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Abstract: Software Product Line (SPL) is a software engineering paradigm 
that is inspired by the concept of reusability of common features, 
formulated for different software product. Complete testing on entire SPL 
is known to be unfeasible, due to the very large number of possible products 
to be produced, configured using a subset or all possible features in the SPL. 
This paper reports a Systematic Mapping Study (SMS) of relevant primary 
studies as the evidence on the application of Combinatorial Interaction 
Testing (CIT) for SPL. In CIT, one has to construct a covering array, which is 
a set of configurations having valid feature combinations and every 
combination of t features appears at least once in the array. This is also 
known as t-wise testing. By following the systematic mapping study 
guidelines, we have selected and filtered 44 primary studies for review. The 
most prominent CIT techniques in aiding SPL testing are those based on 
greedy algorithms followed by meta-heuristics algorithms. The motivation of 
SPL testing is to anticipate the feature interaction problem, in which the 
majority of the works were reported to leverage test configuration selection 
approach, while some employed test configuration prioritization approach. 
Numerous works have been reported, but only few works managed to 
demonstrate their scalability, as most primary studies only deal with low 
strength (t is less than 4) of t-wise testing. 
 
Keywords: Systematic Mapping Study, Secondary Study, Combinatorial 
Interaction Testing, Software Product Line 

 
Introduction 

In real world, many software products developed for 
various domains carry some similar functionalities. These 
software share similar functionalities due to the fact that 
they have been developed based on the same kind of input 
and output types. The similarity in the internal program 
structure due to identical user requirements also contribute 
to the commonalities among these software. Because of 
this scenario and based on the benefit of reuse principles, 
Software Product Line (SPL) has been developed as a 
software development paradigm to produce software 
inspired by product line approach. Clements and Northrop 
(2002) defined SPL as follows: 

“A software product line is a set of software 
intensive systems sharing a common, managed set of 
features that satisfy the specific needs of a particular 
market segment or mission and that are developed from 
a common set of core assets in a prescribed manner” 
(Clements and Northrop, 2002). 

In other words, SPL is a software engineering 
paradigm for creating a collection of similar software 
systems from a shared set of software assets using a 
well-defined production process. The main processes for 
SPL software development has been developed and 
refined over time by various researchers (Weiss and Lai, 
1999; Czarnecki and Eisenecker, 2000; Thiel and 
Peruzzi, 2000). Two main processes in SPL are Domain 
Engineering and Application Engineering. In the 
Domain Engineering phase, few crucial activities are 
performed which includes, but not limited to, identifying 
systems domain and specifying commonalities and 
variabilities. In the Application Engineering phase, the 
products are configured and generated by utilizing 
software assets developed from previous phase. The 
most important principle that spans throughout the 
software engineering process is reusability based on the 
concept of function similarities. 

Apart from similarities of functional properties 
among software, the differences of functionalities are 
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also of main concern, because only with these different 
functionalities, each software product is distinguishable 
from the other products and based on this 
commonalities and variabilities, each logical 
functionality is referred as feature (Lee et al., 2002) in 
SPL. Features can be defined as an abstraction of 
function, module or aspect of a system that represent a 
unit of program construction. Features can be generally 
classified into two types; core or compulsory features 
and product specific or optional features. 

The process of identifying, defining and documenting 
these features based on the principles of commonalities 
and variabilities are known as variability modeling 
(Czarnecki et al., 2012). The most common variability 
model developed for SPL is Feature Modeling (FM) 
(Lee et al., 2002). It is a notation that represents features 
and its dependencies. Feature Models are normally 
visually presented using Feature Diagram in a form of 
tree structure, where nodes are the SPL features and 
edges are the relationship between features. Apart from 
Feature Modeling, features can also be modeled using 
Decision Modeling (DM) (Atkinson and Muthig, 2002) 
approach. Another more recent approach to variability 
model is Orthogonal Variability Model (OVM) 
(Lauenroth and Pohl, 2005) which focused on orthogonal 
features of an SPL. 

SPL is also known as software product family, in 
which each individual software product can be generated 
from SPL using feature configuration process, where a 
number of relevant and suitable features are selected 
from the collection of all features based on the product 
requirements. 

In correlation to that, an important characteristic in 
SPL that attracted significant attention among 
researchers is feature interaction (Calder et al., 2003). 
Feature interaction is a situation in which more than one 
features are combined and utilized together in a single 
configuration. This could result in an unspecified 
functionality and might lead to incorrect execution. 
Hence, it is crucial to test all possible feature 
configurations in order to reduce the potential 
misbehavior of interacting features. But, to test all 
possible feature configurations is unfeasible. In most 
trivial case, small number of features in a FM will results 
in small number of possible feature configurations. 
However, the number of feature configurations increase 
dramatically as the size of FM increased (Kim et al., 
2011). Therefore, exhaustively testing all feature 
configurations for large-scale FM is not practical. 

Applying existing testing techniques to each product 
separately is difficult and requires enormous resources 
(Reis et al., 2007). On most cases, with the presence of a 
moderate numbers of features, it will results in 
exponential number of feature interactions. Moreover, it 
might end up with redundant test effort. Based on that 
phenomenon, there have been quite a number of attempts 

to reduce the space of feature configuration testing 
through feature-based test configuration selection. 
Towards that, a generally accepted idea is to select a 
small subset of products where the maximum possible 
features interactions are most likely to occur. This is the 
main principle of Combinatorial Interaction Testing 
(CIT) such that not all input or configuration options 
contribute to every fault in a system. It is often the case 
that a fault is caused by interactions among a few inputs 
or small combination of configuration options. 

Using CIT, one has to construct a Covering Array 
(CA). A CA is a two-dimensional array, where each 
column represents a software input/parameter (or feature 

in SPL context) and each row represent a test case (or 
test configuration in SPL context). The strategy is to 
construct the CA based on t-wise strength, where t 

indicates the coverage strength (1,2,3,..,n) and it will 
determine the number of feature combination that should 
appear at least once in the CA. For more details on CA, 
readers can refer to numerous literatures such as (Sloane, 
1993; Kuhn et al., 2009; 2010). 

CIT has successfully been applied in test input 
generation and parameter combinations of single product 
software development (Nie and Leung, 2011). One of the 
main strengths of CIT is that it enables a significant 
reduction of the number of test cases without 
compromising functional coverage. Similarly, in SPL, 
several works have been reported that apply and evaluate 
the effectiveness of CIT to reduce the testing effort by 
selecting a set of representative products (Johansen et al., 
2012a; 2012d; Galindo et al., 2014). 

This paper is structured as follows; in section 2, the 
details on the systematic mapping process are presented, 
which includes definition of the research questions, 
conducting the search process, filtering the evidences 
based on selection criteria and extracting particulars 
from selected primary studies into different 
categorizations. In section 3, results based on the 
extracted information are presented, followed by a 
discussion on the results in section 4. In section 5, threats 
to the validity of this review are presented, followed by 
remarks on related works in section 6. Finally, 
conclusion is presented in section 7 to wrap up this 
review study and suggest ideas for future endeavor. 

Research Method 

Overview 

This study is conducted based on Systematic 
Mapping Study (SMS), a systematic process of planning, 
identifying, selecting, categorizing, analyzing and 
interpreting all available research evidence for a 
particular area of interest. SMS is originally established 
in medical research and has been adapted into software 
engineering field with some adjustments and extensions 
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(Kitchenham and Charters, 2007; Petersen et al., 2008). 
A systematic mapping study is applicable as a research 
method to investigate the current achievement in the 
respective area and useful in identifying regions that 
demand more studies to be conducted (Kitchenham and 
Charters, 2007). This technique is chosen because it 
can guide one to perform review by means of 
systematic process, repeatable steps and unbiased 
analysis. In the planning phase of this review, 
requirement of study and research questions are 
constructed and it is important as the driving factor of 
this whole review process. While the requirement of 
this study is to categorize all existing information 
about the adaptation of Combinatorial Interaction 
Testing (CIT) in Software Product Lines testing, the 
formulation of research questions are further 
described in the following sections. 

