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Abstract: Generators of uniformly distributed random numbers are broadly 

applied in simulations of stochastic processes that rely on normal and other 

distributions. In a point of fact, the uniform random numbers are actively 

used for applications that range from, modeling different phenomena such 

as theoretical mathematics and technical designing, to evidence-based 

medicine. This paper proposes a novel approach which consists of a 

combination of global twister with circular technique and initial 

congruential generation with complete stochastic sequences. It has been 

experimentally confirmed that for complete sequences this type of 

generation provides uniformity in distribution of random numbers. The 

offered program codes include the tuning methods for the generation 

technique where random numbers may take any bit length. Moreover, the 

automatic switching of generator parameters such as initial congruential 

constants depending on intervals for generated numbers is considered as 

well. Demonstrated results of testing confirm the uniformity of distribution 

without any repeated or skipped generated elements. 

 

Keywords: Pseudorandom Number Generator, Stochastic Sequences, 

Congruential Number, Twister Generator 

 

1. Introduction 

1.1. Related Works 

A Pseudorandom Number Generators (PRNG) are 

well-known techniques with broad applications in such 

areas as cryptography (Tusnoo et al., 2003; Ozturk et al., 

2004; Panneton et al., 2006), simulation of stochastic 

processes (Entacher, 1998), comprehensive testing of 

technical systems (Leeb and Wegenkittl, 1997; Park and 

Miller, 1998), medical (Menyaev and Zharov, 2006a; 

2006b; Menyaev and Zharova, 2006; Menyaev et al., 

2006; 2013; 2016; Sarimollaoglu et al., 2014; Cai et al., 

2016a; 2016b) and biological research (Wiese et al., 

2005; Leonard and Jackson, 2015; Juratly et al., 2015; 

2016) and others (Rababbah 2004; 2007; Politano et al., 

2014; 2016; Riguzzi, 2016). In these publications, the 

concept of uniform random numbers in PRNG actively 

uses the operations of bit logic. Great success has been 

found in directions such as linear congruential generators 

(Niederreiter, 1995; Entacher, 1999) and in twisting 

algorithm generators where Mersenne numbers are 

usually used (Matsumoto and Kurita, 1992; 1994; 

Matsumoto and Nishimura, 1998; Nishimura, 2000). 

Important results were received in the use of approaches 

such as Fibonacci numbers (Makino, 1994; Aluru, 1997), 

Blum-Blum-Shub algorithm (Blum et al., 1986) and 

others. However, the issue of the repeatability of 

elements within a given time period and question of 

completeness of sets with elements are important and 

remain to be discussed. 

1.2. Congruential Generators 

According to the concept of congruence or similarity, 

the next following random number xi+1 is created based 

on current one xi in accordance with: 
 

( )1i i
x f x mod m

+
=   (1) 

 

where, mod m defines the interval 0, 1m −   of generated 

numbers. 

Historically the function f(xi) was chosen as linear 

algebraic transformation: 

 

( )i i
f x ax c= +   (2) 

 

The constant coefficients a and с are selected in 

accordance with the properties of required Linear 



Aleksei F. Deon and Yulian A. Menyaev / Journal of Computer Sciences 2016, 12 (8): 363.378 

DOI: 10.3844/jcssp.2016.363.378 

 

364 

Congruential Generator (LCG). Let’s point out on 

example of a generating technique for several random 

numbers N = 8 within small interval 0,7 
  . Choosing a 

short length interval doesn’t break the concept of the 

current study, but it presents the results more obviously 

and in simple visual form. Let’s take the starting point 

as
0

1,7 0,7x    ∈ ⊂    . Also, let’s take into consideration 

all stochastic sequences with 1,7a A  ∈ =    and 

0,7c C  ∈ =   . So, the total volume of possible 

combinations among a, c and x looks as: 

 

( ) ( ) ( )1 7 8 7 392NN card A card C N= ∗ ∗ − = ∗ ∗ =   (3) 

 

Now let’s add to the program code the function 

Repeating() which returns the meaning true if any element 

x from 0 to 7 has the repeating in the stochastic sequence 

having 8 numbers. This approach helps to define the 

congruential uniformity of completeness, i.e., sort out all 

the possible values what could be pointed here as: 
 

/CC r NN=   (4) 

 

where, r is the number of uniform stochastic sequence 

and NN is the total amount of sequences. 
Below is the program code where the programming 

media C# (Schildt, 2010) is used from Microsoft 
Visual Studio 2013; although the same principles may 
be used for the classic programming language C 
(dialect Win32), or for C++ (dialect CLR). It doesn’t 
matter, the result is similar: 
 

static void Main ( string[] args ) 

{ int N = 8;                                            // sequence length 

   Console.WriteLine ( "N = {0}", N ); 

   int NN = 0;                         // total amount of sequences 

   int m = N;                               // modulus of congruence 

   int r = 0;                             // uniform sequence number 

   int[] x = new int[N];                     // stochastic sequence 

   for ( int a = 1; a < N; a++ ) 

      for ( int c = 0; c < N; c++ ) 

         for ( int x0 = 1; x0 < N; x0++ ) 

        {  x[0] = x0;                  // beginning of the sequence 

            for ( int i = 1; i < N; i++ ) 

               x[i] = (a * x[i - 1] + c) % m; 

            NN++;                      // total amount of sequences 

            if ( Repeating(x, N) ) continue;           // repeating 

            Console.WriteLine( "a = {0} c = {1}", a, c); 

            r++;                                         // sequence number 

            Console.Write( "r = {0,4}  ", r ); 

            qWrite( "x = ", x, N, true ); 

         } 

   Console.WriteLine( "Finish" ); 

   Console.WriteLine( "NN = {0}", NN ); 

   double CC = (double)r / NN;        // cong-completeness 

   Console.WriteLine( "CC = r / NN = {0:F4}", CC ); 

   Console.ReadKey();                             // result viewing 

} 

//------------------------------------------------------------------- 

static bool Repeating( int[] x,  int N ) 

{ for ( int i = 1; i < N; i++ ) 

      for ( int j = 0; j < i; j++ ) 

         if ( x[i] == x[j] ) return true;                   // repeating  

    return false;                           // no repeating was found 

} 

//------------------------------------------------------------------- 

static void qWrite( string text, uint[] x, uint N, 

                               bool newstr ) 

{ Console.Write(text); 

   for ( int i = 0; i < N; i++ ) 

      Console.Write( "{0,3}", x[i] ); 

   if (newstr) Console.WriteLine(); 

} 
 

After executing this code the following listing 

appears. It is presented with abridging, for what dash 

line is used: 

 

N = 8 

a = 1  c = 1 

r =   1  x =   1  2  3  4  5  6  7  0 

r =   2  x =   2  3  4  5  6  7  0  1 

- - - - - 

a = 5  c = 1 

r = 29  x =    1  6  7  4  5  2  3  0 

r = 30  x =    2  3  0  1  6  7  4  5 

- - - - - 

a = 5  c = 7 

r = 55   x =   6  5  0  7  2  1  4  3 

a = 5  c = 7 

r = 56   x =   7  2  1  4  3  6  5  0 

Finish 

NN = 392 

CC = r / NN = 0.1429 
 

This listing shows that only 56 uniform sequences are 

found from the total of 392 congruential ones in all 

ranges of possible combinations among a, c and x. In 

other words, we have no complete set of uniform 

sequences, only CC = 56/392 = 0.1429 from the total 

quantity of congruential list and that isn’t much. 

1.3. Modulus in Uniform Sequence 

When generating congruential stochastic sequences 

the following technique is admitted: the operation mod in 

formula (1) above may be replaced by operation of bit 

conjunction. This is possible if generated binary number 

x having length of w bit belongs to interval 0,2 1
w

x
 ∈ −
 

. 

