

© 2016 Aleksei F. Deon and Yulian A. Menyaev. This open access article is distributed under a Creative Commons

Attribution (CC-BY) 3.0 license.

Journal of Computer Sciences

Original Research Paper

Parametrical Tuning of Twisting Generators

1
Aleksei F. Deon and

2
Yulian A. Menyaev

1Department of Computer Science, Department of Mathematical Sciences,

N.E. Bauman Moscow State Technical University, Moscow, Russia
2Winthrop P. Rockefeller Cancer Institute, University of Arkansas for Medical Sciences, Little Rock, AR, USA

Article history

Received: 05-04-2016
Revised: 04-10-2016
Accepted: 05-10-2016

Corresponding Author:
Yulian A. Menyaev
Winthrop P. Rockefeller Cancer
Institute, University of
Arkansas for Medical Sciences,
Little Rock, AR, USA
Email: yamenyaev@uams.edu

Abstract: Generators of uniformly distributed random numbers are broadly

applied in simulations of stochastic processes that rely on normal and other

distributions. In a point of fact, the uniform random numbers are actively

used for applications that range from, modeling different phenomena such

as theoretical mathematics and technical designing, to evidence-based

medicine. This paper proposes a novel approach which consists of a

combination of global twister with circular technique and initial

congruential generation with complete stochastic sequences. It has been

experimentally confirmed that for complete sequences this type of

generation provides uniformity in distribution of random numbers. The

offered program codes include the tuning methods for the generation

technique where random numbers may take any bit length. Moreover, the

automatic switching of generator parameters such as initial congruential

constants depending on intervals for generated numbers is considered as

well. Demonstrated results of testing confirm the uniformity of distribution

without any repeated or skipped generated elements.

Keywords: Pseudorandom Number Generator, Stochastic Sequences,

Congruential Number, Twister Generator

1. Introduction

1.1. Related Works

A Pseudorandom Number Generators (PRNG) are

well-known techniques with broad applications in such

areas as cryptography (Tusnoo et al., 2003; Ozturk et al.,

2004; Panneton et al., 2006), simulation of stochastic

processes (Entacher, 1998), comprehensive testing of

technical systems (Leeb and Wegenkittl, 1997; Park and

Miller, 1998), medical (Menyaev and Zharov, 2006a;

2006b; Menyaev and Zharova, 2006; Menyaev et al.,

2006; 2013; 2016; Sarimollaoglu et al., 2014; Cai et al.,

2016a; 2016b) and biological research (Wiese et al.,

2005; Leonard and Jackson, 2015; Juratly et al., 2015;

2016) and others (Rababbah 2004; 2007; Politano et al.,

2014; 2016; Riguzzi, 2016). In these publications, the

concept of uniform random numbers in PRNG actively

uses the operations of bit logic. Great success has been

found in directions such as linear congruential generators

(Niederreiter, 1995; Entacher, 1999) and in twisting

algorithm generators where Mersenne numbers are

usually used (Matsumoto and Kurita, 1992; 1994;

Matsumoto and Nishimura, 1998; Nishimura, 2000).

Important results were received in the use of approaches

such as Fibonacci numbers (Makino, 1994; Aluru, 1997),

Blum-Blum-Shub algorithm (Blum et al., 1986) and

others. However, the issue of the repeatability of

elements within a given time period and question of

completeness of sets with elements are important and

remain to be discussed.

1.2. Congruential Generators

According to the concept of congruence or similarity,

the next following random number xi+1 is created based

on current one xi in accordance with:

()1i i
x f x mod m

+
= (1)

where, mod m defines the interval 0, 1m − of generated

numbers.

Historically the function f(xi) was chosen as linear

algebraic transformation:

()i i
f x ax c= + (2)

The constant coefficients a and с are selected in

accordance with the properties of required Linear

Aleksei F. Deon and Yulian A. Menyaev / Journal of Computer Sciences 2016, 12 (8): 363.378

DOI: 10.3844/jcssp.2016.363.378

364

Congruential Generator (LCG). Let’s point out on

example of a generating technique for several random

numbers N = 8 within small interval 0,7
 . Choosing a

short length interval doesn’t break the concept of the

current study, but it presents the results more obviously

and in simple visual form. Let’s take the starting point

as
0

1,7 0,7x ∈ ⊂ . Also, let’s take into consideration

all stochastic sequences with 1,7a A ∈ = and

0,7c C ∈ = . So, the total volume of possible

combinations among a, c and x looks as:

