure. The simplified store-and-forward traffic model 

only allows for split optimisation. Cycle time and offsets 

must be calculated by other control algorithms. 

Roads networks is represented as sets of junctions j∈J 

and links z∈Z and as shown in Fig. 1. Each signalised 

junction j has sets of outgoing links OJ and incoming links 

Ij. A sample of urban road is shown in Fig. 1. It has two 

junctions M and N adjacent to each other, such that z ∈ IN 

and z ∈ OM. The remaining fundamental variables are: 
 
• i represents the stage identifier 

• xz(t) is the state variable indicating the number of 

vehicles in link z at step t 

• j represents the junction identifier 

• gj,i the control input indicating the green time of 

stage i at junction j 

• t discrete time index, t = 0,1,2... 

• Sz represents the saturation flow of link Z 

• vz represents the set of stages where link z has right 

of way 

• tw,z turning rate; towards link Z from the links w that 

enter junction M 

• T the control interval in discrete time step 

• Cj junction j cycle time 
 

Given that the cycle times Cj for all junctions j ∈ J 

are the same and fixed such that Cj = C. Equation 1 can 

consequently denote the dynamics of link z: 
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Fig. 1. Links and Junctions Illustration of an Urban Road 

 

 
 

Fig. 2. Applying MPC to UTC Structure 

 

Each z ∈ Z has an outflow capacity at specific green 

times; this is represented by the Saturation flow Sz. Sz 

could be fixed using a standard value or calculated by 

another approach; we assumed it is known and constant. 

Turning rates tw,z of z ∈ Oj and also w ∈ Ij, could be 

calculated in real-time or estimated utilising statistical 

values. Assuming T = C; a further simplification of the 

variables (replacing both second and third term) from 

Equation 1 will yield Equation 2: 

 

( ) ( ) ( ) ( ) ( ) ( )1z z z z z zx t x t T p t q t d t e t + = + − + −   (2) 

 

Such that, pz(t) represents inflow to link z, qz(t) 

represents outflow from link z. Also, dz(t) represents 

demand in the link z and ez(t) represents exit flow in the 

link z; in the sample time [tT, (t +l)T]. The exit flow 

ez(t) can be estimated by sz(t) = tzpz(t) while assuming 

that the exit rates tz are known. The resulting outflow is 

given in Equation 3: 
 

( )
( ),

z

z N i

i v

z

S g t

q t
C

∈=
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 (3) 

 
In a bit to reduce computational efforts, red-green 

switching in a cycle is not taken into consideration in the 

model. However, the modelled flow represents the 

average real flow for each period. 

A linear scalar equation that represents a specified 

link is shown in Equation 1. Organising all 

interconnected conservation equations in a state space 
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form (for individual link), equation 4 would represents a 

state space model that defines an entire traffic network: 
 

( ) ( ) ( ) ( )1x t x t Bg t d t+ = + +  (4) 

 
Such that x(t) represents numbers of vehicles in each 

link (state vector); g(t) represents all green time settings 
(control vector) and d(t) represents any disturbance within 
the network. B is the network characteristics, it is 
represented by a constant coefficient matrix of proper 
dimensions. For instance the network topology is 
represented by B. 

MPC Constraints on UTC 

Given a UTC traffic model, there are some 
constraints that have to be considered. The constraints 
are formulated from the store-and-forward model 
discussed in the previous section 

Non-Negative Control Constraints 

At any given time t there cannot be a negative 
volume of traffic flowing through link z. Also, the green 
split timing at any given junction falls between the 
traffic light cycle at that junction: 
 

, ,min ,j i jg g i J≥ ∀ ∈  (5) 

 
Traffic Light Cycle Constraints 

All green time constraint holds for every stage i at 
junction j: 
 

( ),
,

jN

j i j

i I

g t C L j J
=

≤ − ∀ ∈∑  (6) 

 
Such that Lj represents the set lost time and Nj 

represents the value of stages, at the junction j. 

Green Duration Constraints 

Equation 7 represents the lower and upper bounds 
constraints on the green time at a junction: 
 

,min , ,max ,j j i jg g g j J≤ ≤ ∀ ∈  (7) 

 
Such that gj,max represents maximum permissible time 

and gj,min represents minimum permissible time at 
junction j. 

Flow Conflict Constraints 

This is to avoid collision between links at a 
junction. Given a connected link only one link could 
be active at a time. 

Non Negative Queue Constraints 

The queues on a given link are restricted to length of 
the link connecting two junctions: 
 

,max0 ,z zx x z Z≤ ≤ ∀ ∈  (8) 

such that xz,max value specifies the maximum number of 

vehicles that can be admitted into link z. This 

restriction helps to eliminate over saturation of a link 

in rush hours. It also makes sure that the value of a 

queue length on the road is nonnegative during the 

computation of control input. 

Capacity Constraints 

The capacity of a link must not be exceeded. Thus, 

the number of vehicles leaving any link will be limited 

by the state and capacity of the downstream link. 

The Objective Function 

The objective of this MPC formulation is to reduce 

the number of vehicles waiting in line at a junction. This 

is evaluated as the total time it requires to exit the 

vehicles waiting at individually connected junctions 

within a network of connected links. Thus, to reduce 

queuing distance on links, Equation 9 represents a 

quadratic costs function that satisfies Equation 4, 6 and 

7; with the aim of minimising queues and optimising 

green times at a junction: 

 

( ) ( )( )2 2

1

|| || || ||
pN

Q R

t

J x t g t
=

= +∑  (9) 

 

Automated Planning 

The ability to reason with the dynamics of life and its 

environment by creating and implementing plans to 

solve challenges is one of the uniqueness of human race. 