As an example, below is the next program code which 
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uses congruential formula 5x+1 to generate uniform 

sequences consisting of 2
w
 = 8 numbers, where w = 3 is 

the bit length. The initial value x0 = 2 has been chosen by 

chance. In this program code two arrays are created 

independently in accordance with the equations: 

 

( ) ( )1
1 2 5 1 % 8

w

i i i
x ax mod x

+
= + = ∗ +   (5) 

 

( ) ( )1 2
1 &111 5 1 & 0 7

i i i
q aq q

+
= + = ∗ + ×   (6) 

 

The function qWrite() shown previously is used to 

print out the result of task: 

 

static void Main(string[] args) 

{  int w = 3;                                        // number bit length  

    int N = 8;                                           // sequence length 

    Console.WriteLine( "w = {0}  N = {1}", w, N ); 

    int m = N;                              // modulus of congruence 

    int[] x = new int[N];                 // congruential numbers 

    int[] q = new int[N];                 // congruential numbers 

    int a = 5, c = 1;                        // congruential constants 

    x[0] = 2;          // beginning of congruential sequence x 

    q[0] = 2;          // beginning of congruential sequence q 

    for ( int i = 1; i < N; i++ ) 

    {  x[i] = ( a * x[i - 1] + c ) % m; 

        q[i] = ( a * q[i - 1] + c ) & 0x7; 

    } 

    qWrite( "x = ", x, N, true ); 

    qWrite( "q = ", q, N, true ); 

    Console.ReadKey();                             // result viewing 

} 

 

After executing this code the following listing 

appears: 

 

w = 3  N = 8 

x =   2     3     0     1     6     7     4    5 

q =   2     3     0     1     6     7     4    5 

     010 011 000 001 110 111 100 101 

 

In this example the interval length for 8 numbers is 

0,7x  ∈   , which appears in the binary scale as 

2 2
000 ,111x
 ∈
 

 where each number x has the length of w 

= 3 bits. The last string has been added to emphasize the 

completeness of bit filling for the numbers in interval 

2 2
0,2 1 0,7 000 ,111

w    − = =    
. As it’s possible to see, 

the sequence x after applying the programming 

operation of modulus (%) is equal to sequence q after 

applying the programming operation of conjunction 

(&). However, the benefit is in the fact that 

conjunction (&) operation is running significantly 

faster than modulus (%) one. 

1.4. Twisting Generators 

As a base the technology of twisting generator uses 

a bit shifting of binary numbers in the stochastic 

sequence. Partially this approach was used in the 

classic research articles published by Japanese 

researches (Matsumoto and Nishimura, 1998; 

Nishimura, 2000). They have built several generators, 

including the well-known MT19937 (or MT19937-64 for 

the implementation that uses a 64-bit word length), 

which can reach a big value of repeatability as 2
19937

-1 

and that is excellent for some special cases. 

The essence of circular shifting or global twister is in 

the following. If two numbers xi and xi+1 having the same 

bit length w are taken, the next new values are derived 

according to the rule: the bit values taken from number 

xi+1 are successively moved to the left into number xi; at 

the same time, the disengaged bits taken from the left of 

number xi are joined circularly one-by-one to the right of 

number xi+1. So, let’s pay attention to those sequences 

which consist of several numbers having equal bit 

length. Next, we apply twisting algorithm to generate 

such sequences. 

As an example, let’s obtain the twisting shift in 

binary form for w = 3 and for those randomly taken 

numbers x2 = 510 = 1012, x1 = 310 = 0112 and x0 = 610 = 

1102. The structure of this approach may be presented 

as displayed in Fig. 1, where the first two strings are 

considered. The twister 0 is the initial sequence of 

congruential generation, while twister 1 is a result of 

global shifting to the left with a step of 1 bit. In turn, 

the elder bit of initial sequence realizes circular 

movement to the last position on the right in next 

sequence. Following this, the initial sequence 101 011 

1102 = 5 3 610 is twisted into a twisting sequence 010 

111 1012 = 2 7 510. This algorithm is named as a 

twisting technique or a circular twister or a global 

circular twister due to it uses binary shift of all the 

numbers with no bit loss. 

 

 
 

Fig. 1. Circular twister diagram 
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Program code shows the left twister together with 

one additional circular bit shifting for verification. As 

it’s possible to see the last generated sequence is equal to 

the initial one that demonstrates the loop. The function 

BitX() brings out the numbers in binary view, which 

makes it easier to observe the twisting shift to the left by 

1 bit. The function Twist() provides the twister algorithm 

itself, where elder bit of sequence is moved to the end, 

i.e., to the last position on the right. The function 

qWrite() is taken from previous program: 

 

static void Main ( string[] args ) 

{ int w = 3;                                         // number bit length 

   int N = 3;                                            // sequence length 

   int maskW = 0x7;                                  // number mask 

   int maskU = 0x4;                                  // elder bit mask 

   Console.WriteLine( "w = {0}  N = {1}", w, N ); 

   int[] x = new int[] {5, 3, 6};                    // 101 011 110 

   int nwN = w* N + 1;  //amount of twisting iterations+1 

   for ( int k = 1; k <= nwN; k++ ) 

   { Console.Write( "k = {0,2} |  ", k ); 

      BitX( x, w, N, maskW, false );  //bit view of numbers 

      qWrite( " | ", x, N, true );                     // decimal view 

      Twist( x, w, N, maskW, maskU );      // global twister 

   } 

   Console.ReadKey();                              // result viewing 

} 

//------------------------------------------------------------------- 

static void BitX ( int[] x, int w, int N, int maskW,  

                            bool newstr) 

{ for ( int i = 0; i < N; i++ ) 

   { int b = 1 << ( w – 1 ));                 // number beginning  

      for  ( int j = 0; j < w; j++ ) 

      { Console.Write( (x[i] & b ) == 0 ? '0' : '1' ); 

         b >>= 1;                                          // for the next bit 

      } 

      Console.Write( " " ); 

   } 

   if ( newstr ) Console.WriteLine(); 

} 

//------------------------------------------------------------------- 
static void Twist ( int[] x, int w, int N,  
                              int maskW, int maskU ) 
{ int z = ( x[0] & maskU ) >> ( w – 1 );              // left bit 
   for ( int j = 0; j < N - 1; j++ ) 
   { int g = (x[j + 1] & maskU ) >> ( w – 1 ); 
      x[j] = ( (x[j] << 1 ) & maskW) | g; 
   } 

   x[N - 1] = ( ( x[N - 1] << 1 ) & maskW ) | z;       // loop 

} 
 

After executing this program code the following 

listing appears. The first string presents the initial 

sequence of bits which consists of the first three binary 

numbers. For visual convenience, at the last part of each 

string the decimal equivalents of binary numbers are 

pointed out. The next eight strings, from the 2nd to the 

9th, are the result of step-by-step shifting to the left with 

a step size of 1 bit. The 10th string is the same as the 1st 

one what finishes a circular rotation: 

 
w = 3  N = 3 
k =  1 |  101  011  110  |  5 3 6 
k =  2 |  010  111  101  |  2 7 5 
k =  3 |  101  111  010  |  5 7 2 
k =  4 |  011  110  101  |  3 6 5 

k =  5 |  111  101  010  |  7 5 2 

k =  6 |  111  010  101  |  7 2 5 

k =  7 |  110  101  011  |  6 5 3 

k =  8 |  101  010  111  |  5 2 7 

k =  9 |  010  101  111  |  2 5 7 

k =10 |  101  011  110  |  5 3 6 

 

Now we may note here that number 5 is repeated 9 

times, number 3 - 3 times, 6 - 3 times and 7 - 6 times. 

This result looks far from the ideal case in which all the 

generated numbers must be distributed uniformly. 

1.5. Other Generators 

In the theory of computational methods some other 

principles to generate the uniform random numbers are 

considered (Lewis and Payne, 1973; Chandrasekaran and 

Amira, 2008; Pellicer-Lostao and Lopez-Ruiz, 2008; 

Zhou et al., 2009; Bos et al., 2011). Let’s have a short 

look at two general directions. In the first case, most 

techniques are exploring the complicated algebraic 

formulas, or multistep mathematical transformations, 

which is a time-consuming process and so it’s discussible 

to be included in routine practice even for modern fast 

computers. In the second case, the simplest artificial 

mathematical solutions, like so-called Neumann’s middle 

square method (Rahimov et al., 2011), have some severe 

weaknesses such as short loop and then the output 

sequence after a while maybe converted to zero. So, 

while simple and extremely fast to implement, their 

output is of poor quality (Park and Miller, 1998). 