() () ()1 7 8 7 392NN card A card C N= ∗ ∗ − = ∗ ∗ = (3)

Now let’s add to the program code the function

Repeating() which returns the meaning true if any element

x from 0 to 7 has the repeating in the stochastic sequence

having 8 numbers. This approach helps to define the

congruential uniformity of completeness, i.e., sort out all

the possible values what could be pointed here as:

/CC r NN= (4)

where, r is the number of uniform stochastic sequence

and NN is the total amount of sequences.
Below is the program code where the programming

media C# (Schildt, 2010) is used from Microsoft
Visual Studio 2013; although the same principles may
be used for the classic programming language C
(dialect Win32), or for C++ (dialect CLR). It doesn’t
matter, the result is similar:

static void Main (string[] args)

{ int N = 8; // sequence length

 Console.WriteLine ("N = {0}", N);

 int NN = 0; // total amount of sequences

 int m = N; // modulus of congruence

 int r = 0; // uniform sequence number

 int[] x = new int[N]; // stochastic sequence

 for (int a = 1; a < N; a++)

 for (int c = 0; c < N; c++)

 for (int x0 = 1; x0 < N; x0++)

 { x[0] = x0; // beginning of the sequence

 for (int i = 1; i < N; i++)

 x[i] = (a * x[i - 1] + c) % m;

 NN++; // total amount of sequences

 if (Repeating(x, N)) continue; // repeating

 Console.WriteLine("a = {0} c = {1}", a, c);

 r++; // sequence number

 Console.Write("r = {0,4} ", r);

 qWrite("x = ", x, N, true);

 }

 Console.WriteLine("Finish");

 Console.WriteLine("NN = {0}", NN);

 double CC = (double)r / NN; // cong-completeness

 Console.WriteLine("CC = r / NN = {0:F4}", CC);

 Console.ReadKey(); // result viewing

}

//---

static bool Repeating(int[] x, int N)

{ for (int i = 1; i < N; i++)

 for (int j = 0; j < i; j++)

 if (x[i] == x[j]) return true; // repeating

 return false; // no repeating was found

}

//---

static void qWrite(string text, uint[] x, uint N,

 bool newstr)

{ Console.Write(text);

 for (int i = 0; i < N; i++)

 Console.Write("{0,3}", x[i]);

 if (newstr) Console.WriteLine();

}

After executing this code the following listing

appears. It is presented with abridging, for what dash

line is used:

N = 8

a = 1 c = 1

r = 1 x = 1 2 3 4 5 6 7 0

r = 2 x = 2 3 4 5 6 7 0 1

- - - - -

a = 5 c = 1

r = 29 x = 1 6 7 4 5 2 3 0

r = 30 x = 2 3 0 1 6 7 4 5

- - - - -

a = 5 c = 7

r = 55 x = 6 5 0 7 2 1 4 3

a = 5 c = 7

r = 56 x = 7 2 1 4 3 6 5 0

Finish

NN = 392

CC = r / NN = 0.1429

This listing shows that only 56 uniform sequences are

found from the total of 392 congruential ones in all

ranges of possible combinations among a, c and x. In

other words, we have no complete set of uniform

sequences, only CC = 56/392 = 0.1429 from the total

quantity of congruential list and that isn’t much.

1.3. Modulus in Uniform Sequence

When generating congruential stochastic sequences

the following technique is admitted: the operation mod in

formula (1) above may be replaced by operation of bit

conjunction. This is possible if generated binary number

x having length of w bit belongs to interval 0,2 1
w

x
 ∈ −

.

