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Abstract: Artificial Neural Networks (ANN) consists of some components, 

such as architecture and learning algorithm. These components have a 

significant effect on the performance of the ANN, but finding good 

parameters is a difficult task to achieve. An important requirement for this 

task is to ensure the reduction of error when inputs and/or hidden neurons 

are added. In practice, it is assumed that this requirement is always true, but 

usually it is false. In this paper, we propose a new algorithm that ensures 

error decrease when input variables and/or hidden neurons are added to the 

neural network. The behavior of two traditional algorithms and the 

proposed algorithm in the forecast of Airline time series were compared. 

The empirical results indicate that the proposed algorithm allows a steady 

decrease of fit error in all cases, where de most important and differentiable 

feature is the fact that reach values close to zero, which is not true for the 

other algorithms. Therefore, it can be used as a suitable alternative 

algorithm, especially when it needs a good fit. 

 

Keywords: Artificial Neural Networks (ANN), Time Series Forecasting, 

Learning Algorithms, Error Reduction 

 

Introduction  

Time series prediction with neural networks has 

been an accepted practice in the literature by its 

capabilities of generalization and fitting. However, 

alarge number of factors must be determined in the 

process of building neural network model which often 

leads to inconsistent results (Zhang et al., 1998). 

Fitting capacity of a neural network is affected by the 

configuration used, especially in relation of hidden 

neurons and input variables numbers (Crone and 

Korentzes, 2009; Murata et al., 1994); when the 

number of parameters model increases, it favors the 

network learning and therefore the fitting is best. In 

theory, an iterative process of adding parameters 

(inputs and hidden neurons) should lead to systematic 

reductions in the fit error. An appropriate process for 

estimating the parameters of a neural network is the 

starting point for determining the model. Hornik et al. 

(1989), have shown that artificial neural networks 

multilayer perceptron are universal approximators of 

functions, but it is not known how one may estimate 

the parameters of the neural network in such a way 

that error decreases. It seems always possible for the 

scientific community to obtain a model that reaches 

the desired degree of accuracy. 

It is known that one of the reasons for the poor 

performance of a neural network is related to the 

strengths and weaknesses of the training algorithm used, 

i.e., their ability to avoid local minima in fitting function 

and ease of calibration parameters. This has motivated 

the approach of many new algorithms; they do a search 

of the optimum computationally faster and allow finding 

optimal quality better than other methods. However, 

these algorithms do not take into account the practical 

implications of those networks are universal 

approximators of functions and error reduction when 

parameters are increased. This article presents a novel 

algorithm that allows the systematic reduction of error as 

they are added to the neural network parameters. 
The originality, significance and relevance of this 

work is based on the following: 

 

• It evaluates the theoretical modeling of neural 

networks, such as the error reduction in addictive 

process parameters 

• It develops an algorithm to fulfill the expected 

theoretical behavior 
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Problematic and Proposed Methodology 

Architecture of the Multilayer Perceptron - MLP 

This type of neural network architecture consists of: 

 

• An input layer, consisting of the P lags of the time 

serie yt 

• A hidden layer with H neurons. The transfer 

function g(⋅) used in the connections βh is logistics 

• An output layer with one neuron 

 

The present value of a time series is yt a nonlinear 

function of its past values yt-1,…, yt-p, which is defined as 

Equation 1: 
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where, et represent the errors (independent and 

identically distributed random variables - i.i.d). 

The optimization of the model parameters depends on 

the error between the desired and predicted by the network 

during training and is associated with the configuration of 

the neural network; the selection of the optimal number of 

variables of the model is directly related to the training 

process used. As discussed Qi and Zhang (2001), there is 

a close relationship between model performance and the 

selection of the values of P and H. 

Estimation of the Parameters of the MLP as an 

Optimization Problem 

With the design of an artificial neural network which 

is to be achieved for certain values lagged of the variable 

explained, it is capable of approximating the current 

value of the time series with a desired accuracy     

(Zhang et al., 1998). As has been established by    

Hornik et al. (1989): “…standard multilayer feed 

forward networks with as few as one hidden layer using 

arbitrary squashing functions are capable of 

approximating any Borel measurable function from one 

finite dimensional space to another to any desired 

degree of accuracy, provided many sufficiently hidden 

units are available…”, implies that a constructive 

process of adding hidden neurons(variables) will allow 

a sequential reduction of the fit error of the model of 

the series to a desired level, in other words, a model 

with more hidden neurons should have better fit of the 

training data than one with less hidden neurons. 