Research Questions 

Specialized approaches and techniques for testing 
SPL systems are deemed necessary because the 
development process is different from single product 
development. Some identified testing techniques are 
derived from Combinatorial Interaction Testing and 
Search-Based Testing (Harman et al., 2014), Specification 
Based Testing (Scheidemann, 2006), Logic Based and 
various hybrid testing techniques (Perrouin et al., 2010; 
Hervieu et al., 2011a; Henard et al., 2013; Al-Hajjaji et al., 
2014; Sánchez et al., 2014a). Due to the availability of 
various approaches, it is the motivation of this mapping 
study to collect and review those works, which leads to 
the first research question: 
 
RQ1: How CIT techniques have been adapted and 

applied in SPL Testing? 
 

To further examine the first research question, the 
following sub-questions have been defined: 
 
RQ1.1: What types of approaches are used to generate 

Covering Array (CA) for CIT?  
RQ1.2: What is the mostly reported category of t-wise 

strength? 
RQ1.3: Does constraint in feature model being handled 

explicitly? 
 

Details on experiments conducted to the tool and 
their data sets are gathered in order to get a better 
understanding on the evaluation aspect of Combinatorial 
Interaction Testing techniques in SPL. Selection of data 
sets is crucial as it is used as subject for validation of the 
proposed technique. Techniques that have been 
implemented as a tool were identified and the 
performance of the proposed techniques is analyzed 

based on the measurement attributes employed by each 
study. To understand these, the following questions were 
raised in this review and will be answered in section 4: 
 
RQ2: How was the proposed testing technique being 

evaluated? 
 

It is deemed necessary to further elaborate the 
discussion on evaluation aspect by finding information 
with respect to: 
 
RQ2.1: The size and type of data sets utilized 

(Industrial, Open-Source or Synthetic data sets) 
RQ2.2: Name of other compared technique 
RQ2.3: The evaluation metrics used to measure the 

performance 
 

The final and more general evidence that this review 
is seeking to discover is in terms of the contribution 
made by the selected primary studies with respect to 
software testing effort reduction. Thus, it leads to the 
third main research question, as follows: 
 
RQ3: What is the main contribution of the proposed 

technique with respect to test effort reduction? 
 

In the next section, this paper reports the process that 
has been carried out during evidence searching, as this 
could assist readers to re-produce the review process 
whenever necessary. 

Search Process 

We obtained the main sources of primary studies 
for this mapping study from online databases. Five 
major online databases have been searched using 
specific search terms related to the criteria extracted 
from research questions. The search process was done 
separately on each database. The keywords used in the 
search string were constructed based on multiple 
keywords that are relevant to Combinatorial 
Interaction Testing. Table 1 defines the keyword used 
in the search process. 

A series of filtering work have been performed to 
exclude papers that are not related to this mapping 
study. Two phases of initial filtering were applied in 
this search process. The first filter excludes papers 
based on its title, in which we excluded papers of type 
front matters, survey, overview, report and duplicate 
title. The second filter excludes papers based on its 
abstract, introduction and conclusion. We omitted 
those papers not within the scope of this mapping 
study, which is mainly focusing on CIT testing 
technique within the domain of software product line. 
Table 2 shows the details of the online database 
searched, with the distinct search string. 
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Table 1. Keyword types and values 
Keyword type Value  Alternative keywords 
First Term “software product line” 
Second Term “combinatorial testing” “combinatorial interaction testing” 
  “CIT” 
  “pairwise testing” 
  “t-wise” 
  “interaction testing” 
 
Table 2. List of online databases searched with specialized search string 
Online database Search string 
ACM Digital Library Search Type: Advanced Search  
http://dl.acm.org Search Field and Values: 
 ALL: “software product line”  
 ANY: “combinatorial testing” “combinatorial interaction testing” “CIT” “pairwise testing” 
 “t-wise” “interaction testing” 
IEEE Explore Search Type: Command Search  
http://ieeexplore.ieee.org/ Search String: (“software product line”) AND  
 ((combinatorial ONEAR/2 testing) OR (pairwise ONEAR/1 testing) OR (“twise”) OR  
 (interaction ONEAR/1 testing)) 
Science-Direct Search Type: Expert Search  
http://www.sciencedirect.com/ Search String: (“software product line”) AND ((combinatorial PRE/2  
 testing) OR (pairwise PRE/1 testing) OR (“t-wise”) OR (interaction PRE/1 testing)) 
Springer Link Search Type: Basic Search  
http://link.springer.com Search String: (“software product line”) AND ((combinatorial  
 ONEAR/2 testing) OR (pairwise ONEAR/1 testing) OR (“twise”) OR (interaction ONEAR/1 testing)) 

 

 
 

Fig. 1. Primary studies selection and filtering process 
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Selection of Primary Studies 

After the relevant primary studies have been selected 
based on preliminary searching, we performed a more 
strict selection. This selection process is guided by two 
criteria called as inclusion and exclusion criteria 
(Kitchenham and Charters, 2007). Inclusion and 
exclusion criteria were defined based on the research 
question. The importance of inclusion and exclusion 
criteria is to ensure that the evidence can be reliably 
extracted and that they classify studies correctly. 

Inclusion Criteria 

All primary studies that focused on specific and clear 
contribution types in the form of method, model or 
strategies that adopted, adapted or improved CIT for 
SPL are included. 

Exclusion Criteria 

• All primary studies that focused on review on 
general SPL testing topics, mapping studies and 
open issues are excluded 

• Exclusion is also made to primary studies on non-
testing techniques or testing technique but does not 
employ CIT approach. 

• Primary studies on CIT approach but does not meant 
for software product line domain are also excluded. 

 
Selection Process 

We performed two phases of search and selection 
work to filter only those relevant primary studies. The 
total number of results returned by online databases is 

226 publications. Titles are identified and a number of 
publications are omitted due to either irrelevant or 
redundant. This first filtering process eliminates 85 
papers, leaving 141 papers for next filtering phase. In 
the second filtering, we applied exclusion criteria and 
the process excluded papers based on its abstract, 
introduction and conclusion. About 98 publications 
that are not within the scope of this mapping study are 
excluded, hence shrank down the relevant publication 
to 43 papers. Finally, snowballing selection has been 
carried out, which results in inclusion of another one 
paper, making the total pertinent numbers of primary 
studies to 44 papers. The complete listing of selected 
primary studies is presented in Table 3. The selection 
process and results are depicted in Fig. 1. 

