

© 2017 Omar Dakkak, Shahrudin Awang Nor and Suki Arif. This open access article is distributed under a Creative

Commons Attribution (CC-BY) 3.0 license.

Journal of Computer Sciences

Original Research Paper

Scheduling Jobs through Gap Filling and Optimization

Techniques in Computational Grid

Omar Dakkak, Shahrudin Awang Nor and Suki Arif

InterNetWorks Research Laboratory, School of Computing,

Universiti Utara Malaysia, 06010 UUM Sintok, Kedah, Malaysia

Article history

Received: 13-03-2016

Revised: 22-04-2017

Accepted: 17-05-2017

Corresponding Author:

Omar Dakkak

InterNetWorks Research

Laboratory, School of

Computing, Universiti Utara

Malaysia, 06010 UUM Sintok,

Kedah, Malaysia

Email: oaldakkak@gmail.com

Abstract: Due to the heterogeneity and complexity in grid computing,

classical algorithms may not be able to deal with dynamic jobs properly.

In the dynamic mode, incoming jobs reach the scheduler arbitrary.

Therefore, scheduling the jobs using simple policy alone deteriorates the

performance of the scheduler. Thus, a policy that can handle the

dynamicity efficiently is indispensable. This paper presents the Swift Gap

mechanism (SG), which is a hybridization of the Best Gap mechanism,

alongside with Tabu search (BGT). In addition, a new decision rule based

on completion time is included into the outcome mechanism. The new

decision rule based on completion time has shown a significant

improvement in the Quality of Service (QoS), especially for a slowdown,

tardiness, waiting time and response time. Moreover, an evaluation of the

new proposed mechanism Swift Gap is provided. From the evaluation,

Swift Gap outperforms BGT, Conservative Backfilling (CONS) and

Extensible Argonne Scheduling System (EASY).

Keywords: Swift Gap, Scheduling, Optimization, Completion Time

Introduction

In the computational grid, scheduling can be static

or dynamic. The scheduling in the static mode is

simple and straightforward; all the jobs arrive at a

certain known of time to the system. The resources are

always available for the whole scheduling process.

Whereas in the dynamic mode, the jobs arrive to the

system in different lengths of time, the scheduler has

no idea about the arrival time until job reaching to the

system. Moreover, the availability of the resources is

not guaranteed. Most frequently, the candidate

resources may sign out/in to the system for various

reasons (such as resource failure).

The static mode is predictable for the scheduler and

easy to implement. A traditional scheduling algorithm

(such as; FCFS) (Henderson, 1995) can perform well for

a small grid computing system. On the other hand, if

thousands of jobs (that reach in different times) are

waiting to be allocated for many available resources,

more advanced policy that can deal with these

circumstances is highly required.

Priority-based algorithms have been applied widely

for scheduling purpose (Dakkak et al., 2006). The main

issue of priority-based algorithms is maintaining the

balance of performance regarding different metrics.

Whereas; these algorithms can perform very well for

specific metrics, while on the other hand they perform

poorly compared to other aspects. For instance: Shortest

Job First (SJF) (Davis and Patterson, 1975) has low

flow-time and good utilization of the resources, but it has

high makespan. Longest Job First (LJF) (Abraham et al.,

2000) and Minimum Time to Due Date (MTTD)

(Rasooli et al., 2008) have low makespan; conversely

LJF suffers from high flow-time, high tardiness and low

utilization of the resources.

In order to avoid these defects, several studies have
implemented optimization algorithms such as: Ant
Colony (Dorigo and Gambardella, 1997), Random Search
(Solis and Wets, 1981) and Tabu Search (Glover and
Laguna, 2013) alongside with priority algorithms. The

previous applied approaches achieve better results and
strikes a balance among the objective functions
related to the end user. In addition, backfilling
techniques were used for further exploiting of the
available resources. Earliest Gap and Conservative
Backfilling are examples of Backfilling techniques.

