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Abstract: Due to the heterogeneity and complexity in grid computing, 

classical algorithms may not be able to deal with dynamic jobs properly. 

In the dynamic mode, incoming jobs reach the scheduler arbitrary. 

Therefore, scheduling the jobs using simple policy alone deteriorates the 

performance of the scheduler. Thus, a policy that can handle the 

dynamicity efficiently is indispensable. This paper presents the Swift Gap 

mechanism (SG), which is a hybridization of the Best Gap mechanism, 

alongside with Tabu search (BGT). In addition, a new decision rule based 

on completion time is included into the outcome mechanism. The new 

decision rule based on completion time has shown a significant 

improvement in the Quality of Service (QoS), especially for a slowdown, 

tardiness, waiting time and response time. Moreover, an evaluation of the 

new proposed mechanism Swift Gap is provided. From the evaluation, 

Swift Gap outperforms BGT, Conservative Backfilling (CONS) and 

Extensible Argonne Scheduling System (EASY). 
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Introduction 

In the computational grid, scheduling can be static 

or dynamic. The scheduling in the static mode is 

simple and straightforward; all the jobs arrive at a 

certain known of time to the system. The resources are 

always available for the whole scheduling process. 

Whereas in the dynamic mode, the jobs arrive to the 

system in different lengths of time, the scheduler has 

no idea about the arrival time until job reaching to the 

system. Moreover, the availability of the resources is 

not guaranteed. Most frequently, the candidate 

resources may sign out/in to the system for various 

reasons (such as resource failure). 

The static mode is predictable for the scheduler and 

easy to implement. A traditional scheduling algorithm 

(such as; FCFS) (Henderson, 1995) can perform well for 

a small grid computing system. On the other hand, if 

thousands of jobs (that reach in different times) are 

waiting to be allocated for many available resources, 

more advanced policy that can deal with these 

circumstances is highly required.  

Priority-based algorithms have been applied widely 

for scheduling purpose (Dakkak et al., 2006). The main 

issue of priority-based algorithms is maintaining the 

balance of performance regarding different metrics. 

Whereas; these algorithms can perform very well for 

specific metrics, while on the other hand they perform 

poorly compared to other aspects. For instance: Shortest 

Job First (SJF) (Davis and Patterson, 1975) has low 

flow-time and good utilization of the resources, but it has 

high makespan. Longest Job First (LJF) (Abraham et al., 

2000) and Minimum Time to Due Date (MTTD) 

(Rasooli et al., 2008) have low makespan; conversely 

LJF suffers from high flow-time, high tardiness and low 

utilization of the resources.  

In order to avoid these defects, several studies have 
implemented optimization algorithms such as: Ant 
Colony (Dorigo and Gambardella, 1997), Random Search 
(Solis and Wets, 1981) and Tabu Search (Glover and 
Laguna, 2013) alongside with priority algorithms. The 

previous applied approaches achieve better results and 
strikes a balance among the objective functions 
related to the end user. In addition, backfilling 
techniques were used for further exploiting of the 
available resources. Earliest Gap and Conservative 
Backfilling are examples of Backfilling techniques. 

Unlike the earliest gap policy (Klusácek and Rudová, 
2008) which has to work alongside with based-
scheduling algorithms, best-gap is able to perform 
alone. While Best Gap inherits the ability to reschedule 
the new arrival jobs without building a new scheduler 
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from EG and thus, Best Gap saving computational time 
compared to the previous mechanisms.  

Even though Best Gap has the ability to build an 

incremental scheduler based on the new and existing 

jobs in the queue, but still scheduling thousands of jobs 

for numerous number of machines (resources), is not a 

smooth process and it consumes significant time at the 

expense of the QoS. Thus; a Meta-Heuristic mechanism 

that has the ability to optimize the scheduling is required 

in an environment such as in the grid. This paper 

presents an efficient integration between Best Gap and 

Tabu Search. Moreover, a new decision rule based on the 

Completion Time Weight is included. The outcome 

mechanism is named Swift Gap. Swift Gap mechanism 

has the ability to reduce the scheduling process by 

minimizing the objective functions with respect to 

Slowdown, Tardiness, Waiting Time and Response 

Time. Thus, Swift Gap mechanism has a remarkable 

improvement of QoS.  