However, the study does not indicate how to estimate 

the parameters of the neural network. 

Following the guides indicated by Hornik et al. 

(1989), the error of fitting the model must decrease, or at 

least stay the same, when adding hidden neurons or 

input. The reasoning is as follows: 

• Be a MLP with M hidden neurons and the first P-

series lags MLP(P,H) 

• The parameters (P,H) were estimated minimized 

any error function. The error is denoted by E(P,H) 

• Be a MLP with an additional hidden neuron, i.e., 

MLP(P,H +1). It holds that E(P,H) >= E(P,H +1),by 

contradiction: Suppose that E(P,H) < E(P,H +1), the 

MLP(P,H +1) model can be obtained MLP(P,H) by 

adding a hidden neuron, to retain the weights of 

parameters of MLP(P,H) model and the connection 

H +1 becomes zero, therefore has to be E(P,H) = 

E(P,H +1) and consequently, the error must remain 

the same or be reduced by optimizing the 

MLP(P,H+1) model 

• Be a MLP with one additional entry, i.e., MLP(P 

+1,H). It holds that E(P,H) > = E(P +1,H) 

 

This implies that a process of adding hidden neurons 

will allow (at least theoretically) a sequential reduction 

of the error of fitting the model to a level arbitrarily close 

to zero, in other words, a model with more hidden 

neurons should better fit the training data to a model 

with fewer hidden neurons. 

In literature, statistical error reduction adjustment to 

increase the complexity of the model is a well-known 

concept. The MLP(P,H) model is called restricted 

model, sub model or nested model regarding MLP(P,H 

+1) and MLP(P +1,H) models, which are known as 

complete models. 

In conclusion, for a multilayer perceptron and under a 

constructive scheme of hidden addiction and inputs, 

there should be a systematic reduction of the error of 

adjustment every time you add parameters to a level of 

accuracy desired setting (Sánchez and Velásquez, 2010). 

Proposed Algorithm 

From the above discussion, there are two 

requirements: 

 

• That error decreases as hidden neurons are added 

• That error decreases as entries are added 

 

Suppose we want to approximate the behavior of a 

time series by a neural network MLP. The training of the 

network can be formulated as an unconstrained 

optimization problem: 
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In practice, it requires an iterative procedure to 

solve Equation 2-3, where the weights w, the input 

number of hidden neurons P and H are calculated in 

order to minimize the fitting. It is assumed as a 

starting point a network with minimal topology and 

the optimal weights are calculated in such a model, 

subsequently added to the model parameters (increase 

inputs or hidden neurons) and weights are optimized 

resulting in a new model, this process is repeated until 

an acceptable solution is found. 

Methodology for Error Reduction when Adding 

Hidden Neurons 

A way to ensure that error decreases as neurons are 

added in the hidden layer originates from the comparison 

of restricted and full models. The equivalence of a 

restricted model and full model occurs when the weights 

of the new connections of the full model are zero, i.e., 

E(P, H) = E(P, H +1) [freeze weights]. 

After keeping the weights, the full model is 

optimized, ensuring that the error of this model will be 

less, or at least equal to, the restricted model error. 

As shown before, the process of "freezing of 

weights" (including the subsequent optimization) can be 

seen as a smart choice of the initial weights of the full 

model, given that the weights are the best initial values 

that can be obtained and also ensure, an adjustment error 

at least equal to, the constrained model. 

Algorithmically the process of adding hidden neurons 

above can be represented as Algorithm 1. 

The algorithm of neural network configuration with a 

fixed number of inputs "M" and a hidden neuron defines 

a maximum number of neurons to add "N" and one 

output. The model is optimized using a standard 

algorithm for training neural networks. Subsequently, a 

hidden neuron is added to the previous model. 

The weights of the above connections are frozen and 

new connections, generated by the additional input of the 

neuron, become zero. 
 
Algorithm1: The error reduction algorithm when added 

in the hidd en layer neurons 

1: Mod_Max ← Mod(M,N,1) 

2: P  ← M, Q  ← 1, Mod_last ← [ ] 

3: Mod_Actual  ← Optim (Mod(P,Q,1)) 

4: Do While Mod_Actual =! Mod_Max or  

    (Mod_last.error – Mod_Actual.error) < Tol  

5:     Mod_last  ← Mod_Actual 

6:     Mod_Actual ← Add_neuron(Mod_Actual, P, Q+1) 

7:     Optim(Mod_Actual) 

8: Loop 

 

The resulting model is optimized. It continues to add 

neurons and optimizing the new model until you reach 

the number of neurons initially defined or until the gain 

in the model error by adding a neuron is less than a 

specified tolerance. 