Embedding this quality of man into artificial entities 

such as machines, is the foundation of Automated 

Planning. AI planning is a field that involve the 

formation of sequence or partially ordered plans whose 

execution solves a given problem; from an initial state or 

situation to a state that satisfies it specified goals 

conditions (Gupta et al., 1998; Fox and Long, 2003; 

Garrido et al., 2001). To embed deliberative property in 

control system, it is essential for the controller to be 

situationally aware of its components, its operating 

environment and the correlation between its component 

and environment (Jimoh et al., 2013b). This is 

accomplished through the extraction of the operational 

knowledge of a given domain, in this case, a road traffic 

domain. The extracted knowledge is declaratively 

represented in a language that can be understood by the 

planning system. The domain knowledge employed in 

the implementation of this work is represented in a 

language that is close to PDDL+ (Fox and Long, 2006). 

This structural language provides a formal declarative 

representation of the problem and domain entities along 

with all the operational policies of the domain. 
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Modelling UTC Domain 

Given a domain of interest with facts and description 

of the environment and problems within that domain, a 

UTC model could be defined as a symbolic system 

which has inference and rules that represent the domain 

of interest. Traffic flow models are of three distinguished 

types: Macroscopic model; microscopic model and 

mesoscopic model. Refer to the work of Hoogendoorn and 

Bovy (2001) for a detailed overview of existing traffic 

models. A macroscopic model is considered in this 

analysis through the use of aggregated variables to 

describe traffic flows. 

The syntax and semantics of the domain description 

language used in this implementation are similar to 

PDDL+. Detailed explanation of PDDL+ syntaxes and 

semantics is in the work of (Fox and Long, 2006); this 

includes the semantics for the construction and 

implementation of state representation and progression. 
A domain model has been encoded from a case study 

town centre area in the United Kingdom as shown in Fig. 
3. The domain model is made up of static and dynamic 
part (Jimoh et al., 2013a). The static part represents road 
network topology, such as road name, road capacity, 
road length and junctions linking the roads. A directed 
graph is used to represent the road network layout, 
edges represent roads and vertices represent either 
source road, sink road or junction. Vehicles enter the 
network through the source road and exit the network 
through the sink road. The dynamic aspect of the model 
is represented by the flow rate of vehicles on each road 
and the queuing distance such road.  

 

 
 
Fig. 3. Excerpt of map showing the network blocked roads, source road and sink roads within a town center area of Huddersfield, 

West Yorkshire, United Kingdom 
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Fig. 4. Sample declaration of an action operator 

 

 
 

Fig. 5. An excerpt from a process declaration 

 

 
 

Fig. 6. Sample declaration of an event 

 

The dynamic aspect of the model is continuously 

changing due to movement of vehicles in the road 

network. The UTC environment is modelled with 

predicates and fluents. The relationship between objects 

are represented with predicates. For example, given a 

predicate (link nLSouth wDStr) in a state S, it indicate 

that the road nLSouth is connected to wDStr in that state. 

Thus, traffic is allowed to flow from nLSouth to wDStr, 

provided all given constraints are satisfied. Fluents could 

be logical or numeric; it status are subject to changes 

within the model. Rich numeric expressions are possible 

with the use of numeric fluents. For example, a fluent = 

(queueLenght (nLNorth 300.0) indicates the current 

value of the queue in nLNorth to be equal to 300 m. 

A UTC Planning Problem involves the effective 

navigation of vehicles within a network of roads with the 

purpose of optimising traffic flow. In our model, we 

consider action operators, grounded processes and events. 

Figure 4-6 shows a sample declaration of an action 

operator, grounded processes and events respectively. 

The Hybrid Approach 

Exploiting the relationship and building on the 

synthesis of MPC and AI planning techniques to solve 

problems involving both discrete and continuous state 

variables lies at the heart of this research work. The 

hybrid approach uses an A
*
 search algorithm technique 

for node exploration. The point within search space 

where search frontiers intersect or branch is referred to 

as the Node. State information and transitions are also 

stored in a node. The current node is expanded by 

comparing the preconditions of each operator with the 

proposition and numeric fluent; if it is satisfied given 

all other constraint are fulfilled; the effect of the 

operator is applied at the node. The declared numeric 

resource and constraints within the model are computed 

and updated at selected nodes during node exploration. 

Applicable operators are chosen and applied, in a 

receding horizon, to each state until the goal condition 

is satisfied or the expanded set of nodes becomes 

empty. Some essential definitions in the design and 

implementation of the hybrid algorithm are explained 

in the next section. 

Preliminary Definitions 

Definition 1 (State) 

Assuming a Close World Assumption (CWA) on S, a 

state S gives a description, at any given snapshot of time, 
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the true situation of some world. Given that N is an 

assignment for the numeric variable to values and P are 

the set of atomic propositions. S is a pair 〈P,N〉. 

Definition 2 (Initial State) 

Given that N is an assignment of values to numeric 

variables and P is the set of atomic propositions that are true 

at the start of a planning problem. Initial State I = 〈P,N〉. 