The rest of the paper is organized as follows: Section 

2 introduces some of the related works. Section 3 

describes Swift Gap structure. Section 4 explains the 

applied approach and the simulation settings. Section 

5demonstrates the evaluation process and result analysis. 

Finally, this paper is concluded in section 6. 

Related Work 

The Backfilling technique refers to approach which 

avoids the fragmentation that caused by the small gaps 

among the jobs in the queue (or scheduler). These small 

gaps affect the utilization of resources by increasing the 

idle CPU time. EASY (Lifka, 1995) is the first 

mechanism that was developed to tackle this issue. 

EASY used First Come First Serve (FCFS) as a 

scheduling mechanism, in order to perform the 

scheduling. The main idea is to move the small job that 

can fit in the gap to an existing gap without affecting the 

first job that that located in the top of the queue.  

Some researchers have implemented other priority-

rules mechanisms (such as; SJF) with Backfilling 

technique. In (Tsafrir et al., 2007), Shortest Job First 

with Backfilling (SJFBF) was introduced. The main 

idea is to use EASY scheme to guarantee that no 

backfilled job will affect the first job at the top of the 

queue, while SJF will be applied for the jobs that will 

be backfilled. 

In (Klusácek and Rudová, 2008), Earliest Gap-

Earliest Deadline First (EG-EDF) was introduced 

followed by Tabu Search algorithm for further 

optimization. This strategy has a better performance 

from the previous ones due to the applied evaluation 

steps. In the schedule, when the short job arrives and if a 

gap is detected, the job will be moved into that gap using 

EG. If no gap detected, EDF policy will be applied 

alone. When the dispatching rule has to be decided to 

which machine the job should be allocated to, a Tabu 

search is implemented to calculate the possible job 

movement. Before moving the job, an evaluation 

based on the makespan and number of delayed jobs is 

applied. This evaluation helps to reduce the number of 

the moves. If the proposed move was better than the 

current one, the job will be moved, otherwise it will 

be maintained in the current position. 

Other studies have implemented optimization 

search with/without priority search algorithm. 

(Somasundaram and Radhakrishnan, 2009) has 

implemented SJF with weighted random search. This 

mechanism achieved low residing time, but it suffers 

from high makespan. Integration between Ant Colony 

and Max-Min system in order to reduce the total 

computational time was proposed by (Nasira and    

Ku-Mahamudb, 2009). 

Swift Gap Description  

Swift Gap structure is based on CONS (Alem and 

Feitelson, 2001). In EASY, the backfilling is 

aggressive (i.e., EASY will check only if the 

backfilling will delay the first job in the queue). This 

could lead to long waiting time for the other jobs that 

are waiting in the queue. In conservative approach, 

the small jobs will be backfilled without causing any 

delay for the rest of jobs ahead in the schedule. This is 

achieved due to the runtime estimates. In this 

approach, the runtime estimates role (which is 

provided by the user) is very crucial to predict when 

each job will start and finish. Thus, the system will 

have the ability to expect the running time for the 

scheduled jobs and subsequently, the backfilling will 

be executed wisely. Whereas, EASY utilizes the 

runtime estimates. However, due to the aggressive 

approach to utilize the machine(s) more, EASY 

performs the backfilling considering only the delay 

for the first job in the queue. 

The structure of Swift Gap consists of two kind of 

data. The first one includes the list of queued jobs in 

the system and the expected time to start. While the 

other structure maintains information about the 

expected resources usage in the future. In order to 

allocate the newly arriving jobs, an anchor point has 

to be detected. The anchor point is the point where the 

resources are available to tackle the backfilled jobs 

from start to finish without affecting any jobs in the 

schedule ahead. This information keeps updating itself 

every while to include/exclude the resources in/out the 

next backfilling cycle. 

In reality, the runtime estimates provided by the users 

are so far from being accurate. Short runtime estimation 

will terminate the jobs, whereas long runtime estimation 
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will cause long waiting time for the jobs. To solve this 

problem, the runtime estimates will be exceeded to the 

maximum limit and then, the scheduler will compress 

itself to adapt the current situation. Moreover, the 

compression function helps to keep the original 

scheduler situation after backfilling decision is taken. 