Unlike the earliest gap policy (Klusácek and Rudová,
2008) which has to work alongside with based-
scheduling algorithms, best-gap is able to perform
alone. While Best Gap inherits the ability to reschedule
the new arrival jobs without building a new scheduler

Omar Dakkak et al. / Journal of Computer Sciences 2017, 13 (5): 105.113

DOI: 10.3844/jcssp.2017.105.113

106

from EG and thus, Best Gap saving computational time
compared to the previous mechanisms.

Even though Best Gap has the ability to build an

incremental scheduler based on the new and existing

jobs in the queue, but still scheduling thousands of jobs

for numerous number of machines (resources), is not a

smooth process and it consumes significant time at the

expense of the QoS. Thus; a Meta-Heuristic mechanism

that has the ability to optimize the scheduling is required

in an environment such as in the grid. This paper

presents an efficient integration between Best Gap and

Tabu Search. Moreover, a new decision rule based on the

Completion Time Weight is included. The outcome

mechanism is named Swift Gap. Swift Gap mechanism

has the ability to reduce the scheduling process by

minimizing the objective functions with respect to

Slowdown, Tardiness, Waiting Time and Response

Time. Thus, Swift Gap mechanism has a remarkable

improvement of QoS.

The rest of the paper is organized as follows: Section

2 introduces some of the related works. Section 3

describes Swift Gap structure. Section 4 explains the

applied approach and the simulation settings. Section

5demonstrates the evaluation process and result analysis.

Finally, this paper is concluded in section 6.

Related Work

The Backfilling technique refers to approach which

avoids the fragmentation that caused by the small gaps

among the jobs in the queue (or scheduler). These small

gaps affect the utilization of resources by increasing the

idle CPU time. EASY (Lifka, 1995) is the first

mechanism that was developed to tackle this issue.

EASY used First Come First Serve (FCFS) as a

scheduling mechanism, in order to perform the

scheduling. The main idea is to move the small job that

can fit in the gap to an existing gap without affecting the

first job that that located in the top of the queue.

Some researchers have implemented other priority-

rules mechanisms (such as; SJF) with Backfilling

technique. In (Tsafrir et al., 2007), Shortest Job First

with Backfilling (SJFBF) was introduced. The main

idea is to use EASY scheme to guarantee that no

backfilled job will affect the first job at the top of the

queue, while SJF will be applied for the jobs that will

be backfilled.

In (Klusácek and Rudová, 2008), Earliest Gap-

Earliest Deadline First (EG-EDF) was introduced

followed by Tabu Search algorithm for further

optimization. This strategy has a better performance

from the previous ones due to the applied evaluation

steps. In the schedule, when the short job arrives and if a

gap is detected, the job will be moved into that gap using

EG. If no gap detected, EDF policy will be applied

alone. When the dispatching rule has to be decided to

which machine the job should be allocated to, a Tabu

search is implemented to calculate the possible job

movement. Before moving the job, an evaluation

based on the makespan and number of delayed jobs is

applied. This evaluation helps to reduce the number of

the moves. If the proposed move was better than the

current one, the job will be moved, otherwise it will

be maintained in the current position.

Other studies have implemented optimization

search with/without priority search algorithm.

(Somasundaram and Radhakrishnan, 2009) has

implemented SJF with weighted random search. This

mechanism achieved low residing time, but it suffers

from high makespan. Integration between Ant Colony

and Max-Min system in order to reduce the total

computational time was proposed by (Nasira and

Ku-Mahamudb, 2009).