Definition 3 (Goal Condition) 

Given that N is a set of numeric variables and P is 

a set of atomic propositions then, a Goal Condition G 

= 〈P,N〉. For a goal G to be satisfied in some state S 

values v satisfies some numeric constraints vL < v < 

vU specified by G. Thus, S satisfies the goal condition 

if S satisfies every proposition in P and ∃v = c ∈ N: 

VL < c < VU for all v in N. Here c is a constant 

representing a value between the lower and upper 

bound of v. 

Definition 4 (Domain Model) 

The Domain Model (DM), consist of: 
 

• Set of Functions {n1,...,nk} ∈ N 

• Set of Propositions {p1,..., pk} ∈ P 

• Set of numeric Resources {r1,..., rk} ∈ R and 

• Set of Actions {a1,...,ak} ∈ A 

• Set of Events {e1,...,ek} ∈ E 

• Set of Processes {c1,...,ck} ∈ C 
 

Definition 5 (Action) 

An instantaneous action is characterised by sets of 

preconditions that must be true prior to the execution 

of the action and effects that becomes true after the 

execution of the action. The logical basis for actions 

is modelled using a collection of propositions, with 

vectors of numeric variables. Both P and v are 

manipulated and referred to by actions. The 

executability of an action is determined by its 

preconditions. 

For example, the action switch to green has the 

precondition that the light is red with an effect that the 

light is green. A durative action A has three sets of 

preconditions: The condition that must hold at start 

pre⇐A, at the end pre⇒A and throughout the execution of 

the action pre⇔A. Effect could be durative or 

instantaneous, instantaneous effects are bound to the 

start e f f +
⇐ and e f f −

⇐  or end of the action e f f +
⇒  and e f 

f −
⇒  where positive and negative denote the propositions 

added and deleted at the start and end of A respectively. 

Also numeric effect e f nf⇐  and e f nf⇒  are updated at the 

start and end respectively. An example of action 

declaration is shown in Fig. 4. 

Definition 6 (Processes) 

A process p comprises of a precondition, C and a set 

of continuous effects, E, such that, if S |= C then the 

continuous effects are active at state S. 

For instance, the inflow process of vehicles V to a road 

R through a junction J. This process has a precondition that 

a given phase at junction J is active that is ‘Green’ and that 

the road use level of R less than the road-capacity-level; and 

the constraint that J is a connected inflow junction to road 

R. Once R is filled or blocked, an event is triggered that 

stops the process. The effect of Inflow process increases R 

traffic level at the flow rate of V as shown in Fig. 5. The 

derivative of traffic level in R is the summation the active 

inflow processes rates of the at any given time. 

Definition 7 (Event) 

The event e is activated in a state S such that S |= C, 

where C is an assertion expressing what triggers the 

event e. Given that E describes the effects of C on event 

e; then event e is defined as a state transition of (C, E). 

The application of effect E on state S produce a new state 

s′ such that s′ -| E. For example, an event ‘upstreamFilled’ 

to be triggered, it requires the estimated number of 

vehicles on such road to be equal or greater that the road 

capacity limit of such road as shown in Fig. 6. 

Definition 8 (Operators) 

Given a set of proposition P(s) and numeric fluents 

N(s), a numeric operator δ = 〈pre(δ);e f f (δ)〉 given that: 
 

• The condition for applicability pre(δ) of an operator 

δ consist of: 

• A proposition or set of propositions prepropδ 

define over P 

• A numeric or set of numeric comparisons 

prenumδ in the form of (exp{>, ≥,<,≤, =}exp′). 

• The effect of an operator e f f (δ) consists of: 

• An additional proposition e f f
+
(δ) produced and 

A deleted proposition e f f
−
(δ) removed after the 

operator execution. 

• Set of numeric operations e f ( )numf δ+  in the 

form (n, op, exp) 
 

In this definition, the arithmetic expression exp and 

exp′ involves variables from N. These are recursively 

defined among expressions in the form of arithmetical 

combination of {+, *, −,/}, numeric fluent and constants. 

Definition 9 (Operators Applicability) 

An operator δ is applicable in a state S iff, s is 

satisfied the operators propositional and numeric 

preconditions. That is: 
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• preprop(δ) ⊆ P(s) and 

• prenum(δ) must be valid(i.e., equal or in range of 

values) in all n where n ∈ N(s) 

 

Definition 10 (Plan) 

A plan comprises of action sequences and initiated 

processes; that could lead the initial state into a state 

satisfying the goal conditions, taken all the stipulated 

constraints into consideration. Given a continuous 

planning problem Y = {I, G, DM} where, I is the initial 

state, G is a set of goal conditions and DM comprises of 

a set of operators. A solution for Ψ is a total ordered set 

of operators from δ, such that the ordered sequence of 

execution of these operators transforms I into a state 

where G is satisfied. 

UTCPLAN: Top Level Algorithm 

The planner input five components. These are: (a) 

The initial state (b) the goal condition (c) the domain 

model (d) the horizon prediction value and (e) the 

control horizon. The initial state “S” comprises of a set 

of propositions “P” and a sequence of the numerical 

variable “R”. The Goal condition “G” is satisfied in a 

state S, if S satisfies every proposition in P and ∃v = c ∈ 

N: VL < c < VU for all v in N. Assuming c is a constant 

representing a value between the upper and lower bound 

of v. A detail component of the domain model is defined 

in the preliminary definitions. 

The fixed horizon prediction value Np represents the 

period for which the MPC component will generate a 

new future prediction values to guide the search space. 