Methodology for Error Reduction by Adding Entries 

The optimization of the set of input variables is a 

more complex task than that of hidden neurons, since 

this does not necessarily imply that the entries are 

contiguous. Furthermore, when combined with the 

optimization process of hidden neurons, the size of the 

search space has an incremental complexity. 

A constructive process of adding inputs and hidden 

neurons would test and compare in each case all possible 

models, which is not an efficient process. 

To ensure that error decreases as input variables are 

added, it is necessary in order to prove that among all 

possible combinations of models, the selected model has 

the lowest error. As for the addition of hidden neurons, 

the addition of entries, a preservation process optimized 

weights of the network parameters to zero and 

maintaining the remaining connections ensure that 

increasing the configuration complete model has an error 

not as good or equal to the restricted model (model with 

less input). This is true to the extent that such tickets are 

spiked sequentially. 

 Such changes to the Algorithm1 the following 

points lie in [correspond to lines of code 2, 8-13 in 

Algorithm 2]: 

 
• The number of inputs and neurons in the model is 

variable, it is part of a configuration of an input and 
hidden neuron and has the highest levels of "M" and 
"N", respectively 

• For each neuron, inputs are added 1 to reach the 
peak "M". In each new configuration, generated 
weights are kept and the old settings and zeros are 
those of the new connections 

• The process stops when it reaches the number of 
inputs and neurons initially defined 

 
Algorithm 2: The error reduction algorithm when adding 

neurons in the hidden layer and input variables 

1: Mod_Max ← Mod(M,N,1) 

2: P  ← 1,Q  ← 1, Mod_last ← [ ] 

3: Mod_Actual  ← Optim (Mod(P,Q,1)) 

4: Q ← 0 

5: Do While Mod_Actual =! Mod_Max or  

    (Mod_last.error –Mod_Actual.error) < Tol  

6:     Mod_last  ←Mod_Actual 

7:     Mod_Actual  ← Add_neuron(Mod_Actual, P, Q+1) 

8:     Mod_Temp ← Mod_Actual 

9:     for P in 1:M do   

10: Mod_ Temp ← Add_input(Mod_ Temp, P, Q) 

11:  Optim(Mod_ Temp) 

12:    end for 

13:    P  ← 1 

14: Loop 
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Experimentation and Results 

This experiment evaluates if they are added as 

neurons in the hidden layer and inputs to the network, 

there is a reduction of the adjustment error of the 

model to the time series. For the log airline series, 

researched by Faraway and Chatfield (1998) and   

Nam and Schaefer (1995), conducted an experiment: 

 

• It considered as inputs models with lags ranging 

from 1 to 13 

• It considered models lag from one to eight neurons 

in the hidden layer 

• Each model was optimized separately, with the 

generalized delta rule algorithms, Rprop and the 

proposed algorithm 

• Conducted a procedure where each entry is added 

sequentially hidden neurons to the limit. For each 

configuration, the best model is the one with the MSE 

 

To evaluate the performance of the algorithms the 

130 possible models were built and optimized that make 

up the space of models. 

Figure 1 shows the behavior of the proposed 

algorithm in terms of parameters addition. Since Fig. 1 is 

extracted the follows: 

 

• The adjustment error is reduced as hidden neurons 

are added 

• The adjustment error is reduced as lags are added 

(entries) 

• Zero errors are achieved found 

 
Table 1. Values of comparison of proposed algorithm with delta rule and Rprop for airline series 

 Delta rule    Rprop    Proposed algorithm 

 ---------------------------------------- ---------------------------------------- ------------------------------------------------- 