Swift Gap Description

Swift Gap structure is based on CONS (Alem and

Feitelson, 2001). In EASY, the backfilling is

aggressive (i.e., EASY will check only if the

backfilling will delay the first job in the queue). This

could lead to long waiting time for the other jobs that

are waiting in the queue. In conservative approach,

the small jobs will be backfilled without causing any

delay for the rest of jobs ahead in the schedule. This is

achieved due to the runtime estimates. In this

approach, the runtime estimates role (which is

provided by the user) is very crucial to predict when

each job will start and finish. Thus, the system will

have the ability to expect the running time for the

scheduled jobs and subsequently, the backfilling will

be executed wisely. Whereas, EASY utilizes the

runtime estimates. However, due to the aggressive

approach to utilize the machine(s) more, EASY

performs the backfilling considering only the delay

for the first job in the queue.

The structure of Swift Gap consists of two kind of

data. The first one includes the list of queued jobs in

the system and the expected time to start. While the

other structure maintains information about the

expected resources usage in the future. In order to

allocate the newly arriving jobs, an anchor point has

to be detected. The anchor point is the point where the

resources are available to tackle the backfilled jobs

from start to finish without affecting any jobs in the

schedule ahead. This information keeps updating itself

every while to include/exclude the resources in/out the

next backfilling cycle.

In reality, the runtime estimates provided by the users

are so far from being accurate. Short runtime estimation

will terminate the jobs, whereas long runtime estimation

Omar Dakkak et al. / Journal of Computer Sciences 2017, 13 (5): 105.113

DOI: 10.3844/jcssp.2017.105.113

107

will cause long waiting time for the jobs. To solve this

problem, the runtime estimates will be exceeded to the

maximum limit and then, the scheduler will compress

itself to adapt the current situation. Moreover, the

compression function helps to keep the original

scheduler situation after backfilling decision is taken.

This helps if a sudden termination of a job happened. In

such a case, the job that ahead of the future backfilled

job may take its place and that will lead to make the

backfilled job waits for longer time in order to be

backfilled again. Thus, the compression function

exempts the scheduler from doing all backfilling

calculations again by maintaining the scheduler situation

as it is before the sudden termination of the running job

happens. The only change occurs is the starting time and

finishing time for the jobs. Therefore, in backfilling, all

the jobs will start and finish earlier. Figure 1 illustrates

the compressing function.

Swift Gap Approach

Our new proposed algorithm Swift Gap (Dakkak et al.,

2016), adapting the decision rules form Best Gap

policy, In addition, Swift Gap includes a new decision

rule regarding the job movement in the schedule based

on the completion time (compl time) (Gomoluch and

Schroeder, 2003). The new decision rule (compl time)

has shown a significant improvement in most of the

QoS criteria for the end user. This paper will focus on

four metrics, which are slowdown, tardiness, waiting

time and response time.

A. Hybridization

There are several types of hybridization, which are:

The high level and the low level. In the high level,

hybridized algorithms are loosely coupled, whereas at the

low level, the structures of algorithms are strongly

coupled. Loosely coupled means when the first algorithm

execution is over based on certain condition(s), the second

algorithm starts in order to optimize the solution obtained

from the first algorithm (Xhafa et al., 2011). In this study,

the hybridization is based on loosely coupled concept.

That means; both hybridized algorithms have their

independent flow and commands i.e., no interaction

between the structures of algorithms.

Fig. 1. The compressing function

Omar Dakkak et al. / Journal of Computer Sciences 2017, 13 (5): 105.113

DOI: 10.3844/jcssp.2017.105.113

108

Fig. 2. Hybridization scheme for swift gap

Swift Gap has two stopping conditions. The first

stopping condition is related to the creating the initial

scheduler. When all new arrival jobs are tested in order

to find the best gap, the initial scheduler is done and the

optimizing stage starts. The second one in the

optimization stage, where the mechanism will stop once

required iterations’ number is achieved or the time of is

over. Figure 2 shows the hybridization scheme for Swift

Gap with completion time rule included.