The control horizon value Nc represents the number of 

nodes frontiers that are searched at every control horizon 

window after an MPC prediction episodes. Np and Nc are 

tailored to the domain and the nature of the problem that 

the planner is intended to solve. 

A node is initialised in Lines 1-2. There are four 

components that constitute a node in the search space: 

(a) the set of propositions “P” component of “S” (b) the 

numerical variable components in the “R” component of 

“S” (c) the variable “I” that updates and saves the 

dynamic prediction values over successive horizons; “I” 

is initially set to null (d) a partial plan. 

The search space is initialised within the outer loop 

of Line 4. Line 5 utilises the MPC numeric optimisation 

and prediction process to generate numeric control 

variables. The output of Line 5 could be inferred as a set 

of predicted actions whose execution fulfills the 

stipulated objective function and guides the search space 

towards satisfying the goal condition. 

Algorithm 1 UTCPLAN: Top Level Algorithm 

Input: 
DM: Domain Model 
Np: prediction horizon 
Nc: control horizon 
(P,R): initial state 
G: Goal Condition 
Output: Plan. 
1: S := [ ]; ℑ: = null; ℘:= [R] 
2: n := (P,℘, S, ℑ) 
3: repeat 
4: Q := {n}; x: = 1 
5: ℑ := UtiliseMPC(n, Nc, Np, ℑ, DM) 
6: while x ≤ Nc and Q ≠ {} and noSolutionFound(Q) do 
7: n := retrieveBest(Q, ℑ) 
8: N := Expand(n) 
9: Q := moveTo(N, Q) 
10: x := x +1 
11: end while 
12: if Q ≠ {} and noSolutionFound(Q) then 
13: n: = retrieveBest(Q, ℑ) 
14: end if 
15: until SolutionFound(Q)orQ = {} 
 

The inner loop of Line 6 11 expands the search 
frontiers over a fixed horizon window Nc. The selection 
of the best node is informed by the output of 

UtiliseMPC procedure. The closest node to the given 
trajectory specified by the partial plan in the current ℑ 
is picked as the best node “n” and removed from “Q”. 
The selected node “n” is expanded in Line 8 and 
returns a set of successor node “N”. Line 9 adds “N” to 
the open set as detailed in Algorithm 5.3. There is 

currently no built-in specific heuristics for pruning the 
search space in UTCPLAN. 

Given that the goal condition is not met upon the exit 
of the inner loop of Line 6-11; the best node is retrieve 
from Q informed by ℑ. The best node “n” becomes the 
start node for a new search for the next control horizon 
window. The selection of a single node might create 
incompleteness in the algorithm, but it restricts the 
search and utilise the guidance of the MPC approach to 
select the best node for pruning the search space. The 
search and optimisation procedure is repeated from the 
current node in Line 15 until the goal conditions are 
satisfied, or the open node set becomes empty. 

Nodes Expansion 

The current node n is expanded by selecting the 
appropriate operator that satisfies the condition at the 
node. The effect of the operator changes the state at a 
node from ‘n’ into a new state ‘N’ as explained in 
Algorithm 5.3. The procedure for the application of an 
action, initiation of a process and the triggering of an 
event is explained in Algorithm ?? respectively. Certain 
assumptions are made with regards to the event 
semantics. For instance, there is no different in the 
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orders occurrence of simultaneous events. The detailed 
procedure for the application of an operator, grounded 
process and event is explained in Jimoh (2015). 

Action Application 

Definition 11 (Apply Action). Given an action a and 
a state s, if a is applicable in s, then a new state s′ is 
produces and denoted by s[a] as shown in Algorithm 3. 

Algorithm 2 Expand(n) Algorithm 

Input: n 

Output: N 

 N := {} 

 E := {e′|e′ represent instantiation of some event e ∈ 

DM and n makes e′:pre true}; 

 n := apply all events in E chronologically to n 

 O: = {o′|o′ represent instantiation of some operator o 

∈ DM and n make o′:pre true} 

 for all o′ ∈ O do 

 n′: = apply o′ to n 

 N := N [{(n′.I, n′.ℑ, [o′]++n′.S)} 

 end for 

 P := {p′|p′ is an instantiation of some process p ∈ DM 

and n make p′:pre true} 

 for all p ∈ P do 

 n := apply p for a unit of time to n 

 end for 

 N := N∪{n} 
 

A action consist of logical or numeric 

preconditions. The effect of an action operator could 

be logical propositions; numeric updates of the current 

state after the execution of the action or both. An 

example is given in Fig. 4. The action ‘switchGreen’ 

has a logical precondition that ‘roadA’ and ‘roadB’ 

must be connected by at the same junction. The two 

roads are also controlled by the same signal phase. 

The action in Fig. 4 also indicate numeric 

preconditions of an interrupt level seven for the linked 

roads. This means that the connect roads must not be a 

congested road. The action effect alters the signal 

phase at this junction, which consequently initiates a 

flow process at the connected junction. 
 
Algorithm 3 Action Application 

Input: s,a 

Output: s′. 
1: s′ is initialised to be s; 

2: All propositions in e f f
+
 a that are not already in s are 

added to P(s) 

3: All proposition in e f f
− 

a are deleted from P(s) 

4: All numeric fluent f where (f, op, exp) ∈ e f fnum(δ) are 

updated 

5: All state s ∈ S obtained by a non applicable operator 

is undefined and does not satisfy any condition. 