In general, both directions have no hundred-percent 

completeness of sets of non-repeated elements and 

moreover, they are worse than twisting random 

generators for the same tasks. So, in the following next 

sections of current work we propose additional solutions 

for twisting shift operations to improve the level of 

completeness in generation of uniform sequences. 

2. Fundamentals 

In the technology of global twister one of the positive 

results is the appearance of new values of random 

numbers which aren’t presented in the initial sequence. 

As in section 1.4, the last example resulted in two new 
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numbers 010 and 111 after circular shifting of three 

initial numbers 101, 011 and 110. At the same time, the 

negative result is that in all received sequences the 

numbers are repeated non-uniformly. The situation may 

be improved if additional rule shown here in the 

following is applied. 

Let’s consider the issue of random number formation 

with a finite length of w bits in each number. From the 

informatics theory (Knuth, 1997) it is known that bit 

length defines the interval of numbers 0,2 1
w

x
 ∈ −
 

. So, 

the sequence can be named completed if all the numbers 

in it are presented in interval 0,2 1
w −

 
. Thus, complete 

sequence consists of numbers having w bit length each 

and all the numbers in it may be found just once. Let’s 

take this as a rule for the total of N = 2
w
 numbers in 

initial sequence. 

Now let’s find out the answer to the question: would 

the unicity of global twister be saved if initially the 

uniform sequence is taken? The next program code helps 

in finding the answer. As an example let’s take the 

numbers 5, 3, 6, 1, 7, 0, 4, 2 by chance; each of them has 

the length of 3 bits in binary scale. All eight numbers 

together organize a complete uniform sequence with a 

length of N = 2
w
 = 2

3
 = 8 numbers. The use of functions 

BitX(), qWrite() and Twist() is the same as it has been 

shown in section 1.4: 

 

static void Main( string[] args ) 

{ int w = 3;                                        // number bit length 

   int N = 8;                                           // sequence length 

   int maskW = 0x7;                                 // number mask 

   int maskU = 0x4;                                 // elder bit mask 

   Console.WriteLine( "w = {0}  N = {1}", w, N ); 

   int[] x = new int[] { 5, 3, 6, 1, 7, 0, 4, 2 }; 

   int nwN = w * N + 1; //amount of twisting iterations+1 

   for ( int k = 1; k <= nwN; k++) 

   { Console.Write( "k = {0,2} |  ", k ); 

      BitX( x, w, N, maskW, false );                   // bit view 

      qWrite( " | ", x, N, true );                    // decimal view 

      Twist( x, w, N, maskW, maskU );     // global twister 

    } 

   Console.ReadKey();                             // result viewing 

} 
 

After this code executing, a listing below appears: 
 
w = 3  N = 8 

k=  1 | 101 011 110 001 111 000 100 010 | 5 3 6 1 7 0 4 2 

k=  2 | 010 111 100 011 110 001 000 101 | 2 7 4 3 6 1 0 5 

k=  3 | 101 111 000 111 100 010 001 010 | 2 7 0 7 4 2 1 2 

k=  4 | 011 110 001 111 000 100 010 101 | 3 6 1 7 0 4 2 5 

k=  5 | 111 100 011 110 001 000 101 010 | 7 4 3 6 1 0 5 2 

k=  6 | 111 000 111 100 010 001 010 101 | 7 0 7 4 2 1 2 5 

k=  7 | 110 001 111 000 100 010 101 001 | 6 1 7 0 4 2 5 1 

k=  8 | 100 011 110 001 000 101 010 111 | 4 3 6 1 0 5 2 7 

k=  9 | 000 111 100 010 001 010 101 111 | 0 7 4 2 1 2 5 7 

k=10 | 001 111 000 100 010 101 011 110 | 1 7 0 4 2 5 3 6 

k=11 | 011 110 001 000 101 010 111 100 | 3 6 1 0 5 2 7 4 

k=12 | 111 100 010 001 010 101 111 000 | 7 4 2 1 2 5 7 0 

k=13 | 111 000 100 010 101 011 110 001 | 7 0 4 2 5 3 6 1 

k=14 | 110 001 000 101 010 111 100 010 | 6 1 0 5 2 7 4 2 

k=15 | 100 010 001 010 101 111 000 111 | 4 2 1 2 5 7 0 7 

k=16 | 000 100 010 101 011 110 001 111 | 0 4 2 5 3 6 1 7 

k=17 | 001 000 101 010 111 100 011 110 | 1 0 5 2 7 4 3 6 

k=18 | 010 001 010 101 111 000 111 100 | 2 1 2 5 7 0 7 4 

k=19 | 100 010 101 011 110 001 111 000 | 4 2 5 3 6 1 7 0 

k=20 | 000 101 010 111 100 011 110 001 | 0 5 2 7 4 3 6 1 

k=21 | 001 010 101 111 000 111 100 010 | 1 2 5 7 0 7 4 2 

k=22 | 010 101 011 110 001 111 000 100 | 2 5 3 6 1 7 0 4 

k=23 | 101 010 111 100 011 110 001 000 | 5 2 7 4 3 6 1 0 

k=24 | 010 101 111 000 111 100 010 001 | 2 5 7 0 7 4 2 1 

k=25 | 101 011 110 001 111 000 100 010 | 5 3 6 1 7 0 4 2 

 

In this listing there are 24 non-repeatable sequences 

and last, the 25th one, confirms the circular properties 

of twister. However, only 14 of them are satisfied to 

uniformity, i.e., all of the numbers can be encountered 

once. The other 10 sequences have repeatable numbers 

and thus can’t be named as uniform. So, this example 

confirms the fact that even if the random complete 

sequence is taken initially, there is no guarantee that 

global twister creates the complete set of all the unique 

sequences. At the same time, even 14 uniform 

sequences from the total of 24 of them might be 

considered as a good result. 

To obtain a twister having no any repeats we apply 

the congruential generator xi+1 = (axi+1+c)& w for the 

complete set of numbers. The next program code works 

with congruential and twisting techniques of generation, 

thus positive properties from both of them are combined. 

In section 1.2, the function Repeating() provides the 

complete uniform sequences. Each initial congruential 

sequence is created by function Cong_Start() for what the 

values a = 5 and c = 1 are chosen by chance. The 

functions Twist() and qWrite() are taken from section 1.4: 

 

static void Main ( string[] args ) 

{ int w = 3;                                         // number bit length 

   int N = 8;                                            // sequence length 

   int maskW = 0x7;                                  // number mask 

   int maskU = 0x4;                                  // elder bit mask 

   Console.WriteLine ( "w = {0}  N = {1}", w, N ); 

   int[] x = new int[N];                     // stochastic sequence 

   int k = 0;                          // complete sequence number 

   int a = 5, c = 1;                        // congruential constants 

   int x0 = 1;                          // beginning of the sequence 

   Cong_Start ( x, N, a, c, x0, maskW ); 

   Console.WriteLine ( "a = {0}  c = {1}", a, c ); 

   k++;                                                // sequence number  
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   Console.Write ( "k = {0,4}  ", k ); 

   qWrite ( "x = ", x, N, true ); 

   for ( uint i = 1; i < w * N; i++ ) 

   { Twist (x, w, N, maskW, maskU );                // twister 

      if ( Repeating ( x, N ) ) continue; 

       k++; 

      Console.Write ( "k = {0,4}  ", k ); 

      qWrite ("x = ", x, N, true ); 

   } 

   Console.ReadKey();                             // result viewing 

} 

//------------------------------------------------------------------- 

static void Cong_Start ( int[] x, int N, int a, int c, 

                                       int x0, int maskW ) 

{ x[0] = x0; 

   for ( int i = 1; i < N; i++ ) 

      x[i] = ( a * x[i - 1] + c ) & maskW; 

} 

 

After this code executing, a listing below appears: 