The extraction and classification are based on seven 
categories of data attributes, which we defined as 
follows: 
 
• General. The title, the authors, summary of the 

problem, gist of the contribution and publication 
venue 

• Test selection. CA generation techniques, category 
of t-wise strength and constraint handling technique 

• Test prioritization. Prioritization technique, 
prioritization criteria and prioritization goal 

• Parallelization. Technique and infrastructure 
• Implementation. Tool name 
• Data sets. Name of data sets, nature and size 
• Evaluation. Name of other technique compared, 

type of performance measurement 

 
Table 3. List of the selected primary studies 
Id Title Event/Publisher Year Reference 
S1 A comparison of test case prioritization  
 criteria for software product lines ICST (IEEE) 2014 (Sánchez et al., 2014a) 
S2 A parallel evolutionary algorithm for prioritized    (Lopez-Herrejon et al., 
 pairwise testing of software product lines GECCO (ACM) 2014 2014b) 
S3 A systematic test case selection methodology for product lines:  
 Results and insights from an industrial case study ESE (Springer) 2014 (Wang et al., 2014) 
S4 A technique for agile and automatic 
 interaction testing for product lines ICTSS (Springer) 2012 (Johansen et al., 2012c) 
S5 An algorithm for generating t-wise covering  
 arrays from large feature models SPLC (ACM) 2012 (Johansen et al., 2012a) 
S6 An improved meta-heuristic search for constrained interaction testing SSBSE (IEEE) 2009 (Garvin et al., 2009) 
S7 Automated and scalable t-wise test case generation  
 strategies for software product lines ICST (IEEE) 2010 (Perrouin et al., 2010) 
S8 Automated incremental pairwise testing of software product lines SPLC (Springer) 2010 (Oster et al., 2010) 
S9 Bow tie testing: a testing pattern for product lines EuroPLoP (ACM) 2012 (Johansen et al., 2012b) 
S10 Bypassing the combinatorial explosion:  
 Using similarity to generate and prioritize T-Wise Test  
 Configurations for Software Product Lines TSE (IEEE) 2014 (Henard et al., 2014) 
S11 Combinatorial approach for automated platform diversity testing ICSEA (IEEE) 2009 (Sisodia and  
    Channakeshava, 2009) 
S12 Combinatorial test generation for software  
 product lines using minimum invalid tuples HASE (IEEE) 2014 (Yu et al., 2014) 
S13 Combinatorial testing for feature models using CitLab ICSTW (IEEE) 2013 (Calvagna et al., 2013) 
S14 Comparative analysis of classical  
 multi-objective evolutionary algorithms and seeding   (Lopez-Herrejon et al.,  
 strategies for pairwise testing of software product lines CEC (IEEE) 2014 2014a) 
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Table 3. Continue 
S15 Constructing interaction test suites for highly-configurable  
 systems in the presence of constraints-a greedy approach TSE (IEEE) 2008 (Cohen et al., 2008) 
S16 Constructing test cases for n-wise testing from tree-based test models SoICT (ACM) 2013 (Do et al., 2013) 
S17 Cost-effective test suite minimization in product lines using search techniques JSS (ScienceDirect) 2015 (Wang et al., 2015) 
S18 Covering SPL behaviour with sampled configurations: An initial assessment VaMoS (ACM) 2015 (Devroey et al., 2015) 
S19 Evaluating improvements to a  
 meta-heuristic search for constrained interaction testing ESE (Springer) 2011 (Garvin et al., 2011) 
S20 Feature interaction testing of variability intensive systems PLEASE (IEEE) 2013 (Patel et al., 2013) 
S21 Generating better partial covering arrays by  
 modeling weights on sub-product lines MODELS (Springer) 2012 (Johansen et al., 2012d) 
S22 Industrial evaluation of pairwise SPL testing with MoSo-PoLiTe VaMoS (ACM) 2012 (Steffens et al., 2012) 
S23 Interaction testing of highly-configurable systems in the presence of constraints ISSTA (ACM) 2007 (Cohen et al., 2007) 
S24 Minimizing test suites in software  
 product lines using weight-based genetic algorithms GECCO (ACM) 2013 (Wang et al., 2013) 
S25 Model-based pairwise testing for feature interaction  
 coverage in software product line engineering SQJ (Springer) 2012 (Lochau et al., 2012) 
S26 MoSo-PoLiTe: Tool support for pairwise and  
 model-based software product line testing VaMoS (ACM) 2011 (Oster et al., 2011b) 
S27 Multi-objective optimal test suite computation for  
 software product line pairwise testing ICSM (IEEE) 2013 (Lopez-Herrejon et al., 2013) 
S28 Multi-objective test generation for software product lines SPLC (ACM) 2013 (Henard et al., 2013) 
S29 PACOGEN: Automatic generation of  
 pairwise test configurations from feature models ISSRE (IEEE) 2011 (Hervieu et al., 2011b) 
S30 Pairwise feature-interaction testing for SPLs: Potentials and limitations SPLC (ACM) 2011 (Oster et al., 2011a) 
S31 Pairwise testing for software product lines: Comparison of two approaches SQJ (Springer) 2012 (Perrouin et al., 2012) 
S32 Practical pairwise testing for software product lines SPLC (ACM) 2013 (Marijan et al., 2013) 
S33 Properties of realistic feature models make  
 combinatorial testing of product lines feasible MODELS (Springer) 2011 (Johansen et al., 2011b) 
S34 PROW: A pairwise algorithm with const raints, order and weight JSS (ScienceDirect) 2015 (Lamancha et al., 2015) 
S35 Reusable Model-Based Testing CAiSE (Springer) 2009 (Olimpiew and Gomaa, 2009) 
S36 Similarity-based prioritization in software product-line testing SPLC (ACM) 2014 (Al-Hajjaji et al., 2014) 
S37 Strategies for product-line verification: Case studies and experiments ICSE (IEEE) 2013 (Apel et al., 2013) 
S38 Testing a data-intensive system with generated data interactions CAiSE (Springer) 2013 (Sen and Gotlieb, 2013) 
S39 testing product generation in software    (Lamancha and 
 product lines using pairwise for features coverage ICTSS (Springer) 2010 Usaola, 2010) 
S40 Testing variability-intensive systems using automated analysis:  
 An application to Android SQJ (Springer) 2014 (Galindo et al., 2014) 
S41 The Drupal framework: a case study to evaluate variability testing techniques VaMoS (ACM) 2014 (Sánchez et al., 2014b) 
S42 Towards efficient SPL testing by variant reduction VariComp (ACM) 2013 (Kowal et al., 2013) 
S43 Using feature model knowledge to speed up the generation of covering arrays VaMoS (ACM) 2013 (Haslinger et al., 2013) 
S44 Variability testing in the wild: the Drupal case study SoSyM (Springer) 2015 (Sánchez et al., 2015) 
Event/Publisher Description: 
CAiSE - International Conference on Advanced Information Systems Engineering  
CEC - Congress on Evolutionary Computation 
ESE - Journal of Empirical Software Engineering 
EuroPLoP - European Conference on Pattern Languages of Programs  
GECCO - The Genetic and Evolutionary Computation Conference 
HASE - International Symposium on High-Assurance Systems Engineering  
ICSE - International Conference on Software Engineering  
ICSEA - International Conference on Software Engineering Advances  
ICSM - International Conference on Software Maintenance  
ICST - International Conference on Software Testing, Verification and Validation  
ICSTW - International Conference on Software Testing, Verification and Validation Workshops  
ICTSS - International Conference on Testing Software and Systems  
ISSRE - International Symposium on Software Reliability Engineering  
ISSTA - International Symposium on Software Testing and Analysis  
JSS - The Journal of Systems and Software  
MODELS - International Conference on Model Driven Engineering Languages and Systems  
PLEASE - International Workshop on Product Line Approaches in Software Engineering  
SPLC - International Software Product Line Conference  
SQJ - Software Quality Journal 
SSBSE - International Symposium on Search Based Software Engineering  
SoICT - International Symposium on Information and Communication Technology  
SoSyM - Software & Systems Modeling  
TSE - Transactions On Software Engineering  
VaMoS - International Workshop on Variability Modeling of Software-Intensive Systems  
VariComp - International Workshop on Variability and Composition 
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Results 

Various approaches have been reported and 
evaluated towards feature configuration testing of SPL 
systems. Most solutions were mainly built using the 
Combinatorial Interaction Testing approach, followed 
by its integration with other optimization approach 
such as Search-Based and Logic-Based. This section 
presents what have been achieved so far and how it 
was done in terms of effective utilization of CIT 
approach in SPL domain. 