Simulate Process 

Definition 12 (Simulate Process) 

Given a ground process c and a state s, such that c is 

applicable in s, the application of c in s, denoted by s[c
+
] 

to simulate continuous numeric changes in s for a period 

of time is as shown in Algorithm 4. 

Whenever processes are initiated within a given node, 

it will run for a period of time at a single discretisation of 

a step count. For instance, time t becomes t =1, 2, 3...tn 

given that tn is the duration of the process simulation. 

Processes are initiated as an effect of an action or event 

trigger. The preconditions of process simulation are 

logical or numeric inequalities, but its effects produces a 

numeric update of the current state at the node. For 

instance, the effect of an action “switchGreen” in Fig. 4 

could initiate a vehicles flow process at the flow rate of 

traffic on the connected roads as depicted by Fig. 5. 

Once a process is initiated at a node, it will continuously 

run for the specified duration of time, except if it is 

halted by an event. The current numeric status of the 

process is updated at the node upon the completion or 

halting of the process. 

 

Algorithm 4 Simulate Process 

Input: s, c 

Output: s′. 
1: initialise process duration time count = dur 

2: repeat 

3:   All numeric fluent f such that (f, op, exp) ∈ e f 

fnum(c) is updated and modified according to the 

defined op 

 and exp involved 

4:   Time #t and other primitive numeric variables are 

updated 

5: until event e is triggered or dur exceeded. 

 

Event Application 

Definition 13 (Apply Event) 

Given a ground event e and a state s, such that e is 

applicable in s, represented by s[e], the application of e 

in s lead to a new state s′ as shown in Algorithm 5. 

Event application share some similarities with an 

action operator, except that, the unique difference is the 

fact that an action may occur if its preconditions hold, an 

event, on the other hand, must occur if its precondition 

hold. An event in the domain could be internally 

triggered from within a process, or outside the control of 

a process. Internally triggered event are interrupts that 

are activated while a process is running, it preconditions 

are usually numeric inequalities and their effect are also 

numeric assignments. These numeric assignments are set 

as preconditions for some actions in the domain. This 

means that the interrupts tell the planner to execute an 
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emphaction that could change the emphstate of the 

system or flag a display. 

An example of event is to manage the constraint of 

traffic spill-over at junctions during rush hour as shown 

in Fig. 6. It has a precondition to check the capacity of 

the connected road during the process of traffic flow at a 

junction. The effect of this event stops the currently 

running process from transferring queue to the upstream 

road. This is achieved by an interrupt trigger that halts 

the process and pushes the current state of the node to 

the priority queue node. 

Externally triggered event are a result of interaction 

between domain objects. An example of such external 

event is the activation of connectors that link two 

separate roads. Once the condition for the connector is 

satisfied, the queue from the previous road flows to the 

connected routes. This is outside the control of a 

junction, but the ripple effect of such event (traffic flow) 

affects the queues at downstream of the junctions. The 

different between this connecting event and an action is 

that once the event precondition is satisfied, it has to be 

activated, computed and updated to the current state, 

however, an action might only be selected if it necessary 

get the state closer to the goal state. 

 

Algorithm 5 Apply Event 

Input: s,e 

Output: s′. 
1: s′is initialised to be s; 

2: All proposition in e f f
−
e are removed from P(s) 

3: All propositions in e f f
+
e that are not already in s are 

added to P(s) 

4: All numeric fluent f where (f, op, exp) ∈ e f fnum(δ) is 

updated 

5: Time #t and other primitive numeric variables are 

updated 

 

The UtiliseMPC(n, DM, Nc, Np, ℑ) Procedure 

Numeric fluents R are stored in the node; the stored 

numeric are utilised in generating a dynamic prediction 

table (look ahead table) for a duration of control horizon 

Np window within the UtiliseMPC procedure. A numeric 

optimisation procedure takes into consideration all 

constraints in the domain DM and the generated values 

from the prediction table to compute the best control 

values ℑ within the horizon window Nc, over a period of 

Np. The computed value ℑ is the updated at the node n 

and use as a guide for the next set of alterations. 

The numeric optimisation procedure is implemented 

as Satisfiability (SAT) problem solver in AI planning, 

formerly used in Shin and Davis (2005); Audemard et al. 

(2002). Such that, the continuous numeric variables with 

their associated constraints are converted to a linear 

programming problem within the search node. The best 

combination of input satisfying the stipulated numeric 

constraint is returned and updated at the node. Given a 

domain of problem for instance, assume Nc is set at 300 

node count and Np is set at 30 sec. At every 300 node 

counts, the planner retrieves past numeric fluents, sent it 

to the UtiliseMPC procedure and update the result at the 

node. This means that the past numeric fluents are 

utilised during the generation of a new set of predicted 

numeric values over a prediction horizon period of 30 

sec. The predicted new generated set of values serve as 

an input to the numeric optimiser; to obtain the best 

option of numeric combination that would be used 

during the next successive search frontiers. 

Implementation Assumptions 

It is assumed that the continuous approximation of 
numeric counts(queue length) is maintained within the 
network. This is obtained at different level of 
abstractions based on the following: Route (R) explored 
by the planner during search space; queue (Q) denoting 
the numeric value of each road object at any instance of 
time; Source (Sc) which represents the entering road to 
the networks and sink (Si) which represents the exit 
roads. Vehicles originate from the source, passes through 
roads, connectors and junctions, then end up in sink. 