 

w = 3  N = 8 

a = 5  c = 1 

k =     1    x =   1  6  7  4  5  2  3  0 

k =     2    x =   3  5  7  1  2  4  6  0 

k =     3    x =   7  3  6  2  5  1  4  4 

k =     4    x =   6  7  4  5  2  3  0  1 

k =     5    x =   5  7  1  2  4  6  0  3 

k =     6    x =   3  6  2  5  1  4  0  7 

k =     7    x =   7  4  5  2  3  0  1  6 

k =     8    x =   7  1  2  4  6  0  3  5 

k =     9    x =   6  2  5  1  4  0  7  3 

k =   10    x =   4  5  2  3  0  1  6  7 
k =   11    x =   1  2  4  6  0  3  5  7 
k =   12    x =   2  5  1  4  0  7  3  6 
k =   13    x =   5  2  3  0  1  6  7  4 
k =   14    x =   2  4  6  0  3  5  7  1 
k =   15    x =   5  1  4  0  7  3  6  2 
k =   16    x =   2  3  0  1  6  7  4  5 
k =   17    x =   4  6  0  3  5  7  1  2 
k =   18    x =   1  4  0  7  3  6  2  5 
k =   19    x =   3  0  1  6  7  4  5  2 
k =   20    x =   6  0  3  5  7  1  2  4 
k =   21    x =   4  0  7  3  6  2  5  1 
k =   22    x =   0  1  6  7  4  5  2  3 
k =   23    x =   0  3  5  7  1  2  4  6 
k =   24    x =   0  7  3  6  2  5  1  4 
 

In section 1.2 we considered an example when initial 

value is taken from interval 
0

1, 1 1,2 1
w

x N   ∈ − = −   
. On 

the other side, the twister allows reaching the set of w⋅N 

= w⋅2
w
 sequences. Now let’s find out the answer to the 

next question: for how many unique non-repeatable 

sequences might be achieved if congruential and twisting 

techniques are combined? It may be assumed that the 

total number of unique congruential sequences, where 

each of them has been generated by twister, is defined as 

(w⋅2
w
)⋅N. However, this assumption is wrong and the 

next testing trial clarifies that. 

With help of function MatrixAdd() the program 

code locates generated congruential and twisting 

sequences in supportive matrix MS. In each string 

there are one sequence and three additional elements. 

The function MatrixCheck() compares the sequences 

in all strings. The first additional element is to plot the 

result of unicity and two others are to locate the 

congruential constants a и c: 

 

static void Main ( string[] args ) 

{ int w = 3;                                         // number bit length 

   int N = 8;                                            // sequence length 

   int maskW = 0x7;                                  // number mask 

   int maskU = 0x4;                                  // elder bit mask 

   Console.WriteLine ( "w = {0}  N = {1}", w, N ); 

   int[] x = new int[N];                     // stochastic sequence 

   int[,] MS = new int[2000, N + 3];                     // matrix 

   int M = 0;                    // amount of sequences in matrix 

   int k = 0;                           // complete sequence number 

   int a = 5, c = 1;                         // congruential constants 

   for ( int x0 = 1; x0 < N; x0++ ) 

   { Cong_Start ( x, N, a, c, x0, maskW ); 

      if ( Repeating ( x, N ) ) continue;              // repeating 

      MatrixAdd ( MS, ref M, x, N, a, c ); 

      Console.WriteLine ( "a = {0}  c = {1}", a, c ); 

      k++;                                              // sequence number 

      Console.Write ( "k = {0,4}  ", k ); 

      qWrite ( "x = ", x, N, true ); 

      for ( int i = 1; i < 24; i++ ) 

      { Twist ( x, w, N, maskW, maskU );            // twister 

         if ( Repeating ( x, N ) ) continue; 

         MatrixAdd ( MS, ref M, x, N, a, c ); 

         k++; 

         Console.Write ( "k = {0,4}  ", k ); 

         qWrite ( "x = ", x, N, true ); 

      } 

   } 

   MatrixCheck ( MS, M, N, 1 );  // coincidence checking 

   Console.WriteLine ( "Matrix of unique sequences" ); 

   MatrixWrite ( MS, M, N );                  // matrix monitor 

   Console.ReadKey();                             // result viewing 

} 

//------------------------------------------------------------------- 

static void MatrixAdd ( int[,] MS, ref int M, 

                                       int[] x, int N, int a, int c) 

{ for ( int j = 0; j < N; j++ ) MS[M, j] = x[j]; 

   MS[M, N] = 0;                            // coincidence number 

   MS[M, N + 1] = a;                                      // constant a 

   MS[M, N + 2] = c;                                      // constant c 

   M++;                           // amount of sequences in matrix 

} 
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//------------------------------------------------------------------- 

static void MatrixCheck ( int[,] MS, int M, 

                                          int N, int bMS ) 

{ for ( int i = bMS; i < M; i++ ) 
   for ( int k = 0; k < i; k++ ) 
   { int j = 0; 
      for ( ; j < N; j++ ) 
         if ( MS[i, j] != MS[k, j] ) break; 
      if ( j == N )                              // coincidence is found 
      { MS[i, N] = k + 1;                   // coincidence number 
         break; 
       } 
   } 
} 
//------------------------------------------------------------------- 

static void MatrixWrite ( int[,] MS, int M, int N ) 

{ for ( uint i = 0; i < M; i++ ) 

   { Console.Write ( "i = {0,5} |", i + 1 ); 

      for ( int j = 0; j < N; j++ ) 

         Console.Write ( "{0,3}", MS[i, j] ); 

         Console.Write ( " | " ); 

         Console.Write ( "{0,3}", MS[i, N] ); 

         Console.Write ( "{0,5}", MS[i, N + 1] ); 

         Console.WriteLine ( "{0,5}", MS[i, N + 2] ); 

   } 

} 

 

The listing below is the result of execution. Dash 

lines show abridgments. So, the total number of all the 

sequences generated by congruential and twisting 

techniques is 7⋅24 = 168 and each of them consists of 8 

different numbers. All those sequences are located in 

matrix MS subsequently. The 2nd part of listing presents 

the result of uniformity checking. If the string includes 0 

(at the first position in the right part of string with 

additional elements) it means that sequence is unique. 

So, the total quantity is w⋅N = 3⋅8 = 24 and those 

sequences are on the first 24 strings of the 2
nd

 part of 

listing. The sequences on strings from 25 to 168 aren’t 

unique because they repeat previous 24 sequences in 

different combinations: 

 

w = 3 N = 8 

a = 5 c = 1 

k =      1    x =   1  6  7  4  5  2  3  0 

k =      2    x =   3  5  7  1  2  4  6  0 

- - - - - 

k =      6    x =   3  6  2  5  1  4  0  7 

- - - - - 

k =    16    x =   2  3  0  1  6  7  4  5 

- - - - - 

k =  167    x =   5  7  1  2  4  6  0  3 

k =  168    x =   3  6  2  5  1  4  0  7 

 

Matrix of unique sequences: 

k =      1 |  1  6  7  4  5  2  3  0 |   0  5  1 

k =      2 |  3  5  7  1  2  4  6  0 |   0  5  1 

- - - - - 

k =    16 |  2  3  0  1  6  7  4  5 |   0  5  1 

- - - - - 
k =    24 |  0  7  3  6  2  5  1  4 |   0  5  1 
k =    25 |  2  3  0  1  6  7  4  5 | 16  5  1 
- - - - - 
k =  168 |  3  6  2  5  1  4  0  7 |   6  5  1 
 

Another interesting fact to note is that congruential 

sequence on string 25 is the same as twisting sequence 

on string 16 and last the 168th twisting sequence is the 

same as the 6th one. 

So, the last received result is that congruential 

technique while generating the random sequences having 

any numbers could be the part of twisting technique. The 

simulation with different bit lengths of w confirms this 

statement. 

3. Parameters 

Showed in previous sections the peculiarities of 

congruential and twisting generators allow us to ask the 

next question regarding design of concrete generator for 

complete uniform stochastic sequences. One of the basic 

characteristics of generator tuning is a bit length w of 

produced numbers. For real technical systems the lengths 

of 16, 24, 32 and 64 bits are demanded. The next 

required parameter is the amount of numbers in each 

sequence. For uniform generating the abundant value N 

= 2
w
 might be taken because this allows convenient 

application of the twisting technique for each sequence. 