B. Swift Gap Working Steps

The scheduling in Swift Gap starts based on the gaps

that are available in the scheduler, sensing of the gap(s)

existence is based on the fragmentation measurement

among the jobs in the schedule. When the gap is

detected, the size of the job will be measured to

determine if the job can be moved to the detected gap or

not. If the size of the job is smaller or equal to the

detected gap, the job will be eligible for the evaluation

stage, which will be described later on. For further

enhancement, the initial scheduling has to be improved

through optimization mechanism. This could be done by

moving the suitable job among the clusters rather than

moving it within the computing cluster only. The

optimized solution will subject to the same evaluation

stage that applied in initial solution stage. Moreover,

the iteration ability that optimization mechanism has;

will enable Swift Gap to find the most optimized

solution for the scheduling problem.

When Swift Gap has to take a decision for moving

the job or keeping the job where it is (for evaluation

stage), a one out of two options that Swift Gap has to

take using the weight_function. This selection is

based on the preferable value of the calculated metric

(compl time) for decision (A) or (B). The resolution is

taken upon this formula: ((Ametric-

Bmetric)/Ametric). If the result of this formula is >

0.0, then Bmetric will be selected since minimizing

these metrics is the better option. In other words, if

the weight_function is greater than zero, (B) scheduling

decision will be selected. Otherwise, if the previous

formula is less than zero, the scheduler will schedule

the job based on (A). A division by zero is prevented in

the code. This evaluation of the weight_function for job

moving is applied to detect which position will lead to

a better performance metrics.

In Swift Gap, (line 1-2): The resources is created in

the system. (Line: 3-5): The algorithm searching for a

gap in the schedule to move the job into. If there is no

gap, the algorithm will keep searching until finding a

gap. The job will be moved based on completion time

rule (line: 6-7). The evaluation of the move will be

tested using the weight_function. Then, the executing

of initial scheduling is over. (line: 7-12). The

optimization search algorithm starts performing by

adding the jobs in the schedule to its list in order to

optimize them later (line: 13-14). The optimization of

the jobs is conducted by manipulating the job’s position

among the clusters (line: 15). The movement of the job

will be evaluated with respect to completion time

weight. If the weight_function >0.0, then the current

move (B) will be selected. Otherwise, the move will be

rejected and previous move (A) will be selected (line:

16-21). Finally, the optimized order for jobs in the

algorithm list will be sent to the allocated machine and

the event will end (line: 22).

Omar Dakkak et al. / Journal of Computer Sciences 2017, 13 (5): 105.113

DOI: 10.3844/jcssp.2017.105.113

109

The weight_function is taking the scheduling decision

depending on completion time (line: 1). After the

calculation of the previous and current metrics is over, a

discrimination between two scheduling decisions (A or B)

will be executed. Decision (A) represents the previous

move, whereas (B) decision represents the current move.

By reason of minimizing the metrics time in the Grid

is highly desirable, the formula ((Ametric-

Bmetric)/Ametric) determines which move is better (A)

or (B). If ((Ametric- Bmetric)/Ametric)for the sum of all

jobs is greater than zero, which means (A) value is

greater than (B) value (line: 2-6). Therefore, the current

move which is presented by (B) will be applied (line: 7),

otherwise the previous move (presented by A) will take a

place instead of (B) (line: 8-9). The event will end in

(line: 10). Figure 3 presents the algorithm for Swift Gap

and the weight_function.

Simulation and Discussion

The experiment is conducted using Alea Simulator

(Klusáček and Rudová, 2010). Alea Simulator has a

positive feedback from many researchers (Dakkak et al.,

2015). The considered resource in our simulation is CPU.

Two datasets are included in this experiment (Zewura and

Wagap). The results reflect the real values for both dataset

based on the jobs number. The number of the jobs is 3000,

5000, 7000, 9000, 10000, 15000 and 17500. The

experiment is conducted using Intel I7-4770 CPU with 8

GB of RAM; the operating system is Windows 7.

Every simulation was repeated for 20 times. Figure 4-

7 present the simulation results for slowdown, tardiness,

waiting time and response time respectively for both

datasets. Slowdown is a fraction (no unit), whereas

tardiness, waiting time and response time are measured

in seconds in the conducted simulation.