This helps if a sudden termination of a job happened. In 

such a case, the job that ahead of the future backfilled 

job may take its place and that will lead to make the 

backfilled job waits for longer time in order to be 

backfilled again. Thus, the compression function 

exempts the scheduler from doing all backfilling 

calculations again by maintaining the scheduler situation 

as it is before the sudden termination of the running job 

happens. The only change occurs is the starting time and 

finishing time for the jobs. Therefore, in backfilling, all 

the jobs will start and finish earlier. Figure 1 illustrates 

the compressing function. 

Swift Gap Approach 

Our new proposed algorithm Swift Gap (Dakkak et al., 

2016), adapting the decision rules form Best Gap 

policy, In addition, Swift Gap includes a new decision 

rule regarding the job movement in the schedule based 

on the completion time (compl time) (Gomoluch and 

Schroeder, 2003). The new decision rule (compl time) 

has shown a significant improvement in most of the 

QoS criteria for the end user. This paper will focus on 

four metrics, which are slowdown, tardiness, waiting 

time and response time. 

A. Hybridization  

There are several types of hybridization, which are: 

The high level and the low level. In the high level, 

hybridized algorithms are loosely coupled, whereas at the 

low level, the structures of algorithms are strongly 

coupled. Loosely coupled means when the first algorithm 

execution is over based on certain condition(s), the second 

algorithm starts in order to optimize the solution obtained 

from the first algorithm (Xhafa et al., 2011). In this study, 

the hybridization is based on loosely coupled concept. 

That means; both hybridized algorithms have their 

independent flow and commands i.e., no interaction 

between the structures of algorithms. 

 

 
 

Fig. 1. The compressing function 
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Fig. 2. Hybridization scheme for swift gap 

 

Swift Gap has two stopping conditions. The first 

stopping condition is related to the creating the initial 

scheduler. When all new arrival jobs are tested in order 

to find the best gap, the initial scheduler is done and the 

optimizing stage starts. The second one in the 

optimization stage, where the mechanism will stop once 

required iterations’ number is achieved or the time of is 

over. Figure 2 shows the hybridization scheme for Swift 

Gap with completion time rule included. 

B. Swift Gap Working Steps  

The scheduling in Swift Gap starts based on the gaps 

that are available in the scheduler, sensing of the gap(s) 

existence is based on the fragmentation measurement 

among the jobs in the schedule. When the gap is 

detected, the size of the job will be measured to 

determine if the job can be moved to the detected gap or 

not. If the size of the job is smaller or equal to the 

detected gap, the job will be eligible for the evaluation 

stage, which will be described later on. For further 

enhancement, the initial scheduling has to be improved 

through optimization mechanism. This could be done by 

moving the suitable job among the clusters rather than 

moving it within the computing cluster only. The 

optimized solution will subject to the same evaluation 

stage that applied in initial solution stage. Moreover, 

the iteration ability that optimization mechanism has; 

will enable Swift Gap to find the most optimized 

solution for the scheduling problem. 

When Swift Gap has to take a decision for moving 

the job or keeping the job where it is (for evaluation 

stage), a one out of two options that Swift Gap has to 

take using the weight_function. This selection is 

based on the preferable value of the calculated metric 

(compl time) for decision (A) or (B). The resolution is 

taken upon this formula: ((Ametric- 

Bmetric)/Ametric). If the result of this formula is > 

0.0, then Bmetric will be selected since minimizing 

these metrics is the better option. In other words, if 

the weight_function is greater than zero, (B) scheduling 

decision will be selected. Otherwise, if the previous 

formula is less than zero, the scheduler will schedule 

the job based on (A). A division by zero is prevented in 

the code. This evaluation of the weight_function for job 

moving is applied to detect which position will lead to 

a better performance metrics. 