A road could be active or inactive at every time 

instance. Vehicles are assumed to move on an active road at 

the flow rate of unit value per seconds of time veh/sec. We 

assumed the flow rate of the roads were known and fixed at 

the initial state. The flowrate of inactive road is assume to 

be zero; due to no movement of vehicles on such road. 

Each of the junctions has two phase (1 and 2). Traffic 

can move from north to south or from east to west at 

junctions. Two conflicting roads cannot be activated at the 

same time at a junction. The domain model, incorporate 

declarative descriptions of grounded event that monitors 

the movement of traffic within linking roads. The planner 

selects the appropriate green phase duration to controls the 

traffic of roads connected at a junction. 

All dynamic inputs, such as turning rates are assumed 

constant; with an exception of the state variables (xz(t)) and 

controlled variables (gj,i). The flow rate of individual 

junctions is also assumed to be constant. The rate of flow of 

vehicles is represented as a unit value per seconds of time 

(veh/sec). We assume we cannot control drivers behaviour; 

thus, we only control the green split (the controlled 

variable). We also assumed that the traffic flow dynamics 

are fully defined and included in the domain file. 

We consider a linearised version of the quadratic 

problem that simplifies real-time calculations. Linearised 

methods often led to suboptimal solutions and could not 

consider the limits of some constraints exhaustively. 

Therefore, exploring more complex optimisation 

solution that can scale better in preferred for future 

purpose. The main objective of this implementation is 

not to scale the output metrics, but to investigate the 
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feasibility of using our UTCPLAN approach in this 

domain of interest (UTC). 

Evaluation 

The main evaluation criterion is to show that 

UTCPLAN can indeed accept inputs expressive domain 

descriptions within urban traffic domain and output 

solution plans containing continuous processes, events and 

actions through the integration of MPC with AI search - 

based planning techniques. This is measured by creating 

an expressive description of a UTC domain with traffic 

flow problems of various degree to test if UTCPLAN can 

generate execution plans that can control and manage 

traffic situation base on specified traffic goals. 

The experimental traffic network (domain) is designed 

to have more than one connected junctions in other to test 

the centralise reasoning of UTCPLAN to manage upstream 

and downstream of traffic from connected road to the 

junction. This also allows us to test the feasibility of 

junction to junction traffic relationship within the network. 

Each junction in the model is designed to have more than 

one signal phase, for the purpose of evaluating the 

effectiveness of UTCPLAN at splitting the green times of 

the signal phases within a junction. There are several 

connected roads without a signaled junction within the 

network model; for the purpose of evaluating the 

effectiveness of UTCPLAN at reasoning with the 

dynamics of traffic flow in those linked roads not 

directly controlled by a signaled junction.  

The effectiveness of the embedded MPC approach in 

UTCPLAN algorithm is tested with sample traffic domains; 

to evaluate the performance of UTCPLAN at controlling 

the signaled junctions while optimising the flow of traffic 

within the given network, during unexpected changes to the 

traffic situation. To achieve this, two signaled situation were 

created for experimental purpose: 

Fixed 

Signal duration are fixed for every junction within 
the network. The planner cannot alter the signal duration 

during search space. The planner reasons with the 
domain and problem information to generate solution 
plans using the fix signal value at every junction. 

Controlled 

Signal control is entirely at the discretion of the 

planner. The signal durations are set at initial state; 

however, the planner alters the signal duration whenever 

it anticipates a better control performance during search 

space; utilising the embedded MPC approach. 

The speed of UTCPLAN was assessed with different 

volume of traffic with bottlenecks to investigation the 

plan generation time during light and heavy traffic 

situation. Numerous traffic flows were generated by 

altering the values of queuing distance on roads to create 

a heavier flow of traffic in the test suite. The quality of 

plan generated by UTCPLAN was evaluated for both 

controlled and fixed signal experiment. This is achieved 

by computing the total number of executable actions and 

initiated processes within the output plans, for both fixed 

and controlled signal. 

Evaluation Criteria 

To investigate the applicability and effectiveness of 
UTCPLAN, we use three evaluation criteria for 
comparison: Total time taken to generate a plan; the 
average number of processes initiated and the average 
number of actions sequence in the output plan. Makespan is 
not considered in this criteria because this implementation 
does not include a scheduler for makespan optimisation in 
the plan. Thus, using makespan as a major metric would not 
be suitable as criteria for evaluation of the planner. 

A variation of UTCPLAN was created for the 
purpose of comparison and experimental analysis. This 
variation creates a planner version without integrating 
MPC approach. This version produces a Fixed Signal 
approach; it reasons with numerics within the domain 
similar to a classical numeric planner Hoffmann (2003). 
The Fixed Signal and the Controlled Signal are tested with 
the same formulation of domain and problems. Several 
traffic problems of increasing complexities were 
abstracted and modelled within the UTC domain. The 
modelled traffic problems are suitable for UTCPLAN 
evaluation because it highlights the advantages of the 
controlled signal (with MPC integration) over the fixed 
signal approach. The time discretisation of t = 1.0, is used 
in the two test cases (Fixed and Controlled); and the entire 
task in the UTC domain. The time taken to solve problems 
in our experiment is shown in Fig. 7. The performance of 
the planner (controlled signal) is compared with fixed 
signal value. The results of the fixed time duration 
compared with the controlled approach are reported in 
Table 1. Given that x2 is the new average value and x1 is 
the previous average value, the percentage change in value 
y% is measured by Equation 10 and recorded in Table 1: 
 

( ) 2 1

2

100
% *

1

x x
y

x

−
=  (10) 

 

This helps to visually illustrate the trend in plan 

quality of both the fixed and the controlled experiment. 