To evaluate the quality of the schedule offered by

Swift Gap, different four criteria are used. The

slowdown means how many times the job was delayed

(ratio). The tardiness refers to the delay for the job

related to certain due date. The waiting time refers to

waiting time for the job has to wait in the schedule

before it started to be processed. Response time is the

running time for the job included to the waiting time for

that job. Table 1 includes the parameters and

configurations for the conducted simulation.

Table 1. Experiment parameters

Simulation settings Info and values

Simulator Alea 3.1

Number of Jobs [3000-17500]

Simulation Time 3000

Simulated Resources CPU

Runtime Estimates True

Data-Set Zewura, Wagap

OS Windows 7

In Fig. 4, the completion time rule will make Swift

Gap with less slowdown than the other mechanisms.

Since (Gomoluch and Schroeder, 2003):

1

j

j

Completion Time Submission Time
sld

Completion Time Start Time=

−
=

−
∑ (1)

Reducing the completion time, will also result in

reducing the start time. Since start time appears in the

denominator, thus, the total value of slowdown will

certainly be minimized.

In Fig. 5, the tardiness will be decreased if the

completion time is minimized as well, since:

()
1

max 0,
j

j

Tardiness Completion Time Due Date Time
=

= −∑ (2)

While, due date time is fixed parameter in the

workload, obviously decreasing the completion time will

lead to minimize the total tardiness also. In Fig. 6, the

waiting time in Swift Gap is less than BGT, CONS and

EASY. The waiting time is the difference between the

submission time and the start time. The start time is the

time when the job is starting to be scheduled, whereas

the submission time is the time when the job is submitted

to the system. The reason behind this improvement, that

the start time in Swift Gap is much less. Since

(Gomoluch and Schroeder, 2003):

 Tw Start time Submission Time= − (3)

Reducing the completion time, will automatically lead

in reducing the start time. Finally, in Fig. 7, it can be

observed that the response time in Swift Gap is less

compared to the other simulated algorithms. Since the

response time is the sum of running time and waiting time:

 Resp Time Tr Tw= + (4)

The running time (Tr) for each job is a fixed value,

while the waiting time (Tw) is already decreased as

mentioned above, consequently, this will minimize the

value of expected response time.

In the previous figures, it can be observed the

variation in the interactions among the curve's patterns

that produced by simulating the algorithms for zewura

and wagap workloads. The reason behind this, that

zewura workload has fewer resources than wagap

workload. The presented completion time rule in Swift

Gap has better effect when the number of the jobs is

getting increases in wagap workload. This goes back to

the huge resource number. This means that the

completion time influence becomes less when the

number of resources is huge for a limited number of the

Omar Dakkak et al. / Journal of Computer Sciences 2017, 13 (5): 105.113

DOI: 10.3844/jcssp.2017.105.113

110

jobs. Table 2 and 3; show the mean of the simulated objective functions for zewura and wagap workloads.

(a)

(b)

Fig. 3. (a) Swift gap (b) Weight function

Fig. 4. Slowdown for Zewura and Wagap

Omar Dakkak et al. / Journal of Computer Sciences 2017, 13 (5): 105.113

DOI: 10.3844/jcssp.2017.105.113

111

Fig. 5. Tardiness for Zewura and Wagap

Fig. 6. Waiting Time for Zewura and Wagap

Fig. 7. Response Time for Zewura and Wagap

Omar Dakkak et al. / Journal of Computer Sciences 2017, 13 (5): 105.113

DOI: 10.3844/jcssp.2017.105.113

112

Table 2. Mean values of objective function (Zewura)

Metric Mechanism SG BGT CONS EASY

Slowdown 229.6 249.0 457.6 657.7

Tardiness 4343.6 5492.2 8777.4 7066.7

Waiting Time 8021.7 9587.8 14218.7 10965.0

Response Time 54546.2 56112.2 60743.2 57489.5

Table 3. Mean values of objective function (Wagap)