In Swift Gap, (line 1-2): The resources is created in 

the system. (Line: 3-5): The algorithm searching for a 

gap in the schedule to move the job into. If there is no 

gap, the algorithm will keep searching until finding a 

gap. The job will be moved based on completion time 

rule (line: 6-7). The evaluation of the move will be 

tested using the weight_function. Then, the executing 

of initial scheduling is over. (line: 7-12). The 

optimization search algorithm starts performing by 

adding the jobs in the schedule to its list in order to 

optimize them later (line: 13-14). The optimization of 

the jobs is conducted by manipulating the job’s position 

among the clusters (line: 15). The movement of the job 

will be evaluated with respect to completion time 

weight. If the weight_function >0.0, then the current 

move (B) will be selected. Otherwise, the move will be 

rejected and previous move (A) will be selected (line: 

16-21). Finally, the optimized order for jobs in the 

algorithm list will be sent to the allocated machine and 

the event will end (line: 22). 
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The weight_function is taking the scheduling decision 

depending on completion time (line: 1). After the 

calculation of the previous and current metrics is over, a 

discrimination between two scheduling decisions (A or B) 

will be executed. Decision (A) represents the previous 

move, whereas (B) decision represents the current move. 

By reason of minimizing the metrics time in the Grid 

is highly desirable, the formula ((Ametric-

Bmetric)/Ametric) determines which move is better (A) 

or (B). If ((Ametric- Bmetric)/Ametric)for the sum of all 

jobs is greater than zero, which means (A) value is 

greater than (B) value (line: 2-6). Therefore, the current 

move which is presented by (B) will be applied (line: 7), 

otherwise the previous move (presented by A) will take a 

place instead of (B) (line: 8-9). The event will end in 

(line: 10). Figure 3 presents the algorithm for Swift Gap 

and the weight_function. 

Simulation and Discussion 

The experiment is conducted using Alea Simulator 

(Klusáček and Rudová, 2010). Alea Simulator has a 

positive feedback from many researchers (Dakkak et al., 

2015). The considered resource in our simulation is CPU. 

Two datasets are included in this experiment (Zewura and 

Wagap). The results reflect the real values for both dataset 

based on the jobs number. The number of the jobs is 3000, 

5000, 7000, 9000, 10000, 15000 and 17500. The 

experiment is conducted using Intel I7-4770 CPU with 8 

GB of RAM; the operating system is Windows 7. 

Every simulation was repeated for 20 times. Figure 4-

7 present the simulation results for slowdown, tardiness, 

waiting time and response time respectively for both 

datasets. Slowdown is a fraction (no unit), whereas 

tardiness, waiting time and response time are measured 

in seconds in the conducted simulation. 

To evaluate the quality of the schedule offered by 

Swift Gap, different four criteria are used. The 

slowdown means how many times the job was delayed 

(ratio). The tardiness refers to the delay for the job 

related to certain due date. The waiting time refers to 

waiting time for the job has to wait in the schedule 

before it started to be processed. Response time is the 

running time for the job included to the waiting time for 

that job. Table 1 includes the parameters and 

configurations for the conducted simulation. 

 
Table 1. Experiment parameters 

Simulation settings Info and values 

Simulator  Alea 3.1 

Number of Jobs [3000-17500] 

Simulation Time 3000 

Simulated Resources CPU 

Runtime Estimates True 

Data-Set Zewura, Wagap 

OS Windows 7 

In Fig. 4, the completion time rule will make Swift 

Gap with less slowdown than the other mechanisms. 

Since (Gomoluch and Schroeder, 2003): 
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Reducing the completion time, will also result in 

reducing the start time. Since start time appears in the 

denominator, thus, the total value of slowdown will 

certainly be minimized. 

In Fig. 5, the tardiness will be decreased if the 

completion time is minimized as well, since: 
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While, due date time is fixed parameter in the 

workload, obviously decreasing the completion time will 

lead to minimize the total tardiness also. In Fig. 6, the 

waiting time in Swift Gap is less than BGT, CONS and 

EASY. The waiting time is the difference between the 

submission time and the start time. The start time is the 

time when the job is starting to be scheduled, whereas 

the submission time is the time when the job is submitted 

to the system. The reason behind this improvement, that 

the start time in Swift Gap is much less. Since 

(Gomoluch and Schroeder, 2003): 

 

  Tw Start time Submission Time= −  (3) 

 

Reducing the completion time, will automatically lead 

in reducing the start time. Finally, in Fig. 7, it can be 

observed that the response time in Swift Gap is less 

compared to the other simulated algorithms. Since the 

response time is the sum of running time and waiting time: 

 

 Resp Time Tr Tw= +  (4) 

 

The running time (Tr) for each job is a fixed value, 

while the waiting time (Tw) is already decreased as 

mentioned above, consequently, this will minimize the 

value of expected response time.  