Now it’s time to talk about formulas for generation 

the numbers in sequences. Usually initial values are 

derived by using congruential technique in linear mode 

as xi+1 = (axi+c)mod m. For the complete sequences the 

operation mod m may be changed to conjunction with a 

bit length w. This is equal, so can be presented as: 
 

( )1
&

i i
x ax c w

+
= +   (7) 

 
The initial number x0, i.e., seed, for beginning of 

generation may be pointed directly and manually, or by 

using computer timer, i.e., automatically. For complete 

sequences the interest is focusing on numbers which 

belong to interval 0, 1 0,2 1
w

N   − = −   
. In section 2 it 

has been shown experimentally that following two 

directions of generation are possible: 
 

• Create all the initial numbers for initiation of 

generation in current sequence from interval 

0
1,2 1

w

x
 ∈ −
 

 and number 0 hasn’t been using as 

starting point in sequence  
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• Create the initial stochastic sequence by using 

congruential technique and other stochastic sequences 

are generated by using global twister which allows 

getting the sequences with a beginning number 0 
 

In congruential linear formula (7) the parameter a 

is chosen under conditions to reach complete 

sequences for all the numbers having w bit length. It 

is known that uniform sequences having N = 2
w
 

numbers are created when (a-1)mod 4 = 0. For 

example, if w = 3, the sequence is completed and 

consist of N = 2
w
 = 2

3
 = 8 numbers. Thus, the 

parameter a has to be chosen as a = 1 or 5, due to 

possible values belonging to interval 

1, 1 1,7a N   ∈ − =    .  At the same time, if w = 4 the 

parameter a may take the values 1, 5, 9, 13 from interval 

4
1,2 1 1,15a
   ∈ − =   

. By using the program code described 

in section 1.2 the simulation technique may verify this. 

The parameter c in formula (7) above is chosen under 

the same condition to reach complete generated 

sequence. To get this, the parameter c has to be taken as 

odd numbers from interval 1,2 1
w

c
 ∈ −
 

. Simulation 

technique described in section 1.2 may also verify this. 

As an example, the program code below confirms the 

recommendations in choosing of parameters a and c, 

where bit length of generated numbers is taken as w = 4 

and matrix verification of unicity for each sequence is 

done. The functions MatrixAdd(), MatrixCheck() and 

MatrixWrite() are the same as described in section 2: 

 

static void Main ( string[] args ) 

{ int w = 4;                                         // number bit length 

   int N = 16;                                          // sequence length 

   Console.WriteLine ( "w = {0}   N = {1}", w, N ); 

   int maskW = (int)( 0xFFFFFFFF >> (32 - w);  // mask 

   int maskU = 1 << ( w – 1 );                  // elder bit mask 

  Console.WriteLine("maskW = {0:X} maskU = {1:X}",  

                                  maskW, maskU); 

   int[] x = new int[N];                    // stochastic sequence 

   int[,] MS = new int[3000, N + 3];                    // matrix 

   int M = 0;                   // amount of sequences in matrix 

   for ( int a =1; a < N; a += 4 ) 

      for ( int c = 1; c < N; c += 2 ) 

      { int x0 = 1; 

         Cong_Start(x, N, a, c, x0, maskW); 

         if ( Repeating ( x, N ) ) continue;           // repeating 

         MatrixAdd ( MS, ref M, x, N, a, c ); 

         for ( int i = 1; i < w * N; i++ ) 

         {  Twist ( x, w, N, maskW, maskU );        // twister 

            if (Repeating ( x, N ) ) continue;         // repeating 

            MatrixAdd ( MS, ref M, x, N, a, c ); 

          } 

       } 

   MatrixCheck ( MS, M, N, 1 );  // coincidence checking  

   Console.WriteLine ( "Matrix of unique sequences" ); 

   MatrixWrite ( MS, M, N );  

   Console.WriteLine ( "Finish" ); 

   Console.ReadKey();                             // result viewing 

} 

 

The listing below is the result of execution. Dash 

lines show abridgments. At the end of each string the 

first additional element is the result of checking of 

unicity and two others show the congruential constants a 

и c. The quantity of packs of sequences is w⋅N = 4⋅16 = 

64, which means total amount of unique sequences is 

w⋅N⋅4a⋅8c = 4⋅16⋅4⋅8 = 2048: 

 

w = 4   N = 16  

maskW = F   maskU = 8 

Matrix of unique sequences 

k =    1 |1  2  3  4  5  6  7  8  9 10 11 12 13  14 15 0 |0  1 1 

k =    2 |2  4  6  8 10 12 15  1  3  5 7  9 11  13 14  0 |0  1 1 

- - - - - 

k =  64 |0  9  1 10  2 11  3 12  4 13 5 14  6  15  7  8 |0  1 1 

k =  65 |1  4  7 10 13  0  3  6  9 12 15  2  5  8 11 14 |0  1 3 

- - - - - 

k= 133 |6 11  0  5 10 15  4   9 14  3  8 13 2  7 12  1 |0  1 5 

- - - - - 

k= 600 |7 15  4  8 1  9  6  10  3 11  0 12  5 13  2 14 |0  5 3 

- - - - - 

k=1025|1 10  11 4 5 14 15  8  9  2  3 12 13  6   7  0 |0  9 1 

- - - - - 

k=2048|0 14  5 15  2  8 7  9  4 10 1 11  6 12  3 13|0 13 15 

Finish 

 

This listing shows that function Repeating() hasn’t 

found any sequences having repeated numbers from the 

total of 2048. The first additional element in each string 

points to this because it takes 0 for each generated 

sequence. In other words, this result means that 

definitely now we are capable to generate all the unique 

sequences by using this kind of parameter a. As it has 

been said above, this result is achieved due to odd values 

for constant c. Moreover, for any other possible values 

of a and odd values of c all the generated stochastic 

sequences are unique. 

4. Construction and Results 

From the special aspects which are considered in 

section 3, now let’s consider the practical realization. 

Below is the program code for name space 

nsDeonYuliTwist28DA, in which the class 

cDeonYuliTwist28DA includes all the required 

parameters and functions of generating (the using of 

class cDeonYuliTwist28DA is presented in the following 

program P020401, after this program code): 
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namespace nsDeonYuliTwist28DA 

{ class cDeonYuliTwist28DA 

   { public int w = 16;                        // number bit length 

      public int N = 0;                             // sequence length 

      public int N1 = 0;                       // maximum number 

      int[] x;                                                       // sequence 

      public int x0 = 1;                     // sequence beginning 
      public double abf = 0.39;          // beginning part of a 
      public double aef = 0.39;               // ending part of a 
      public int a1b = 1, a1e = 0;                // internal of a1 
      int a1s = 0;                                      // a1 interval state 
      public int a2b = 1, a2e = 0;                // interval of a2 
      int a2s = 0;                                      // a2 interval state 

      int a1 = 5;                                 // a1 interval constant 

      int a2 = 5;                                 // a2 interval constant 

      int nA = 1;                       // a1 or a2 constant number 

      public int a = 5;                 // constant a current value 

      public double cbf = 0.1;           // beginning part of  c 

      public double cef = 0.9;                 // ending part of c 

      public int cb = 1, ce = 0;                // ending part of c 

      public int c = 1;                     // congruential constant 

      public int st = 1;                               // generator state 

      int nW = 0;                              // twister shift number 

      int nT = 0;                          // nT twister number in N 

      int nV = 0;                               // element number in x 

      uint maskW = 0U;                              // number mask 

      uint maskU = 0U;                              // elder bit mask 

//------------------------------------------------------------------- 

      public cDeonYuliTwist28DA() 

      { N = 1 << w;                                  // sequence length 

         N1 = N - 1;                               // maximum number 

         x0 = N1 / 7;                                   // generator starts 

      } 

//------------------------------------------------------------------- 

      public int Next() 