A decreasing (↓) trend in the value of y implies a good 

quality plan while a continuous increase (↑) in the value 

of y means that the planner output is affected by the 

complexity of the problem in the domain. The more 

complex the problem becomes the more the challenge to 

generate quality plan at a reasonable time. Moreover, 

when y is zero, it means the output plan is steady and 

stable despite an increase in problem complexity. 



Jimoh Falilat Olaitan et al. / Journal of Computer Science 2017, 13 (8): 257.274 

DOI: 10.3844/jcssp.2017.257.274 

 

269 

 
 
Fig. 7. The run-times for both Controlled (left) and Fixed (right) Signal. The y-axis indicate the time taken to output a complete plan 

(run-time) in microseconds, the queue length size is represented by the x-axis. An increasing queue length signifies a more 

congested network; consequently, an increasing problem complexity. 

 
Table 1. Planner result showing the percentage increase in number of vehicles in the network and the corresponding percentage 

changes(effect) in the plan metrics. Fixed duration means the duration of the green split is fixed at the initial state and would 

be the same throughout the planning time. Controlled means that the duration is fixed at the initial state, but subject to 

changes during search space whenever the planner anticipate a better optimised green time than the fixed value 

 Increase in Change in Avg. planning time (%) Change in Avg. No. of processes (%) Change in Avg. No. of actions (%) 

QueueLenght Queue ---------------------------------------- ------------------------------------------ --------------------------------------- 

Variation Lenght(%) Fixed Controlled Fixed Controlled Fixed Controlled 

5 ↑ 100 ↑ 100 ↑ 100 ↑ 100 ↑ 100 ↑ 100 ↑ 100 

20 ↑ 75 ↑ 31.3 ↑ 56.5 ↑ 35.0 ↑ 45.8 ↑ 50 ↑ 58.3 

40 ↑ 50 ↑ 61.2 ↑ 22.5 ↑ 41.2 0.0 ↑ 50 ↑ 42.9 

80 ↑ 50 ↑ 48.1 ↓ 13.2 ↑ 45.2 0.0 ↑ 50 0.0 

60 ↑ 50 ↑ 34.5 ↑ 3.9 ↑ 25.3 0.0 ↑ 34.4 0.0 

200 ↑ 20 ↑ 42.1 ↑ 8.7 ↑ 29.7 ↑ 4.0 ↑ 29.1 0.0 

300 ↑ 33.3 ↑ 28.5 ↓ 5.7 ↑ 22.9 0.0 ↑ 22.5 0.0 

 

Test Environment 

The UTCPLAN algorithm is implemented in 

Netbeans Java 8.0 which involves the creation of a 

continuous planner with an embedded MPC approach. 

The domain and problem representation (traffic 

description) are also developed in Java to facilitate easy 

data transfer between planner and network information 

description. The experiment was run on Ubuntu 15.04, 

Intel Core i7 on a 16GB RAM at 2.20GHz. 

Result 

The plan contains the sequence of action operators 

needed to optimise traffic flow within an urban traffic 

network until the goal condition is satisfied. Figure 7 

shows an excerpt of a sample plan generated by 

UTCPLAN for a controller to solve a UTC control 

problem instance. 

Empirical Analysis 

A output plan is the sequence of steps needed to get 

to a goal condition from an initial problem situation. The 

total length of a plan for a given problem varies from 

planner to planner. The shorter the length of the 

generated plan, the better the quality of the plan. The 

lesser the number of actions and processes needed to 

achieve a goal condition the better the quality of the plan 

for such problem domain. 

The average total time taken to generate a plan is a 

metric that shows the efficacy and speed of the planner. 

The total time depends majorly on the planner algorithm. 

It is also dependent on some other factors such as the 

language used to implement the planner and the 

hardware configuration of the system that the planner 

resides on. The faster it is to achieve the goal condition 

the lesser the total time to generate a plan and vice versa. 

The total time taken to generate a plan is an essential 
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criterion for the evaluation of planners in AI planning. A 

planner is effective in a domain of problem if the total 

time to generate a plan for problems in that domain 

remains steady and stable. However, if the total time to 

produce a solution in a domain of problem is 

astronomically increasing with an increase in the 

complexity of the problem, it means the planner might get 

stuck during certain problem situation in such domain. 

Table 1 presents the percentage rate of increase in 

queues within the network and the effect of those 

percentage increase on the average total time as illustrated 

in Fig. 7. It is observed that the average total time required 

to generate a plan varies with a variation in queuing 

distance and the green split values. The percentage change 

in total time increases with an increase in queue length at 

fixed signal. However, the percentage change in the total 

time of controlled signal is remarkable at a low increase 

rate with increase in queue length. 

The trend in the percentage change in average 

number of processes initiated by generated plans is also 

shown in Table1. The percentage change in the average 

number of processes increases with increase in queue 

length at fixed signal. However, the percentage change 

in the average number of processes is reduced to zero 

percent despite an increase in queue length when the 

signal is controlled by UTCPLAN. It increases a little 

when the length of the queue reaches close to 200 m but 

later drop back to zero percent despite a further increase 

in queue length. The total number of processes 

initiated by the planner to achieve the goal condition 

increases with an increase in the congestion rate 

whenever the signal is fixed as shown in Fig. 8. 