Adaptation and Application of Combinatorial 

Interaction Testing to SPL Testing 

Combinatorial Interaction Testing (CIT) is one of 
the most common and promising test configuration 
selection approach employed to reduce the number of 
selected products hence the test configuration in SPL 
testing (Lamancha et al., 2013). The goal of test 
configuration selection is to reduce the set of feature 
combinations to a reasonable but representative set of 
products achieving a high coverage of feature 
interactions. Test configuration are selected in a way 
that guarantees that all combinations of t features are 
tested, this is called as t-wise testing (Perrouin et al., 
2010). One of the well-known variants of 
Combinatorial Interaction Testing is the 2-wise (or 
pairwise) testing approach (Lamancha and Usaola, 
2010). In pairwise testing, one generates all possible 
combinations of pairs (two) of features based on the 
observation that most faults originate from 
interaction of two features. 

Following the CIT strategy, one has to construct 
a Covering Array (CA) that consists of complete or 
partial t-wise sub-array where t is defined as the 
strength of feature combination. The strength is 
simply the number of features considered or chose 
to be the subject of testing. For pairwise/2-wise, the 
strength is 2, 3-wise having strength of 3 and so on. 
Generating such CA is known as NP-hard problem 
(Johansen et al., 2011a), because the number of 
possible features to be combined grows 
exponentially with the number of features designed 
for a particular SPL. For this reason, there is a need 
for an efficient and practical strategy for t-wise 
generation in order to get the most optimum set of 
combinations within an affordable testing cost. 
Thus, there is a trade-off between the completeness 
of t-wise test generation and minimization of testing 
effort. One might settle with partial t-wise test 
generation in order to achieve acceptable and 
affordable cost of testing, especially for large SPLs. 
This obstacle has driven many to search for viable 
approach to construct covering array. 

Types of Approaches Employed to Generate 

Covering Array (CA) Generation Techniques and 

T-Wise Strength 

There are five groups of CA generation techniques 
as presented in Table 4. The most prominent approach, 
which is based on greedy algorithm, are proposed in 25 
primary studies. It is followed by meta-heuristics 
algorithms, employed in 11 primary studies. Three 
works are categorized in constraint programming 
approach, whereas two and one primary studies are 
reported in divide and compose and integer 
programming technique, respectively. Refer to Table 3 
for the primary studies title and citation. 

As previously mentioned, an important attribute in 
CIT is the strength of t-wise. The strength should be 
carefully selected during the construction of covering 
array in CIT as it will determine the extensiveness of 
combination or interaction of different features; that 
eventually will be evaluated in the testing process. The 
most investigated strength reported in the selected 
primary studies is pairwise (2-wise) strength, which 
accounted for 55% (24) from all reviewed work. 13 
publications (30%) have empirically evaluated their 
solutions for up to 3-wise covering array. Three 
publications (7%) reported the evaluation for up to 4-
wise covering array and only two works managed to 
scale their work for up to 6-wise strength. 

Most works claimed that they able to scale for higher 
strength (t>=4), however only five works are proven 
to be viable. Although it is proven that lower strength 
of covering array (t<4) reveals most faults, bear in 
mind that higher strength of covering array (t>=4) 
could reveal residual faults especially for large SPL 
systems with high number of features. Here we define 
the notion of residual faults as the remaining faults 
that are not detected or revealed by CIT exercising t-
wise of strength less than 4. 

In terms of overall trend, it seems that greedy-based 
algorithms dominated the CA generation for up to 3-
wise. For higher strength, based on the evidence, it 
seems difficult, if not impossible, to generate CA, 
since only single work is reported for each meta-
heuristics and greedy algorithms. 

Techniques to Handle Constraints in Feature Model 

An important attribute in a Feature Model, apart 
from features and its relationship (mandatory, optional, 
or, exclusive or), is feature constraints (requires, 
excludes). Constraints are used to define relationships 
between features that are difficult, if not impossible, to 
be sketched in the Feature Diagram. The presence of 
constraint is unavoidable as it determines the usability 
and practicability of an SPL. Relationships and 
constraints can normally be specified using 
Conjunctive Normal Form (CNF) defined using 
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Boolean Logic using AND, NOT and OR. Table 5 
shows the mapping table used to transform the Feature 
Model into CNF. 

The Feature Diagram in Fig. 2 depicted how 
constraints can be included in the definition of a Feature 
Model. One can use either Propositional Logic, or 
Boolean Logic, or both to define the feature constraints. 

On most cases, one can reduce the number of 
feature combinations if constraints are introduced in 
the Feature Model. Constraints impose significant 
influences to a Feature Model. It can make a number of 
feature configurations invalid with respect to some 
strict requirements of an SPL. 

Since constraint handling is crucial towards 
selection of valid feature configuration, it is therefore 

beneficial to extract and report all available techniques 
to handle constraint in this review work. The result in 
Table 6 shows that only 26 primary studies (59%) 
mentioned or dealt with constraint handling in guiding 
them to generate valid feature configurations. The most 
frequently employed technique is using Boolean 
satisfiability (SAT) solver. A total of 17 primary 
studies employed this technique; where mostly (nine) 
works apply this with Greedy covering array 
generation technique. One paper reported for each 
Model Checker and Invalid Tuple approach. There is 
also one paper suggesting to manually specify the rule, 
given by the domain expert. The remaining six papers 
mentioned about including constraint handling 
treatment but did not explicitly specify the details. 

 

 
 

Fig. 2. An example of a constrained feature diagram for ECommerce SPL 
 
Table 4. Distribution of primary studies based on covering array generation techniques and t-wise strength 
 CA generation techniques 
 ——————————————————————————————————————————— 
 Integer Divide and Constraint Meta-   
t-wise Strength programming compose programming heuristics Greedy 
Pairwise/2-wise S27 S7, S38 S29, S32, S40 S1, S2, S3, S6, S4, S8, S13, 
    S14, S17, S24, S28 S20, S22, S25, 
     S26, S34, S39, S42 
3-wise    S23 S5, S9, S11, 
     S12, S15, S18, 
     S21, S30, S36, 
     S37, S41, S43 
4-wise    S19 S33, S44 
6-wise    S10 S16 
 
Table 5. Propositional and Boolean logic mapping table for relationship and constraints 
Relationship  Propositional logic  Boolean logic 
Optional fi⇒fj ¬fi∨fj 
Mandatory fi⇔fj (¬fi∨fj)∧(fi∨¬fj) 
Or fi OR fj fi∨fj 
Exclusive Or fi XOR fj (¬fi∧fj)∨(fi∧¬fj) 
 

Constraint 
Requires fi⇔fj ¬fi∨fj 
Excludes fi XOR fj ¬(fi∧fj) 
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Table 6. Employment of constraint handling and covering array generation techniques 
 Covering array generation techniques 
 ————————————————————————————————— 
Constraint handling techniques Meta-heuristics Greedy Integer programming 
SAT ●●●●●●● ●●●●●●●●● ● 
Model checker  ● 
Invalid tuple  ● 
Given rule  ● 
Unnamed ● ●●●●●  
 

Evaluation of the Proposed Techniques 

Since most of current works are focusing on lower 
strength (less than 4) of t-wise combinations of features 
(Henard et al., 2014), it is interesting to ask whether this 
phenomenon has any co-relation with the size of the data 
sets that were utilized in the experiments. 
Type and Size of Data sets Utilized (Industrial or 

Open-Source Data Sets) 

Currently, a wide sets of data or case studies have 
been developed and published publicly by the 
community. In this review, those data sets that are 
published publicly are considered as open source data 
sets. Else, it is considered as industrial data sets. The 
open source data sets were either pulled out from 
academic publications or other repositories. A number of 
open source repositories that contain various types and 
sizes of feature models are identified. The main purpose 
of the repository is to encourage knowledge sharing 
among research community members and ultimately 
improve research quality. The five main repositories are 
SPLOT, Reverse Engineering Feature Models, SPL 
CONQUEROR, Feature House and SPL2GO. Those 
anonymous repositories are categorized as Others. 