      { bool flagW = true;                          // perpetual loop 

         while (flagW)                                  // status voyage  

         {  switch (st)                                     // status switch 

            { case 1:                     // initialization of generator 

               nA = 1;                   // generation starts inside a1 

               a1s = 1;                    // create twister 0 inside a1 

               a1 = a1e;                                          // a1 ending 

               a = a1;                                 // current constant a 

               a2s = 0;                                // a2 while not used 

               a2 = a2b - 4;              // on the left to interval a2 

               c = cb;                         // beginning of interval c 

               st = 2;                          // twister 0 congruention 

               break; 

            case 2:                                        // initial twister 0 
               DeonYuli_Cong(a,c);          // initialization of x 
               nW = 0;                           // twister shift number 
               nT = 0;              // twister nT number inside nW 
               nV = 0;                            // initial value number 
               st = 101;                                  // array x is ready 

               break; 

            case 101:                                          // take from x 

                  if (nV <= N1) flagW = false; 

                  else st = 102;                   // change the twister 

                  break; 
               case 102:         // next twister with the same a, c 
                  nW++;                    // next bit of shift in word 
                  if (nW < w) { st = 103; break; } 
                  nT++;     // twister beginning from next value 
                  nW = 0;                                    // without shift 

                  if (nT < N) st = 103;                  // next twister 

                  else st = 201;                        // next constant c 

                  break; 

               case 103:                                      // next twister 

                  DeonYuli_Twist();                    // next twister 
                  nV = 0;                         // initial value number 
                  st = 101;                                     // take from x 
                  break; 
               case 201:                       // change twister with c 
                  c += 2;                                  // next constant c 

                  if (c <= ce) st = 2;                      // new twister 

                  else st = 202;                        // next constant a 

                  break; 

               case 202:                               // change interval a 

                  c = cb;                                 // initial value of c 

                  if (nA == 1) nA = 2; else nA = 1; 

                  if (nA == 1) st = 203;                  // interval a1 

                  else st = 204;                               // interval a2 

                  break; 

               case 203:                       // new constant from a1 

                  a1 -= 4; 

                  a = a1; 

                  if (a1b <= a1) { a1s = 1; st = 2; } 

                  else { a1s = 2; st = 205; }            // a1 is over 

                  break; 

               case 204:                       // new constant from a2 

                  a2 += 4; 

                  a = a2; 

                  if (a2 <= a2e) { a2s = 1; st = 2; } 

                  else { a2s = 2; st = 205; }             // a2 is over 

                  break; 

               case 205:                                 // a1 or a2 is over 

                  if (a2s != 2) st = 204; 

                  else if (a1s != 2) st = 203; 

                          else st = 1;                    // initial situation 

                  break; 

            }                                                                // switch 

         }                                                                    // while 

         return x[nV++];                            // random number 

      } 

//------------------------------------------------------------------- 

      void DeonYuli_Cong ( int a, int c ) 

      { x[0] = x0;                               // sequence beginning 

         for ( int i = 1; i < N; i++ ) 

            x[i] = (int) ( a * x[i - 1] + c ) & maskW ); 

      } 

//------------------------------------------------------------------- 

      void DeonYuli_Twist () 



Aleksei F. Deon and Yulian A. Menyaev / Journal of Computer Sciences 2016, 12 (8): 363.378 

DOI: 10.3844/jcssp.2016.363.378 

 

372 

      { uint z = (uint)( x[0] & maskU ) >> ( w – 1 );   // left 

         for ( int j = 0; j < N - 1; j++ ) 

         { uint g = (uint)( x[j + 1] & maskU ) >> ( w – 1 ); 

            x[j] = (int)(( (x[j] << 1 ) & maskW ) | g); 

         } 

         x[N - 1] =  

               (int)(( ( x[N - 1] << 1 ) & maskW ) | z);   // loop 

      } 

//------------------------------------------------------------------- 

      public void Start() 

      { N = 1 << w;                                  // sequence length 

         N1 = N - 1;                               // maximum number 

         maskW = 0xFFFFFFFF >> (32 - w);            // mask 

         maskU = (uint)(0x1 << (w - 1));     // elder bit mask 

         DeonYuli_SetA();                // set a1 and a2 borders 
         DeonYuli_SetC();                               // set с border 
         if (x0 > N1) x0 = N1; 
         else if (x0 == 0) x0 = 1;  
         x = new int[N];                                        // sequence 
         st = 1;                            // initialization of generator 
      } 

//------------------------------------------------------------------- 

      public void TimeStart () 

      { x0 = (int)DateTime.Now.Millisecond; 

         Start();                                           // generator starts 

      }      

//------------------------------------------------------------------- 

      public void SetW( int sw ) 

      { w = Math.Abs( sw );    // random number bit length 

         if ( w < 3 ) w = 3;                        // minimum length 

         else if ( w > 28 ) w = 28;            // maximum length 

      } 

//------------------------------------------------------------------- 

      public void SetA( double sab, double sae ) 

      { abf = Math.Abs( sab ); 

         aef = Math.Abs( sae ); 

         if ( abf > 1.0 ) abf = 1.0; 

         if ( aef > 1.0 ) aef = 1.0; 

         if ( abf > aef ) aef = abf; 

      } 

//------------------------------------------------------------------- 

      void DeonYuli_SetA () 

      { a1b = (int)( N1 * abf );         // bottom border for a1 

         a1b = DeonYuli_PlusA ( a1b );    // beginning of a1 

         a2e = (int)( N1 * aef );                // top border for a2 

         a2e = DeonYuli_MinusA ( a2e );      // ending of a2 

         int r = a2e - a1b; 
         if ( a1b >= a2e )                   // interval a like a point 
         { a1e = a1b;                                    // a1 is one point 
            a2b = a1b;                                            // a2 like a1 
            a2e = a2b;                                    // a2 is one point 
            return; 
         } 
         if ( r == 4 )                              // one-point a1 and a2 
         { a1e = a1b;                                    // a1 is one point 

            a2b = a2e;                                    // a2 is one point 

            return; 
         } 
         if ( r == 8 )            // a1 has 2 points, a2 – one point 
         { a1e = a1b + 4;                                 // ending of a1 
            a2b = a2e;                                  // beginning of a2 
            return; 
         } 
         a1e = ( a1b + a2e ) / 2;                        // middle of a 
         a2b = a1e; 
         a1e = DeonYuli_MinusA( a1e );           // to the left 

         a2b = a1e + 4;                      // to the right of middle 

      } 

//------------------------------------------------------------------- 

      int DeonYuli_PlusA ( int a ) 

      { if ( a < 1 ) { a = 1; return a; } 

         int z = a;                                 // bottom border for a 

         for ( int i = 0; i < 3; i++ ) 

            if ( a % 4 != 0 ) a--;               // uniform condition 

            else break; 

         a++;                                  // real value of constant a 

         if ( a < z ) a += 4;     // to the right of bottom border 

         if ( a >= N1 ) a -= 4;         // to the left of top border 

         return a; 

      } 

//------------------------------------------------------------------- 

       int DeonYuli_MinusA ( int a ) 
      { if (a < 1) { a = 1; return a; } 

         int z = a;                                   // bottom border of a 
         for (int i = 0; i < 3; i++) 

         if (a % 4 != 0) a--;                     // uniform condition 
         else break; 

         a++;                                  // real value of constant a 

         if (a > z) a -= 4;                // to the left of top border 
 return a; 

      } 
//------------------------------------------------------------------- 

      public void SetC ( double scb, double sce ) 

      { cbf = Math.Abs( scb ); 
         cef = Math.Abs( sce ); 

         if ( cbf > 1.0 ) cbf = 1.0; 
         if ( cef > 1.0 ) cef = 1.0; 

         if ( cbf > cef ) cef = cbf; 
      } 

//------------------------------------------------------------------- 

      void DeonYuli_SetC () 
      { cb = (int)( N1 * cbf );               // bottom border of c 

         if ( cb % 2 == 0 ) cb += 1;                    // only odd c 
         if ( cb > N1 ) cb = N1;                   // maximal value 

         ce = (int)( N1 * cef );                     // top border of c 

         if ( ce % 2 == 0 ) ce -= 1;                     // only odd c 
         if ( ce > N1 ) ce = N1;                    // maximal value 

         if ( cb > ce ) ce = cb; 
         c = cb;          // beginning of congruential constant c 

      } 
//------------------------------------------------------------------- 

      public void SetX0 ( double xs ) 
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      { x0 = (int)( N1 * Math.Abs( xs ) ); 

      } 

//======================================= 

   } 

} 

 

In class cDeonYuliTwist28DA some variables are 

reserved. They may be tuned with help of encapsulated 

functions. As a first example let’s use default arguments 

for the simple task to generate several random numbers 

having w = 16 bits from intervals 

16
0,2 1 0,2 1 0,65535

w     − = − =     
. The program code for 

this is presented below. The names P020401 and 

cP020401 are chosen by chance: 

 

using nsDeonYuliTwist28DA;          // twisting generator 

namespace P020401 

{  class cP020401 

    {  static void Main(string[] args) 

        {  cDeonYuliTwist28DA CT = 

                              new cDeonYuliTwist28DA(); 

            CT.Start();                                 // generator starts 

            for (int j = 0; j < 8; j++) 

            { int z = CT.Next(); 

               Console.Write("{0,7} ", z);                // monitor 

            } 

            Console.ReadKey();                    // result viewing 

        } 

    } 

} 
 

The listing below is the result of execution: 
 
9362  36699  52924   2805  8774  14575  51504  13129 

 

For the next generating of new sequence as twister 

0, the constant a in class DeonYuliTwist28DA is 

chosen by turns from two different intervals as it is 

shown in Fig. 2. 