Metric Mechanism SG BGT CONS EASY

Slowdown 6.8 9.8 15.55 18.1

Tardiness 379.8 694.9 864.15 1092.4

Waiting Time 523.2 819.4 879.62 1081.3

Response Time 60300.4 60596.5 60656.70 60833.6

Table 4. Swift gap enhancement ratio

Metric Mechanism BGT(zewura) BGT(wagap) CONS(zewura) CONS(wagap) EASY(zewura) EASY(wagap)

Slowdown +8.123 +36.2224 +66.3679 +77.6786 +96.4962 +90.4438

Tardiness +23.3552 +58.6401 +67.5818 +77.8684 +47.7301 +96.808

Waiting Time +17.7861 +44.1166 +55.727 +50.8058 +31.0031 +69.5625

Response Time +2.8304 +0.4899 +10.7503 +0.5892 +5.2541 +0.8804

From Table 2 and 3, it can be noticed the

enhancement offered by Swift Gap, compared to our

hybridization without including the completion time rule

(BGT), CONS and EASY in Table 4. Obviously, Swift

Gap outperform BGT, CONS and EASY in all objective

functions for both workloads. Even though, the

completion rule influence is not so obvious in wagap

workload when the number or jobs is few, but later,

when the number of the jobs is getting increased, the

enhancement of completion time rule becomes very

conspicuous and even much better than zewura.

Whereas; in zewura workload, the role of the included

completion time in Swift Gap can be observed once

the simulation launches. This dissimilar behavior of

Swift Gapand even for the other simulated algorithms

between the different workloads can be justified based

on the properties of the workload. As discussed

earlier, the number of resources and the size of the

jobs for each workload can be one of many reasons

behind this dissimilar behavior.

Finally, it can be observed that all objective functions

behaviors in the simulated dynamic case are not stable

(nonlinear curve). That is due to the different arrival

times for the jobs and different waiting times as well.

Thus, the variation in the curves (oscillatory behavior) is

observed regardless the number of jobs.

Conclusion

In this study, Swift Gap mechanism is presented.

Swift Gap exploits the features of Best Gap and Tabu

Search. In addition, a completion time rule has included

into the mechanism. The completion time rule has

proven its efficiency by minimizing the objective

functions. The simulation is conducted using Alea

Simulator. The experiments were carried out for two

datasets for a huge jobs’ number.

The simulations have shown that Swift Gap has

minimized the slowdown, tardiness, waiting time and

response time thanks to the completion time rule.

Moreover and from the presented evaluation, Swift Gap

outperforms Best Gap with Tabu Search (BGT), CONS

and EASY in all simulated performance metrics.

Acknowledgement

Zewura and Wagap workloads log were graciously

provided by the Czech National Grid Infrastructure

MetaCentrum.

Funding Information

This work is funded by UNIVERSITI UTARA

MALAYSIA (UUM) S/O Code: 15861.

Author’s Contributions

As the first author of this paper, I would like to

confirm that this study is a part of my PhD work;

whereby I have been closely supervised by Dr.

Shahrudin Awang Nor and Dr. Ahmad Suki Che

Mohamed Arif.

Ethics

This article is original and contains unpublished

material. The corresponding author confirms that all

of the other authors have read and approved the

manuscript and no ethical issues involved the other

authors have read and approved the manuscript and no

ethical issues involved.

Omar Dakkak et al. / Journal of Computer Sciences 2017, 13 (5): 105.113

DOI: 10.3844/jcssp.2017.105.113

113

References

Abraham, A., R. Buyya and B. Nath, 2000. Nature’s
heuristics for scheduling jobs on computational
grids. Proceedings of the 8th IEEE International
Conference on Advanced Computing and
Communications, (ACC’ 00).

Alem, A.W.M. and D.G. Feitelson, 2001. Utilization,

predictability, workloads and user runtime estimates

in scheduling the IBM SP2 with backfilling. IEEE

Trans. Parallel Distributed Syst., 12: 529-543.