Based on the selected primary studies, there are a total 
of 111 different data sets utilized. About 89% (99) of all 
data sets are coming from open source feature models. 
About 12 data sets are identified as industrial data sets. 
For open source data sets, majority of the primary studies 
validated their works on lower strength (2 and 3-wise) 
CIT, which accounted for 80% (79 data sets). Only four 
data sets (Cellphone, Linux, FreeBSD and eCos) have 
been utilized against 6-wise and the remaining 17 data sets 
with 4-wise. This shows that current techniques that were 
evaluated against open source data sets are somehow 
limited to lower strength t-wise. It is to our surprise that 
only single technique (S10) managed to generate 6-wise 
for the biggest open source data set i.e., Linux (having 
6888 number of features). The trend for industrial data 
sets corroborated this phenomenon, where only single (out 
of 12) data set, named as OSEK-OS, is reported to be 
utilized in measuring 6-wise CIT for SPL. Nearly 60% of 
all industrial data sets were reported to be utilized in 
measuring only 2-wise CIT. 

Looking at the size of data sets, only four data sets 
(Linux, GCC_2, FreeBSD and eCos) are considered as 

large in this review, which is having number of features 
greater than 1000. The majority of the data sets which is 
68% (76 data sets) is coming from small data sets having 
number of features less than or equal to 50. 

Comparison and Evaluation Metrics 

A number of tools implementing their respective 
techniques for CIT-based SPL testing are available. 
Some of the earliest published tools are mAETG (S23), 
CASA (S6) and MoSo-PoLiTe (S8). It is one the 
objective of this review to find all evidence of the 
empirical works that perform comparison between the 
proposed solution in each primary studies with some 
other tool (s). This is important as it provides proof on 
the performance of the proposed technique with respect 
to other earlier techniques. 

Based on the information presented in Table 7, the 
most frequently chosen techniques that were used as 
comparison are variant of CASA (in 5 primary studies), 
variant of ICPL in 4 primary studies and variant of 
AETG in 3 primary studies. Most of the papers (6 
studies) performed the comparison with random 
technique, whereas three studies employ human 
knowledge in defining the selection of test cases, to be 
compared with their proposed techniques. Apart from 
that, it is also to our surprise that some of the works had 
been using a number of non-SPL based testing tools 
(ACTS in 4 primary studies, PICT in 3 primary studies, 
TestCover in two studies, Chvatal and Jenny each in 
single primary study) in their empirical works. 

To gauge the achievement of current techniques, we 
also collect information on the evaluation metrics that 
were used to measure the performance. Table 7 and 
Table 8 shows 12 different evaluation metrics extracted 
from the selected primary studies. The most frequently 
employed evaluation metrics are Covering Array Size 
(CAS) and Overall Execution Time (OET), in which 
each accounted for almost 30% of all evaluation 
metrics. The Feature Pairwise Coverage (FPC) metrics 
appeared in 7 papers and as the name implies, it is only 
used in pairwise CIT testing. Apart from FPC, other 
evaluation metrics that measure the performance in 
terms of covering array size are Test Minimization 
Percentage (TMP) (in 3 papers) and t-wise Coverage 
(TWC) (in 4 papers). 
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Table 7. List of tool names, compared techniques and evaluation metrics 
   Evaluation metrics 
Primary Tool name/ Compared —————————————————————————————————— 
Studies Algorithm With AEF APFD CAS Cost FDC FPC GD HV OET TCS TMP TWC Other 
S1  Enhanced- 
 SPLAR  Random   √ 
S2  PPGS  pICPL    √      √ 
S3 IPT (Import 
 Plugin and 
 Transformation) Manual  √     √  √    √   √ 
S4 CVL-based 
 Eclipse Plugin none              √ 
S5  ICPL Alg.1, CASA, 
  ACTS, 
  MoSo-PoLiTe   √       √ 
S6  CASA mAETG 
  (modified AETG)   √       √ 
S7 Perrouin  none             √ 
S8  MoSo-PoLiTe none    √       √ 
S9  Johansen  none    √ 
S10 Enhanced- ACTS, CASA, 
 SPLCAT SPLCAT, CASA-n   √           √ 
S11 Sisodia  Jenny             √ 
S12  LOOKUP  PICT, SPLCA    √       √ 
S13  CitLab  ACTS    √       √ 
S14  Lopez-Herrejon  none    √    √  √  √  √ 
S15  Cohen  AETG    √       √ 
S16  FOT-nw  FOT    √ 
S17  TEMSA  Random  √     √  √    √   √ 
S18  VIBeS  none    √ 
S19  Enhanced mAETG 
 CASA (modifiedAETG)   √       √ 
S20  MPFM  none      √     √ 
S21 pICPL  none             √ 
S22  MoSo-PoLiTe none    √       √ 
S23  mAETG and PICT, 
 SA_SAT TestCover   √       √ 
S24  Wang  Random  √     √  √    √   √ 
S25  Lochau  none    √       √ 
S26  MoSo-PoLiTe none             √ 
S27  Lopez-Herrejon none    √       √ 
S28 Henard  Random    √  √  √  
S29  PACOGEN  MoSo-PoLiTe    √ 
S30  MoSo-PoLiTe none    √ 
S31  Perrouin  none    √       √  √   √ 
S32  Enhanced Manual 
 PACOGEN Technique      √ 
S33  Johansen  none    √       √ 
S34  PROW PICT, TestCover 
  ACTS, CASA   √       √ 
S36  Enhanced- ICPL, CASA, 
 FeatureIDE CHVATAL, 
  Random     √ 
S37 SPLVERIFI ER  none      √     √ 
S38  FAKTUM  Manual     √     √ 
S39  Customizable  
 AETG  none             √ 
S40  TESALIA  Random             √ 
S41and S44 Sánchez  none   √ 
S42 and S43 Enhanced ICPL ICPL    √       √ 
Note: Italicised tool/algorithm names are unavailable, hence name of the first author is used. 
Acronyms: 

 AEF: Average Execution Frequency APFD: Average Percentage of Faults Detected CAS: Covering Array Size  
 FDC: Fault Detection Capability FPC: Feature Pairwise Coverage GD: Generational Distance 
 HV: Hypervolume OET: Overall Execution Time TCS: Test Config Similarity 
 TMP: Test Minimization Percentage TWC: t-wise Coverage 
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Table 8. Evaluation metrics 
Evaluation metrics Count of usage % 
AEF  3  3.53 
APFD  4  4.71 
CAS  24  28.24 
Cost  1  1.18 
FDC  6  7.06 
FPC  7  8.24 
GD  1  1.18 
HV  1  1.18 
OET  24  28.24 
TCS  1  1.18 
TMP  3  3.53 
TWC  4  4.71 
Unknown  6  7.06 

 

 
 
Fig. 3. Distribution of studies based on test selection or test 

prioritization 
 

Two evaluation metrics that measure the number of 
faults are Average Percentage of Faults Detected 
(APFD) and Fault Detection Capability (FDC). APFD 
appeared in 4 papers, whereas FDC appeared in 6 papers. 

Two measurement metrics, unique to multi-objective 
problems, that were employed to measure the quality of 
Pareto fronts are Hypervolume (HV) and Generational 
Distance (GD) and they appeared only in one paper. The 
remaining two evaluation metrics are Test Config Similarity 
(TCS) and Average Execution Frequency (AEF) which 
appeared in one and three primary studies, respectively. 