The value a1e is to the left from N/2 and value a2b 

= a1b+4 is to the right from N/2. Moving of a in 

interval a1 is accomplished from the right to the left, 

i.e., from a1e to a1b with a step of -4; moving of a in 

interval a2  is  accomplished  from  the  left  to the 

right, i.e., from a2b to a2e with a step of +4. This 

choice of defining of a has been made artificially to 

provide better confusion while applying the generation.  
 

 
 
Fig. 2. Schematics of interval realization for constant a  

Any other algorithms of confusion may be chosen if an 

additional task to control the process of generation is 

demanded. For example, if time sensor TimeStart() is 

applied, the initial value of the stochastic sequence in 

this case is defined by component having less than 

millisecond size of real time. 

The value a1b is defined by parameter b and value 

a2e is defined by parameter e in the interface of their 

assigned function SetA(). In the case of complete 

generation of a the total numbers belong to interval 

1, 3N −   with a step of ±4. The call of tuning function 

in this case looks as SetA(0.0, 1.0). 

The program code presented below realizes the 

ability of tuning such parameters as w, x0, a1b, a2e, 

which may possess different meanings. Parameter с 

takes all the odd numbers from interval 1, 1N −  , which 

start from 1 and finish at N-1. As it has been shown in 

section 3, the first number may be defined directly while 

other numbers - in the line of c. This kind of defining is 

appropriate due to the twisting technique that is applied 

for complete sequences and it provides generation of all 

non-repeatable numbers in each next sequence. As an 

example, let’s consider the program code containing the 

following values: w = 4, N = 2
w
 = 16, a1b = 1, a2e = 13, 

x0 = 1.0/5.0∗N = 3; for the each value of a = 5,9,1,13, an 

assign parameter с takes the values c = 

1,3,5,7,9,11,13,15. The names P020403 and cP020403 

are chosen by chance: 

 

using nsDeonYuliTwist28DA;          // twisting generator 

namespace P020403 

{ class cP020403 

   { static void Main(string[] args) 

      { cDeonYuliTwist28DA CT = 

                                new cDeonYuliTwist28DA(); 

         CT.SetW(4);                             // number bit length 

         CT.SetA(0.0, 1.0);                                     // all of a 

         CT.SetC(0.0, 1.0);                                     // all of c 

         CT.Start();                                     //generator starts 

         Console.WriteLine("w = {0}   N = {1}",  

                                              CT.w, CT.N); 

         Console.WriteLine("a1b = {0}  a1e = {1}",  

                                             CT.a1b, CT.a1e); 

         Console.WriteLine("a2b = {0}  a2e = {1}",  

                                             CT.a2b, CT.a2e); 

         Console.WriteLine("cb = {0}  ce = {1}", 

                                             CT.cb, CT.ce); 

         int k = 0;                                     // sequence number 

         int NN = 0;               // quantity of random numbers 

         for (int nw = 0; nw < CT.w; nw++) 

            for (int nt = 0; nt < CT.N; nt++) 

               for (int na = 1; na <= 4; na++) 

                  for (int nc = 1; nc <= 8; nc++) 

                  { Console.Write("k={0,4} | ", ++k); 
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                     for (int i = 0; i < CT.N; i++) 
                     { Console.Write("{0,3}", CT.Next()); 
                        NN++; 
                     } 
                     Console.WriteLine(" a={0,2} c ={1,2}", 
                                                CT.a, CT.c); 
                     if (k % 250 == 0) Console.ReadKey(); 
                  } 
         Console.WriteLine("Finish"); 
         Console.WriteLine("NN = {0}", NN); 
         Console.ReadKey();                        // result viewing 
      } 
   } 

} 
 

The listing below is the result of execution. Dash 

lines show abridgments: 
 
w = 4   N = 16 
a1b = 1   a1e = 5 
a2b = 9   a2e = 13 
cb = 1   ce = 15 
k =   1  15  12  13  2  11   8   9  14   7  4  5  10  3  0  1   6 
a=5 c=1 
k =   2  15   9  10   5   7   1   3  12  14  8  11  4  6  0  2  13 
a=5 c=1 
- - - - - 
k =  1000  6  10  1  13  4  8  7  11  2  14  5  9  0  12  3  15 
a = 9   c = 15 
- - - - - 
k =  1230  9  6  5  2  0  15  12  11  8  7  4  3  1  14  13  10 
a = 1   c = 7 
- - - - - 
k =  1900  8  5 13  6  10  7  15  0  12  1  9   2  14   3  11 4 
a = 13   c = 11 
- - - - - 
k =  2048  11  6  12  3  13  0  14  5  15  2  8  7  9  4  10  1 
a = 13 c = 15 
Finish 
NN = 32768 

 
A total of 4⋅16⋅4⋅8 = 2048 sequences have been 

received. Each sequence consists of 16 non-repeatable 
random numbers which suggest that the total amount of 
generated elements is 2048⋅16 = 32768. 

5. Discussion 

In general, for the quantity Ns of generated sequences 
to have complete non-repeatable elements depends on 
the following reasons: 
 

• Bit length w of random numbers 

• Amount of numbers in one sequence N=2
w
 

• Amount of twisters NT = w⋅N = w⋅2
w
 for each pair of 

congruential constants a and c 

• Amount of possible variations Na = N/4 of a and of 

possible variations Nc = N/2 of c 

If all the mentioned parameters are combined in one 

equation it appears as the following: 
 

( )
3

3 13 3

3

2 2 2
2 . 2 2

4 2 2

s T a c

w w w

ww w

N N N N

w w w w
−−

= ∗ ∗

= ⋅ ⋅ = = ⋅ = ⋅

  (8) 

 
The quantity Nns of generated numbers in all 

completed sequences is defined as: 
 

3 3 4 3
2 2 2
w w w

ns s
N N N w w

− −

= ⋅ = ⋅ ⋅ = ⋅ ⋅   (9) 

 
The bit length Nbs of non-repeating elements is 

defined as the quantity of bits in all the numbers of all 

non-repeatable sequences: 

 
( )3 1

2 4 3

2 2

2

ww

bs ns s

w

N w N w N N w w

w

−

−

= ⋅ = ⋅ ⋅ = ⋅ ⋅ ⋅ =

= ⋅

  (10) 

 

Deriving Ns for w = 4 leads to Ns(w = 4) = 4⋅2
3⋅3

 = 4⋅512 

= 2048 and this value is confirmed directly by using counter 

k which has been used at the end of the section 4. 

In the practical application of RNG the interest is 

addressed to double-byte numbers having length of w 

= 2
4
 = 16 bits. In this case, the amount of random 

numbers in one complete sequence is N(w = 16) = 2
w
 

= 2
16

 = 65536. The total amount of non-repeatable 

sequences is defined as: Ns (w = 16) = w⋅2
3w-3 

= 2
3⋅16+1 

= 

2
49

. Thus, the amount of all the generated numbers is 

Nns(w = 16) = N⋅Nns = 2
4
⋅2

49
 = 2

51
. So, the bit length in 

this case is defined as: Nbs(w = 16) = w⋅Nns = 2
4
⋅2

51
 = 2

55
. 

Let’s consider this result in comparison with the 

generator MT19937 (Matsumoto and Nishimura, 1998). 