In the previous figures, it can be observed the 

variation in the interactions among the curve's patterns 

that produced by simulating the algorithms for zewura 

and wagap workloads. The reason behind this, that 

zewura workload has fewer resources than wagap 

workload. The presented completion time rule in Swift 

Gap has better effect when the number of the jobs is 

getting increases in wagap workload. This goes back to 

the huge resource number. This means that the 

completion time influence becomes less when the 

number of resources is huge for a limited number of the 
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jobs. Table 2 and 3; show the mean of the simulated objective functions for zewura and wagap workloads. 

 

 
(a) 

 

 
(b) 

 
Fig. 3. (a) Swift gap (b) Weight function 

 

 
 

Fig. 4. Slowdown for Zewura and Wagap 
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Fig. 5. Tardiness for Zewura and Wagap 

 

 

 
Fig. 6. Waiting Time for Zewura and Wagap 

 

 
 

Fig. 7. Response Time for Zewura and Wagap 
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Table 2. Mean values of objective function (Zewura) 

Metric Mechanism SG BGT CONS EASY 

Slowdown  229.6 249.0 457.6 657.7 

Tardiness  4343.6 5492.2 8777.4 7066.7 

Waiting Time  8021.7 9587.8 14218.7 10965.0 

Response Time  54546.2 56112.2 60743.2 57489.5 

 
Table 3. Mean values of objective function (Wagap) 

Metric Mechanism SG BGT CONS EASY 

Slowdown  6.8 9.8 15.55 18.1 

Tardiness  379.8 694.9 864.15 1092.4 

Waiting Time  523.2 819.4 879.62 1081.3 

Response Time  60300.4 60596.5 60656.70 60833.6 

 
Table 4. Swift gap enhancement ratio 

Metric Mechanism BGT(zewura) BGT(wagap) CONS(zewura) CONS(wagap) EASY(zewura) EASY(wagap) 

Slowdown  +8.123 +36.2224 +66.3679 +77.6786 +96.4962 +90.4438 

Tardiness  +23.3552 +58.6401 +67.5818 +77.8684 +47.7301 +96.808 

Waiting Time  +17.7861 +44.1166 +55.727 +50.8058 +31.0031 +69.5625 

Response Time  +2.8304 +0.4899 +10.7503 +0.5892 +5.2541 +0.8804 

 

From Table 2 and 3, it can be noticed the 

enhancement offered by Swift Gap, compared to our 

hybridization without including the completion time rule 

(BGT), CONS and EASY in Table 4. Obviously, Swift 

Gap outperform BGT, CONS and EASY in all objective 

functions for both workloads. Even though, the 

completion rule influence is not so obvious in wagap 

workload when the number or jobs is few, but later, 

when the number of the jobs is getting increased, the 

enhancement of completion time rule becomes very 

conspicuous and even much better than zewura. 

Whereas; in zewura workload, the role of the included 

completion time in Swift Gap can be observed once 

the simulation launches. This dissimilar behavior of 

Swift Gapand even for the other simulated algorithms 

between the different workloads can be justified based 

on the properties of the workload. As discussed 

earlier, the number of resources and the size of the 

jobs for each workload can be one of many reasons 

behind this dissimilar behavior. 

Finally, it can be observed that all objective functions 

behaviors in the simulated dynamic case are not stable 

(nonlinear curve). That is due to the different arrival 

times for the jobs and different waiting times as well. 

Thus, the variation in the curves (oscillatory behavior) is 

observed regardless the number of jobs. 

Conclusion  

In this study, Swift Gap mechanism is presented. 

Swift Gap exploits the features of Best Gap and Tabu 

Search. In addition, a completion time rule has included 

into the mechanism. The completion time rule has 

proven its efficiency by minimizing the objective 

functions. The simulation is conducted using Alea 

Simulator. The experiments were carried out for two 

datasets for a huge jobs’ number.  

The simulations have shown that Swift Gap has 

minimized the slowdown, tardiness, waiting time and 

response time thanks to the completion time rule. 

Moreover and from the presented evaluation, Swift Gap 

outperforms Best Gap with Tabu Search (BGT), CONS 

and EASY in all simulated performance metrics.  
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