In terms of the number of evaluation metric techniques 
employed, 20 primary studies use two evaluation metrics, 

18 studies use one evaluation metrics, four primary studies 
use five evaluation metrics and one primary studies 
employed one evaluation metrics each. 

Contribution of the Proposed Techniques 

Many have proposed combinatorial interaction 
testing techniques that employ systematic selection, 
guided prioritization, or combination of both and this 
review managed to capture those papers, as per 
summarized in Fig. 3. Test selection has long been the 
driving motivation for SPL combinatorial testing, as 
early as the year 2007 with one primary study reported. 
The quantity starts to increase to five studies in 2011 and 
keeps increasing to 11 studies in 2013. On the other 
hand, test prioritization only appears under 
combinatorial testing for SPL in year 2012 with single 
publication. The study doubles in 2013 and in year 2014 
the reported published studies peaked to five. The 
number gets reduced to three studies in 2015. 

Test Configuration Selection 

As previously mentioned, the obstacle faced in 
selecting test configuration in SPL is due to the huge 
number of possible test configuration that can be 
constructed even for medium size SPL systems. The 
problem was compounded by the difficulty in handling 
constraints, exhibit in the feature model, as the 
presence of constraints are un-avoidable. Constraint 
handling in test configuration selection first appeared in 
year 2007 by S23 (tool named mAETG). A lengthy 
discussion on constraint handling techniques was 
presented and they introduced the concept of forbidden 
tuples. mAETG was extended in S15 in 2008 and they 
exploited the current covering array generation with an 
open constraint handling technique called as Constraint 
Covering Array (CCA). The building block of mAETG 
was based on Simulated Annealing (SA). Similarly, in 
primary study S6, CASA has been fabricated using SA, 
a year later, whereby two improvements have been 
proposed in CASA, as (i) modified strategy for 
selecting sample size and (ii) changing the 
neighborhood of current solution. CASA has been 
extended in S19 with more thorough evaluation. 

In 2010, primary study S39 proposed an adaptation of 
non-SPL CIT technique to tackle test configuration in 
SPL, coined as Customizable AETG. During the same 
year, primary study S7 proposed a systematic way to 
sample small sets of test cases, using “divide-
andcompose” strategy. It splits t-wise combinations into 
solvable subsets. Then each subset is solved using 
constraint solver. S8 and S26 proposed a tool named as 
MoSo-PoLiTe, implementing technique that combines 
graph transformation, CIT and forward checking. It was 
based on the notion of applying transformation of feature 
models allows a simpler processing of SPL model 
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especially in a more complex SPL. MoSo-PoLiTe was 
further extended in S30, implemented Combinatorial 
Design (CD) approach that combines pairwise with 
model-based testing by transforming feature models into 
state charts. An industrial evaluation of combinatorial 
SPL testing using MoSo-PoLiTe was performed at 
Danfoss Power Electronics A/S and reported in S22. 

In 2011, PACOGEN introduced in S29 and proposed 
a definition of global constraint and filtering algorithm to 
select only valid test configurations. It was further 
enhanced in S32 and validated on industrial setting of 
Video Conferencing SPL (VCSPL). Apart from that, 
Johansen et al. have published S33, in which a technique 
based on Chvátal and SPLAR has been proposed. It was 
empirically tested with numerous data sets and managed 
to generate covering array of t-wise with strength up to 
4, of which many state-of-the-art techniques failed to 
achieve. Later in 2012, primary study S25 had proposed 
the mapping of feature models to state charts and the 
mapping was used as test model to generate test 
configuration. Meanwhile, S4 proposed a CVL-based 
Eclipse plugin that integrates SPL and Agile based 
system. They proposed a solution able to deal with 
compatibility issues among features in continuous 
integration phase. 

Driven by the promising achievement in S33, Johansen 
et al. extended their work in S5. They published the tool 
named ICPL, capable of processing large feature models, 
better execution time and most importantly produced 
small covering array. They used the fact that a (t-1)-wise 
is always a subset of the t-wise, thereby creates lower 
strength recursively to build up a higher strength 
covering array. Extending the framework of ICPL, S43 
introduced two reduction rules to eliminate some 
features from the FM to enhance CA generation process. 
Similarly, by extending ICPL, S42 proposed a filter to 
reduce set of features and suggested extension of feature 
models with three attributes, which is shared resources, 
communication channels utilized and feature priorities. 

A year later, apart from MoSo-PoLite, another work 
reported in S20 (tool named MPFM), also dealt with 
industrial-based SPL, called as Site X. Their approach 
is quite similar to the notion of regression testing, 
where their main concern was to improve the process 
of testing an entire product during software evolution. 
Their main contribution was the introduction of 
separation of concerns (modularization) of feature 
models into multiple perspectives. Features from FM 
are grouped into multiple perspectives. Instead of 
using feature as parameter and true/false as values, 
MPFM use perspective as parameter and features of 
perspective as values. MPFM stands for Multi-
Perspective Feature Models. 

CitLab has been reported in S13 as a 
Combinatorial Interaction Model (CIM) that 

implements simplification of constraints thru 
elimination, which reduce the time required by the 
constraint checking process. Another transformation-
based technique proposed in S16, which transform 
feature model into extended logic tree. 

Having many testing goals in test configuration 
selection is sometimes unmanageable. The goals might 
go against each other. To overcome this issue, study S28 
utilized a genetic algorithm to handle multiple 
conflicting objectives in test configuration selection for 
SPLs. They formulate the pairwise coverage, number of 
products and testing cost as three objective functions. 
Generally, they dealt with SPL testing by exploring the 
possibility of achieving multi-objective CIT 
optimization. Another work, S24, also employ multi 
objectives fitness function to optimize CIT based on 
genetic algorithm. It is extended as a tool named IPT in 
primary study S3, which proposed Component Family 
Model (CFM) that provides traces between test cases and 
feature models. IPT has been validated in an industrial 
setting of SATURN SPL. 

Another approach proposed in S27 employs integer 
programming in test configuration selection to anticipate 
the trade-offs between maximizing test coverage and 
minimizing test suite size, based on the non-domination 
of any testing objectives. A more recent work in S14 
proposed similar multi-objectives optimization based on 
the work of CASA but with improvement in seeding 
strategy. They suggested the seeding strategies to be 
based on three information; (i) test suites size, (ii) test 
suites that were generated using greedy algorithm and 
(iii) test suites that were generated using an existing 
single-objective pairwise testing approach. 

A tool chain called as SPLVERIFIER was published 
in S37. It has the capability to select product for testing 
using either product-based, sample-based or family 
based model checking. They claimed that family-based 
model checking allows for better fault detection 
compared to the other two. Meanwhile, FAKTUM, 
published in S38 was the only work that attended the less 
studied area of SPL testing which is testing the data 
intensive SPL system. They proposed a divide-and 
combine strategy to tackle feature interaction problem 
using Generated Data Interactions. 

Primary study S12 published a tool named 
LOOKUP in 2014, which they claimed employed an 
efficient algorithm based on validity checking using 
minimum invalid tuples (MITs). Recently, in 2015, 
TEMSA has been published in S17, which acts as a 
recommender tool that suggests an appropriate meta-
heuristics algorithm based on the selected objective 
function. It supports three families of meta-heuristics 
algorithms, i.e., Evolutionary Algorithm (EA), 
Particle Swarm Optimization (PSO) and Cellular 
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Genetic Algorithm + Differential Evolution (CellDE). 
They defined five objective function that user can 
select, i.e., Test Minimization Percentage (TMP), 
Feature Pairwise Coverage (FPC), Fault Detection 
Capability (FDC), Overall Execution Time (OET) and 
Average Execution Frequency (AEF). Another work, 
referred here in S18, proposed a feature transition 
system that can be used to evaluate behavioral 
coverage of a particular test configuration. Their 
approach has been implemented in VIBeS. 