By following the program code for this generator it’s 

possible to find out that bit length of generated random 

numbers is w32 = 32. The length of the array for initial 

congruential generation is defined as MT32 = 624 

elements. A global twister doesn’t use the circular 

movement of elder bit of sequence. The data supports 

that the total amount of generated random numbers is: 
 

32 32 32
31

32 624 31 19968 31 19937

ns
MT w MT= ⋅ −

= ∗ − = − =

  (11) 

 
Diminution of value 31 is because the twister doesn’t 

take into account the circle of needless bits. 

Theoretically, it appears that in all 19937 numbers it is 

possible to reach a non-repeatable sequence with 2
19937

 

bits. However, this is hypothetical case only due to 

congruential generator for twister 0 with following 

single-bit twisters may provide just only MTns = 19937 

numbers. To reach more numbers it’s required to define 

a new initial value x0, because congruential constants a 

and c are pointed as stationary values and thus they can’t 

be changed automatically. 
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The same properties have been found for the 

generator MT19937-64, for which the bit length of 

generated random numbers is w64 = 64. To retain the 

twisting properties for the bit sequence of 19937, the 

array of initial generation for twister 0 is halved in 

distribution space and thus it consists of 312 elements. 

This means that the length of the array after substitution 

is the following: MT64 = 312 = 624/2. The calculation of 

the total amount of random numbers generated is: 
 

( )
32 64 64

31 64 312 31

64 / 2 312 2 31 19968 31 19937

ns
MT w MT= ⋅ − = ∗ −

= ∗ ∗ − = − =

  (12) 

 
The general properties for both Mersenne twister 

generators are equal, however the 64-bit version has for 

the benefit of parallel speed-up calculations. This is 

important for the 128-bit registers of modern processors 

(Saito and Matsumoto, 1998). 

Significantly to note, congruential initial generation 

can’t provide the rearrangement of numbers in sequence 

due to the fact that congruence can never be equal to 

factorial; they have very different natures of 

mathematical phenomena. In principle the congruential 

initial generation can’t realize the technique of creating 

the theoretically completed random numbers having 

uniform distribution. Let’s additionally clarify this 

having used the discrete mathematics. 

It is of great importance to pay attention to the 

combinatory properties of uniform sequences with no 

repeats. For this goal let’s assume that uniform sequence 

consists of N numbers and each of them is found once. 

The question is how many times such uniform sequences 

may be reached? The answer gives the combinatorial 

analysis (Waerden, 1991a; 1991b; Johnsonbaugh, 2008): 

that is factorial N! due to uniform sequences admit any 

rearrangement of N numbers. Congruential and twister 

generation can’t provide the same result as factorial; 

complete sets of stochastic sequences can realize this. 

Let’s continue the discussion regarding the twisting 

generator tuning proposed here. It’s highly important to 

be satisfied that all the random numbers generated by 

nsDeonYuliTwist28DA are found an equal quantity of 

times. This is because the requirement of uniformity 

explains that all the elements in complete generation 

indeed must be presented equal quantity of times. In the 

simplest case, all the numbers are found once in single 

sequence. Therefore, in the set of rearrangements, any 

number can be presented as many times as the quantity 

of rearrangements is applied. This is because in each 

uniform rearrangement any number is found once. So, 

now we have a simple and well-organized tool to test the 

uniformity for generators. 
Below is the program code where each element of 

arrayxC is a counter for random numbers, so the index 

of counter is equal to the random number. In this code 

the uniformity for twister 0 which corresponds to initial 

congruential generation is verified. The bit length of 16 

bits for each random number is taken, thus whole 

length of sequence includes N = 2
w
 = 2

16 
= 65536 of 

random numbers: 
 
using nsDeonYuliTwist28DA;          // twisting generator 
namespace P020501 
{ class cP020501 
   { static void Main(string[] args) 
      { cDeonYuliTwist28DA CT =  
                                    new cDeonYuliTwist28DA(); 
         CT.Start();                                    // generator starts 
         Console.WriteLine("w = {0}  N = {1}",  
                                           CT.w, CT.N); 
         int[] cX = new int[CT.N];          // array of counters 
         for (int i = 0; i < CT.N; i++) cX[i] = 0; 

         for (int n = 0; n < CT.N; n++) 
         { int z = CT.Next(); 
            cX[z]++;                 // counter for random number 
         } 
         int count0 = 0; // amount of non-appeared elements 
         int count1 = 0; // amount of single-valued elements 
         int count2 = 0;// amount of double-valued elements 
         for (int i = 0; i < CT.N; i++) 
         { if (cX[i] == 1) count1++;                         // 1 time 
            else if (cX[i] == 2) count2++;                // 2 times 
                   else if (cX[i] == 0) count0++;            // never 
         } 
         Console.Write("count0 = {0}   ", count0); 
         Console.Write("count1 = {0}   ", count1); 
         Console.WriteLine("count2 = {0}   ", count2); 
         Console.ReadKey();                       // result viewing 
      } 
   } 
} 

 

The listing below is the result of execution: 

 

w = 16   N = 65536 

count0 = 0   count1 = 65536   count2 = 0 
 

To be sure that single complete twister having given 

values for congruential constants a and c satisfies to 

uniformity, it’s necessary to generate nwN = w⋅N = 

16⋅65536 = 1048576 of random numbers. This task may 

be solved by the following code, where each uniformly 

distributed random value has to be found 16 times. The 

names P020502 and cP020502 are chosen by chance: 

 

using nsDeonYuliTwist28DA;          // twisting generator 

namespace P020502 

{ class cP020502 

   { static void Main(string[] args) 

      { cDeonYuliTwist28DA CT = 

                           new cDeonYuliTwist28DA(); 

         CT.Start();                                     // generator starts 
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         int nwN = CT.w * CT.N;        // quantity of twisters 
         Console.WriteLine( 
                              "w = {0}  N = {1}  nwN = {2}", 
                               CT.w, CT.N, nwN); 
         int[] cX = new int[CT.N];           // array of counters 
         for (int i = 0; i < CT.N; i++) cX[i] = 0; 
         for (int n = 0; n < nwN; n++) 
         { int z = CT.Next(); 
            cX[z]++;                       // random number counter 
         } 
         int count16 = 0;       // amount of 16-times elements 
         for (int i = 0; i < CT.N; i++) 
            if (cX[i] == 16) count16++;                  // 16-times 
         Console.WriteLine("count16 = {0}   ", count16); 
         Console.ReadKey();                        // result viewing 
      } 
   } 
} 
 
Two strings appear after executing the last code: 
 
w = 16   N = 65536  nwN = 1048576 

count16 = 65536 
 

The task of testing which is discussed above is 

completed. Thorough investigation of twisting generation 

requires special resources like a powerful processor, 

additional random-access memory, hard-drive storage, etc. 

Fortunately, the principles of verification are the same as 

have been described in detail in this study. 

6. Conclusion 

In the beginning we started with the fact that 

congruential technique of random number generation 

can’t provide the uniform distribution for all 

congruential constants and initial values in the linear 

function xi+1 = (axi+c)mod m. Fortunately, the result may 

be improved to uniform distribution if complete 

sequences are considered in the assumption that total 

amount of random numbers is N = m. In this case the 

sequences could be organized as completed and 

uniformly distributed where each element is found once. 

To speed up the calculation capability for complete 

sequences the modulus operation may be changed to the 

operation of bit conjunction (&) with a mask having w = 

log2N of bit length. By using circular rotation for elder 

bit of current sequence while applying the left global 

twister, the value w⋅N of unique sequences has been 

reached. In this case each sequence consists of N non-

repeatable random numbers having uniform distribution 

and presented just once. Herein, by using matrix 

verification it’s confirmed experimentally that all the 

various combinations of pairs of congruential constants a 

и c can include any initial settings of seed x0. All these 

fundamental properties have allowed us to consider the 

questions addressed to realize tuning of twisting 

generators, where the intervals for congruential constants 

are chosen. The maximal length of intervals for those 

constants, which are required for the complete 

sequences, provides the maximum possible quantity of 

generating twisting sequences and twisting random 

numbers. In general, the techniques presented in this 

work seem to be very promising for many applications 

and primarily for such areas as information technology, 

cryptography, engineering, biology, medicine and others. 
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