However, the changes are minimum and often 

becomes steady despite the increasing queues in the 

network when the green split is controlled by the 

UTCPLAN approach within the traffic network. 

Similarly, Table 1 shows the trend in percentage 

change in the average number of action operator within 

the plans. This increases with an increase in queue length 

at fixed signal. However, the percentage change in the 

average number of action operator is reduced to zero 

percent despite an increase in queue length when the 

signal is controlled by UTCPLAN. The total number of 

actions generated by the planner to achieve the goal 

condition increases with an increase in the traffic 

congestion rate whenever the signal is fixed. However, 

the changes are also minimum and often becomes steady 

despite the increasing queues in the network when the 

green split is controlled by UTCPLAN approach within 

the traffic network as illustrated in Fig. 9. 

Discussion 

The percentage change in output value gives a visual 

illustration of the trend in plan quality of both the fixed 

and the controlled experiment. A decreasing (↓) trend in 

the output value implies a good quality plan while a 

continuous increase (↑) in output value means that the 

planner output is affected by the complexity of the 

problem in the domain. The more the complexity of the 

problem, the higher the challenge to generate quality 

plan at a reasonable time. Moreover, when the 

percentage change in output value is zero, it means the 

output plan is steady and stable despite an increase in 

problem complexity as illustrated by Fig. 7-9. 

Stability in plan metrics can not be achieved by a 

planner with fixed duration. It can only be achieved by a 

planner that can establish a unique approach to numeric 

fluents during search space. The stability in the 

controlled output plan metric is achieved through the 

novel integration of MPC approach with AI planning.  

 

 
 
Fig. 8. Average number of processes initiated by UTCPLAN plans with fixed and controlled traffic signal. The y-axis shows the 

average number of processes, the x-axis represents the size of the queue length 
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Fig. 9. Average Number of Action steps in UTCPLAN Plans with Fixed and Controlled Traffic Signal. The y-axis shows the 

Average Number of Actions, the x-axis represents the size of the queue length 

 

This implies that the time to generate a valid plan, as well 

as the quality of plan generated, becomes stable at some 

point irrespective of the increase in complexity of the 

problem domain. For instance, the result shows that a 

controlled approach is required to optimise any traffic 

situation. The effectiveness of UTCPLAN approach at 

tracking and predicting numeric changes, while evaluating 

the effect of those changes during search space, helps to 

anticipate increasing or decreasing queue trends within the 

network. The controlled green time is always suited to the 

changes in the network. This helps to keep the network in 

a stable state despite increasing congestion. 

The result indicates a favourable output in both signal 

test cases when planning with tasks of less complexities. 

It is inferred from the result that the fixed and controlled 

signal approach produce excellent control performance 

during a lesser traffic situation. However, a vast output 

difference is observed between the two instances when 

planning with tasks of higher complexities. It is inferred 

from the result that the run-time of controlled signal 

increases initially, then become steady despite an increase 

in traffic congestion and bottleneck. While the run-time of 

the fixed signal gets worse with increasing traffic 

congestions and bottleneck as shown in Fig. 7 (right side), 

because large traffic demand generates huge search space 

and, therefore, the solution requires more computational 

time especially at lower fix duration. 

The total number of actions sequence and initiated 

simulation in the plan generated by the fixed signal is 

45% above the controlled signal plan. Thus, the 

controlled plan is has a lesser plan length in over 80% of 

the tasks in the test suite compared with the fixed 

generated plan. This evidence confirms that UTCPLAN 

generates a more quality plans. Another benefit of the 

controlled instance is the ability to reach the goal 

condition in lesser time for most of the problem 

instances, though the domain courage is the same for 

both configurations (both test instances solved all the 

modelled problems in the domain). 

The creation of a rich declarative representation of 

the UTC model facilitates reasoning with logical 

constants, variables and constraints within the model; but 

a classical MPC formulation might not take logical 

formalities into consideration. However, the MPC 

mathematical formulation and computation of UTC 

numerics within the model, facilitate dynamic control of 

traffic signal and vehicle routing; this might not be 

effectively achieved by classical AI planning search 

mechanism. Integrating and utilising the two approaches 

create an effective control of continuous numerics 

combined with the logical component within a model. 

Scaling Difficulties 

UTCPLAN currently, does not have a built-in 

specific heuristics for pruning the search space. 

Integrating advanced planning solvers into the search 

pattern of this implementation would boost the speed of 

planner. The implementation made use of a simple 

classical numeric solver; the use of a state-of-the-art 

commercial solver would enhance the robustness and 

scalability of UTCPLAN to deal with a larger network of 

constraints in future implementation. 

Conclusion 

We introduce UTCPLAN, a planning system that 

embeds model predictive approach into an AI planning 

search paradigm. UTCPLAN supports the analysis of 

domain descriptions containing continuously changing 

processes, events and actions. Experimental evaluation 

shows that our novel approach can control traffic and 

reduce congestion when tested on a sample road 
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network. The application to Urban Traffic domain is 

utilised to validate the practicability of this novel hybrid 

integration on a continuous domain with logical 

preferences. The result shows that UTCPLAN can 

reason with continuous processes in the domain and has 

the potential to generate control and execution plans and 

schedules that will keep such domain in a desirable state. 
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