Test Configuration Prioritization 

The employment of test prioritization approach 
driven by Combinatorial Interaction Testing for SPL first 
appeared in year 2012. Primary study S21 (with tool 
named pICPL) focused on industrial setting of TOMRA 
SPL, where the main problem that they were dealing 
with was unrealistic effort in generating test 
configuration. Their most significant contributions were 
to generate covering array by weight-based prioritization 
of feature interactions. Weight is calculated based on the 
number of product instances (exists in the market), 
which results in fewer and more realistic set of product 
to be tested. This allows the same covering array to be 
generated on every execution. 

Similarly, weight-based criteria had been exploited 
by MPFM (S20), TESALIA (S40), S41, S44 and PROW 
(S34) to achieve test configuration prioritization. The 
weight for features is determined by a given feature 
important ratings (S20). For TESALIA, weight is 
assigned by feature value and cost, in which cost is 
defined explicitly as the number of configuration that 
include a specific feature. Cost per product instance is 
calculated based on the number of concrete features, 
whereas value is calculated based on the market share of 
each feature. For S41, prioritization of test configuration 
is achieved by analyzing historical faults. Faults in 
Drupal system are captured in the project’s issue 
tracking system. The issue tracking system of two 
Drupal versions were manually searched in order to 
extract faults in system evolution. Faults were mapped 
with features and the higher the number of faults, the 
higher the weight of a particular feature towards 
prioritization. In an extension to S41 (S44), apart from 
change driven weight assignment based on faults, they 
also proposed product complexity criteria, product 
dissimilarity criteria and non-functional properties of 
features to guide in the prioritization process. Recently, 
S34 introduced the notion of pair weight to mark pairs of 
features that are more significant to be tested, thereby 
imposing prioritization. However, weight is pre-assigned 
based on testers' knowledge, hence it prioritization is 
driven by human factor. 

Meta-heuristic techniques have been proposed in S2 
(PPGS), S28, S1 and S10 to further improve test 
configuration prioritization results. In S28, 
multiobjective optimization approach has been leveraged 
as their prioritization technique. The criteria for 
prioritization that they proposed were to maximize 
pairwise coverage and minimize number of products and 
cost. Another approach on prioritization that were based 
on genetic algorithm is cited here as S1 (Enhanced-
SPLAR). The approach employs five criteria to assist in 
test configuration prioritization, i.e., (i) Cross-Tree-
Constraints Ratio (CTCR), (ii) Coefficient of 
Connectivity-Density (CoC), (iii) Variability Coverage 
and Cyclomatic Complexity (VC&CC), (iv) Number of 
Reused Features and (v) Product Dissimilarity. As 
opposed to multi-goal in S28, S1 aimed at achieving 
single goal, which is to detect fault as early as possible. 

A more recent study reported here (S10) take 
advantage of the simplified evolutionary algorithm, (1+1) 
EA, with single population size, no crossover operator and 
simple bit-wise mutation operator. S2 proposed parallel 
genetic algorithm in 2014. The criteria for prioritization 
proposed by them are based on nonfunctional criteria, 
which consist of estimation of performance, memory 
consumption and footprint. They also utilized product 
dissimilarity criteria, based on ranking, as opposed to S1 
and S10, which employs Jaccard Distance algorithm. 
Product dissimilarity has also been applied by S36 using 
Hamming Distance algorithm. Prioritization goals and 
prioritization criteria for the relevant primary studies are 
summarized in Table 9. 

Parallelization of the Process 

Realizing on the set back of the scalability aspect in 
terms of covering array generation time, few primary 
studies are already moving one step further by 
accelerating the process with parallelization. Two 
categories of parallelization have been identified. The 
first one is based on cluster, proposed by three primary 
studies S2, S14 and S27. The second category is based 
on data parallel, employed by primary study S5 (ICPL). 
Parallelization based on clusters requires the availability 
of tens to hundreds of physical dedicated machine, 
which logically being managed by a cluster manager. 
Due to its more simpler implementation and deployment, 
cluster based parallelization is more favorable than data 
parallel, which require more customized codes and 
settings. It is interesting to highlight that all the three 
studies under cluster based parallelization only managed 
to achieve t-wise of strength 2, whereas the data parallel 
approach employed in ICPL managed to scale up to 3 
twise strength. We also found that this parallel version of 
ICPL is the only tool that is capable of generating 
covering array for Linux data set, the largest data set 
reported in this review. 
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Table 9. Prioritization criteria and prioritization goals 
Prioritization criteria      Prioritization goals 
————————————————————————————————————— ——————————————————————————————— 
       Early Higher Small Maximize Maximize 
Primary  Product # of reused Products Non- Weight-  fault fault covering weight T-Wis 
study complexity Features dissimilarity functional Based Other detection detected array Coverage Coverage Other 
S1 CTCR,  Jaccard 
 CoC, VCCC Yes distance   Random Yes  
S2   Ranked- Performance,  Random Yes  Yes 
   Based memory 
    consumption, 
    footprint  
S10   Jaccard 
   distance        Yes 
S20     Feature   Yes Yes 
     importance 
     ratings 
S21     Product     Yes 
     instances 
S28      Random   Yes Yes Yes Minimize 
           (Pairwise) cost  
S34     Knowledge     Yes 
     based 
S36   Hamming    Yes     Maximize 
   distance         interaction 
            coverage 
S40     Feature     Yes 
     value and 
     cost 
S41     Historical  Yes 
     faults 
S44  VC,CC  Jaccard Size Historical 
    distance  faults  Yes 

 
Discussion 

Covering Array Generation Techniques 

The influence and effectiveness of search-based 
techniques in SPL combinatorial testing is still under-
explored, because there are still lack of work in 
employing metaheuristics algorithms in covering array 
generation as compared to greedy algorithms for t-wise 
testing of strength less than 4. On the other hand, there 
are some evidence that show the viability of both 
approach in generating CA for higher strength of t-wise. 
However, all works are dealing with only uniform 
strength of t-wise covering array. They set a fixed and 
single value of t during the covering array construction, 
hence exercising uniform combination of features. An 
alternative or perhaps a complementary strategy is to 
consider a varying number of t, which is called as 
variable strength of t-wise. This strategy is widely 
accepted in non-SPL testing. Interactions do not exists 
uniformly between inputs or parameters (Nie and Leung, 
2011). Some inputs or parameters will have strong 
interactions with other parameters, while some others 
may have few or no interactions. Similarly in SPL, 
some group of features have more critical processes 
and requires much more features to support its 
operations as oppose to other less critical features. 
While lower t-wise strength might be sufficient in 
testing the less critical features, a higher t-wise 
strength could be needed to effectively test the more 
critical features. To the best of this review process, 
none of current state-of-the-art of CIT approaches in 

SPL deal with variable strength of combinatorial 
testing. This has to be further investigated as it could 
possibly improve the effectiveness of SPL testing. 

Data Sets Size 

The results on the type and size of data sets 
utilized by the selected primary studies suggests that 
not only lower strength of t-wise is being handled by 
majority of current works, as what being highlighted 
by Henard et al. (2014), but it is generally limited to 
small and medium sized SPL systems. 