 DOI: 10.1109/71.932708

Dakkak, O., S. Arif and S.A. Nor, 2006. Resource

allocation mechanisms in computational grid: A

survey.

Dakkak, O., S. Arif and S.A. Nor, 2015. A critical

analysis of simulators in grid.

Dakkak, O., S.A. Nor and S. Arif, 2016. Proposed

algorithm for scheduling in computational grid using

backfilling and optimization techniques. J.

Telecommun. Electr. Comput. Eng., 8: 133-138.

Davis, E.W. and J.H. Patterson, 1975. A comparison of

heuristic and optimum solutions in resource-

constrained project scheduling. Manage. Sci., 21:

944-955. DOI: 10.1287/mnsc.21.8.944

Dorigo, M. and L.M. Gambardella, 1997. Ant colony

system: A cooperative learning approach to the

traveling salesman problem. IEEE Trans. Evolut.

Comput., 1: 53-66. DOI: 10.1109/4235.585892

Glover, F. and M. Laguna, 2013. Tabu Search. Springer.

Gomoluch, J. and M. Schroeder, 2003. Market-based

resource allocation for grid computing: A model and

simulation. Proceedings of the Middleware

Workshops, (MW’ 03).

Henderson, R.L., 1995. Job scheduling under the

portable batch system. Proceedings of the Job

Scheduling Strategies for Parallel Processing, (SPP’

95), Springer-Verlag, pp: 279-294.

Klusácek, D. and H. Rudová, 2008. Improving QoS in

computational grids through schedule-based

approach. Proceedings of the Scheduling and

Planning Applications Workshop at the Eighteenth

International Conference on Automated Planning

and Scheduling, (APS’ 08), Sydney, Australia.

Klusáček, D. and H. Rudová, 2010. Alea 2: Job scheduling

simulator. Proceedings of the 3rd International ICST

Conference on Simulation Tools and Techniques,
Mar. 15-19, ICST, Brussels, Belgium.

 DOI: 10.4108/ICST.SIMUTOOLS2010.8722

Lifka, D.A., 1995. The ANL/IBM SP scheduling system.

Proceedings of the Workshop on Job Scheduling

Strategies for Parallel Processing, (SPP’ 95),

Springer-Verlag, London, pp: 295-303.

Nasira, H.J.A. and K.R. Ku-Mahamudb, 2009. Hybrid

ant colony optimization for grid computing.

Rasooli, A., M. Mirza-Aghatabar and S. Khorsandi,

2008. Introduction of novel rule based algorithms

for scheduling in grid computing systems.

Proceedings of the 2nd Asia International

Conference on Modeling and Simulation, May 13-15,

IEEE Xplore Press, pp: 138-143.

 DOI: 10.1109/AMS.2008.83

Solis, F.J. and R.J.B. Wets, 1981. Minimization by

random search techniques. Math. Operat. Res., 6:

19-30. DOI: 10.1287/moor.6.1.19

Somasundaram, K. and S. Radhakrishnan, 2009. Task

resource allocation in grid using swift scheduler. Int.

J. Comput. Commun. Control, 42: 158-166.

 DOI: 10.15837/ijccc.2009.2.2423

Tsafrir, D., Y. Etsion and D.G. Feitelson, 2007.

Backfilling using system-generated predictions

rather than user runtime estimates. IEEE Trans.

Parallel Distributed Syst., 18: 789-803.

 DOI: 10.1109/TPDS.2007.70606

Xhafa, F., J. Kołodziej, L. Barolli and A. Fundo, 2011. A

GA+TS hybrid algorithm for independent batch

scheduling in computational grids. Proceedings of

the 4th International Conference on Network-Based

Information Systems, Sept. 7-9, IEEE Xplore Press,

pp: 229-235. DOI: 10.1109/NBiS.2011.41