Inputs H1 H5 H8 H1 H5 H8 H1 H5 H8 

Lag1 0,0677 0,0107 0,0106 0,0156 0,0106 0,0105 0,001196 0,001196 0,001196 

Lag1-2 0,0835 0,0112 0,0111 0,0160 0,0096 0,0095 0,001140 0,001058 0,001009 

Lag1-3 0,0718 0,0429 0,0189 0,0154 0,0096 0,0093 0,001123 0,000848 0,000801 

Lag1-4 0,0781 0,0725 0,0621 0,0167 0,0094 0,0085 0,001114 0,000540 0,000461 

Lag1-5 0,0864 0,0766 0,0817 0,0140 0,0087 0,0087 0,000995 0,000309 0,000239 

Lag1-6 0,0899 0,0757 0,0649 0,0165 0,0087 0,0084 0,000988 0,000253 0,000207 

Lag1-7 0,0900 0,0845 0,0681 0,0130 0,0094 0,0085 0,000981 0,000160 0,000147 

Lag1-8 0,0991 0,0964 0,0823 0,0167 0,0085 0,0079 0,000946 0,000120 0,000094 

Lag1-9 0,1037 0,0872 0,0986 0,0117 0,0073 0,0065 0,000664 0,000096 0,000087 

Lag1-10 0,0918 0,0803 0,0591 0,0121 0,0075 0,0058 0,000630 0,000073 0,000065 

Lag1-11 0,0922 0,0754 0,0673 0,0106 0,0053 0,0043 0,000365 0,000064 0,000060 

Lag1-12 0,0833 0,0661 0,0498 0,0109 0,0038 0,0032 0,000267 0,000059 0,000043 

Lag1-13 0,0849 0,0736 0,0682 0,0071 0,0040 0,0035 0,000159 0,000054 0,000023 

 

 
 

Fig. 1. Space of possible models for the Airline series 
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Fig. 2. Comparison of proposed algorithm with Delta Rule and Rprop for Airline Series 

 
Figure 2 and Table 1, contrasts the adjustment error 

values achieved, for configurations of 1, 5 and 8 neurons 

and different number of lags for the Delta Rule, Rprop 

and proposed algorithms (Igel and Husken, 2003; 

Anastasiadis et al., 2003): 

• The Delta Rule algorithm exhibits anomalous 
behavior by presenting higher error rates as the 
set of entries grows, also from the addition of the 
third lag of the error behavior is variable (growth 
and decreases) 
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• For the Rprop algorithm, no significant difference 

between using one five lags, such that different 

configurations of relevant entries and hidden 

neurons lead to similar error rates 

• Delta Rule and Rprop algorithms do not show the 

theoretical behavior, because adding parameters 

have not reduced the error 

• Models generated by the algorithm are 

competitively best in all cases, those obtained by 

the Delta Rule and Rprop algorithms, which is 

reflected by the marked decrease in the levels of 

the fit error 

 

The most important and differentiable feature to 

rescue the implementation of the proposed algorithm is 

the fact that they reach values close to zero, which is not 

true for other algorithms. 

Conclusion 

This paper developed an algorithm that allows the 

systematic reduction in fit error when parameters are 

added to the neural network. The proposed algorithm 

differs from traditional architectures by including a 

constructive strategy, with two requirements that error 

decrease as input variables are added and when hidden 

neurons are added. Both requirements are achieved by 

including the conservation of weights for the inputs 

and hidden neurons; That is, for each hidden neuron in 

the new model, the weights of the parameters of the 

previous model (model with fewer inputs) are 

conserved and the weights of the new connections are 

zeroed, prior to the optimization of the model. When 

neurons are added, the preservation with respect to the 

previous model is continued with an input. The 

optimization of each new model, part of the error 

value reached by the previous model and, therefore, 

must decrease or remain the same. 

The experimental application of algorithm proposed 

to the Airline time series presents very satisfactory 

results, since there are always gains when adding 

parameters, when compared to traditional algorithms as 

delta rule and Rprop, systematically reducing fit error. In 

addition, it is possible to reach levels near zero in error, 

which shows that it is possible to reach desired levels of 

fit error, even when the goal of error is zero; this is not 

achieved with other algorithms. This ratifies, that the 

proposed algorithm fulfills the criterion of universal 

approximation of functions. 

The originality and importance of this contribution 

lies in the following: 

 

• Other techniques that preserve the value of 

weights, in the proposed procedure, the parameter 

values are used as starting points for the weights 

of the new model prior to optimization, being an 

intelligent choice, given that such parameters are 

the best initial values that can be obtained 

• A suitable set of initial values, coupled with an 

optimization process of fit error, ensures the 

success of the optimization strategy in the current 

model, since it is part of an optimal value of error 

in question and it must decrease, or at least 

remain the same when adding hidden neurons 

• It is considered a constructive set of hidden 

neurons and inputs for the specification of neural 

network models that achieves the desired level of 

accuracy, to continue adding parameters 

• Highly satisfactory experimental results are 

obtained by always achieving reductions in the fit 

error and reaching accuracy levels close to zero in 

the error for the Airline time series 

 

Finally, the proposed algorithm presents a strength 

in the fit error, obviating the presence of the over 

fitting problem; as future work arises, i. Assess 

whether the problem arises, ii. Measure their impact, 

iii. Propose ways of addressing it and iv. Include the 

solutions in the algorithm. 
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