Reduction of Problem Space 

Techniques reported in S7 and S38 suggested that the 
problem space is divisible into smaller problem by using 
divide and compose strategy. Solving the problem in a 
number of small scale problems could hinder the 
difficulties of testing in large scale SPL. In S7, they 
proposed a systematic way to sample a small set of test 
cases. Their strategy is to split the t-wise combinations 
into solvable subsets. The idea is to model the problem 
as a set of constraints and employs a constraint solver to 
find for solutions for subsets of identified constraints. On 
the other hand, S38 proposed a divide and combine 
strategy to tackle feature interaction problem using 
Generated Data Interactions. This idea was inspired by 
the intuition that faults may occurred from interactions 
of database features (e.g., Field values). As compared to 
others, this primary study is the only work attending the 
less studied area of SPL testing which is testing the data-
intensive SPL system. 
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Evaluation Metrics 

Regarding to the evaluation metrics, in general, 
relatively small number of primary studies are focusing 
on faults related metrics, which is only four percent 
reported for Average Percentage of Faults Detected 
(APFD) and seven percent for Faults Detection 
Capability (FDC). Almost one third of the studies were 
measuring based on Covering Array Size (CAS) and 
another one third on Overall Execution Time (OET). 
Although, both (CAS and OET) are beneficial in measuring 
the efficiency of the proposed technique, it is of equal 
important to measure the effectiveness, which could be 
evaluated using faults related metrics. Thus, we perceived 
more works should be conducted to further evaluate the 
effectiveness of CIT in testing SPL-based systems. 

Test Selection and Prioritization 

There have been quite a number of established works 
in non-SPL testing especially in the area of test case 
selection and test case prioritization. This has been 
motivated by the needs to have a more practical and 
economical testing process. It could be achieved by 
systematically selecting subset of test cases or running 
prioritized test cases based on particular testing 
objectives, which normally is to find faults as early as 
possible. Similarly, in SPL, the needs to have an efficient 
and effective testing process have been identified during 
the early years of SPL software paradigm adoption. 
Running all the test cases in an existing test suite can 
results in a large amount of effort or even become 
infeasible due to deadlines and cost constraints. It may 
take few days to complete the test configuration 
generation on an SPL using CIT even with low (2 or 3) t-
wise covering array (Johansen et al., 2012a). To tackle 
this, Combinatorial Interaction Testing techniques that 
employ systematic selection, objective prioritization, 
or combination of both have been proposed by many 
and are still an active research area. Weight-based 
prioritization and product dissimilarity are suggested 
as most popular prioritization approaches. It is to our 
surprise that prioritization based on the number of 
reused features is less considered (one out of eleven) 
by researchers that adopted CIT in SPL. Feature is one 
of the most substantial elements in variability 
modeling of SPL and reusability is one of the must-
have ingredients in SPL. Thus, we expect to see more 
works in prioritizing test configuration using number 
of reused features. 

Parallelization 

A couple of attempts have been seen to incorporate 
parallel processing to speed up the selection and 
prioritization process. However, we suggest this area 
demands further research, because of the lack of work 

especially on handling higher strength of t-wise and 
evaluation against large-scale data sets. 

Threats to Validity 

Several limitations have been identified during the 
review works. Proper treatments have been put in place 
to ensure the review to be as complete and 
comprehensive as possible. The suitability of the search 
terms could be questioned, however to the best of our 
knowledge, all the search terms especially “software 
product lines” and “combinatorial testing” are well 
established and universally accepted in its respective 
context. On the other hand, the accuracy of the search 
strings is also of our concern. Therefore, search strings 
were carefully constructed and suited to each search 
engine. Apart from Boolean operators, we also employed 
proximity operators (i.e., ONEAR, PRE) to get the best 
and precise search results. Regarding to the quality of 
source of primary studies, all primary studies were 
obtained from reliable and reputable sources, coming 
from various academic publication fora. 

Related Works 

This mapping study is focusing on finding evidences 
in the form of primary studies that are related to the 
application of Combinatorial Interaction Testing for 
SPL. An earlier mapping study (Engstrom and 
Runeson, 2011) highlighted that one of the main 
challenge in SPL testing is the large number of tests. 
Reuse of test assets by considering commonalities 
perceived as one way to enable test effort reduction, 
but da Mota Silveira Neto et al. (2011) highlighted that 
there was no general solution that deals with systematic 
reuse in SPL testing. Generally, based on current 
evidences, this review suggests that CIT is a plausible 
approach to minimize the redundancy of test assets. 

A systematic review by Lamancha et al. (2013) 
reported that works have been done on SPL testing on 
different testing phases which includes unit testing, 
integration testing and functional testing. Multitudes of 
works have been reported on functional testing and 
variability testing by exploiting UML models and use 
cases. Other related systematic review performed by 
Machado et al. (2014) only focusing on general 
testing strategies for SPL. The author reported that 
testing strategies can be classified as either selecting 
products prior to testing, or conducting test on 
individual product. Despite of different scope of 
study, it shares a common aim with this mapping 
study, which is to collect and review all relevant 
primary studies towards test effort reduction. 

An orchestrated survey by Khalsa and Labiche 
(2014) provides a comprehensive and lengthy discussion 
on available algorithms and tools based on 
Combinatorial Testing on non-SPL domains. 
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Recently, a mapping study published by           
Lopez-Herrejon et al. (2015) reported that numerous 
works have been done on Combinatorial Interaction 
Testing in SPL, by looking from two perspectives which 
is what phase and how phase of CIT. Similar to our 
work, they also presented state-of-the-art works based on 
the techniques employed in CIT. While their works 
focused on finding evidences based on different phases 
of SPL testing, our work investigate the level of t-wise 
strength in covering array generation towards test 
configuration selection and prioritization. Our work also 
differs from theirs such that we reports on the current 
trend in evaluation metrics employed in CIT testing of 
SPL. Very small number of works evaluates the 
effectiveness (such as APFD) of their approach against 
efficiency measures (such as CAS). 

Conclusion 

SPL testing demands new mechanism due to its 
nature of feature commonality and variability. Feature 
interaction problem of SPL received numerous attentions 
from testing community, hence showing that it is a 
significant issue to be addressed. Combinatorial 
Interaction Testing that employs greedy-based algorithms 
and meta-heuristics algorithms are identified as two 
prominent techniques to anticipate the feature interaction 
problem, thus it is interesting to investigate how well the 
feature interaction problem has been tackled so far. 

Based on this mapping study, it is learnt that most 
studies are focusing on lower strength of t-wise 
combinatorial testing. Over ninety percent of the 
reviewed primary studies were engaging t-wise of 
strength two or three, further substantiating claims made 
by Henard et al. (2014). The main limitation that is 
causing this phenomenon is due to the expensive 
computation time required to deploy higher strength t-
wise testing. The exploitation of Combinatorial 
Interaction Testing technique has long been leveraged on 
single software product development. Some empirical 
results for single software development problem 
suggested that higher strengths are important in detecting 
more faults. Therefore, based on the small quantity of 
studies on high strength t-wise, it is deemed necessary to 
further explore the possible correlation between higher 
strength of t-wise with higher faults detection. Apart 
from that, thus far, we have not discovered any works 
that exploit variable strength covering array in 
Combinatorial Interaction Testing of SPL. It is therefore 
our plan to devise a work towards that direction. 

With respect to meta-heuristics techniques, so far, 
only classical evolutionary algorithms are appearing on 
the primary studies that were engaged in order to 
improve the covering array generation process. 
However, to our best knowledge, there are still no work 
that employs other evolutionary algorithms such as Fruit 

Flies Algorithm, Artificial Fish Swarm Algorithm, 
Firefly Algorithm, Cultural Algorithm and Estimation of 
Distribution Algorithms. While these algorithms 
demonstrate convincing achievements in other area of 
software testing, it might produce a plausible 
contribution towards a better Combinatorial Testing of 
SPL system. 
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