As an example, below is the next program code which

Aleksei F. Deon and Yulian A. Menyaev / Journal of Computer Sciences 2016, 12 (8): 363.378

DOI: 10.3844/jcssp.2016.363.378

365

uses congruential formula 5x+1 to generate uniform

sequences consisting of 2
w
 = 8 numbers, where w = 3 is

the bit length. The initial value x0 = 2 has been chosen by

chance. In this program code two arrays are created

independently in accordance with the equations:

() ()1
1 2 5 1 % 8

w

i i i
x ax mod x

+
= + = ∗ + (5)

() ()1 2
1 &111 5 1 & 0 7

i i i
q aq q

+
= + = ∗ + × (6)

The function qWrite() shown previously is used to

print out the result of task:

static void Main(string[] args)

{ int w = 3; // number bit length

 int N = 8; // sequence length

 Console.WriteLine("w = {0} N = {1}", w, N);

 int m = N; // modulus of congruence

 int[] x = new int[N]; // congruential numbers

 int[] q = new int[N]; // congruential numbers

 int a = 5, c = 1; // congruential constants

 x[0] = 2; // beginning of congruential sequence x

 q[0] = 2; // beginning of congruential sequence q

 for (int i = 1; i < N; i++)

 { x[i] = (a * x[i - 1] + c) % m;

 q[i] = (a * q[i - 1] + c) & 0x7;

 }

 qWrite("x = ", x, N, true);

 qWrite("q = ", q, N, true);

 Console.ReadKey(); // result viewing

}

After executing this code the following listing

appears:

w = 3 N = 8

x = 2 3 0 1 6 7 4 5

q = 2 3 0 1 6 7 4 5

 010 011 000 001 110 111 100 101

In this example the interval length for 8 numbers is

0,7x ∈ , which appears in the binary scale as

2 2
000 ,111x
 ∈

 where each number x has the length of w

= 3 bits. The last string has been added to emphasize the

completeness of bit filling for the numbers in interval

2 2
0,2 1 0,7 000 ,111

w − = =
. As it’s possible to see,

the sequence x after applying the programming

operation of modulus (%) is equal to sequence q after

applying the programming operation of conjunction

(&). However, the benefit is in the fact that

conjunction (&) operation is running significantly

faster than modulus (%) one.

1.4. Twisting Generators

As a base the technology of twisting generator uses

a bit shifting of binary numbers in the stochastic

sequence. Partially this approach was used in the

classic research articles published by Japanese

researches (Matsumoto and Nishimura, 1998;

Nishimura, 2000). They have built several generators,

including the well-known MT19937 (or MT19937-64 for

the implementation that uses a 64-bit word length),

which can reach a big value of repeatability as 2
19937

-1

and that is excellent for some special cases.

The essence of circular shifting or global twister is in

the following. If two numbers xi and xi+1 having the same

bit length w are taken, the next new values are derived

according to the rule: the bit values taken from number

xi+1 are successively moved to the left into number xi; at

the same time, the disengaged bits taken from the left of

number xi are joined circularly one-by-one to the right of

number xi+1. So, let’s pay attention to those sequences

which consist of several numbers having equal bit

length. Next, we apply twisting algorithm to generate

such sequences.

As an example, let’s obtain the twisting shift in

binary form for w = 3 and for those randomly taken

numbers x2 = 510 = 1012, x1 = 310 = 0112 and x0 = 610 =

1102. The structure of this approach may be presented

as displayed in Fig. 1, where the first two strings are

considered. The twister 0 is the initial sequence of

congruential generation, while twister 1 is a result of

global shifting to the left with a step of 1 bit. In turn,

the elder bit of initial sequence realizes circular

movement to the last position on the right in next

sequence. Following this, the initial sequence 101 011

1102 = 5 3 610 is twisted into a twisting sequence 010

111 1012 = 2 7 510. This algorithm is named as a

twisting technique or a circular twister or a global

circular twister due to it uses binary shift of all the

numbers with no bit loss.

Fig. 1. Circular twister diagram

Aleksei F. Deon and Yulian A. Menyaev / Journal of Computer Sciences 2016, 12 (8): 363.378

DOI: 10.3844/jcssp.2016.363.378

366

Program code shows the left twister together with

one additional circular bit shifting for verification. As

it’s possible to see the last generated sequence is equal to

the initial one that demonstrates the loop. The function

BitX() brings out the numbers in binary view, which

makes it easier to observe the twisting shift to the left by

1 bit. The function Twist() provides the twister algorithm

itself, where elder bit of sequence is moved to the end,

i.e., to the last position on the right. The function

qWrite() is taken from previous program:

static void Main (string[] args)

{ int w = 3; // number bit length

 int N = 3; // sequence length

 int maskW = 0x7; // number mask

 int maskU = 0x4; // elder bit mask

 Console.WriteLine("w = {0} N = {1}", w, N);

 int[] x = new int[] {5, 3, 6}; // 101 011 110

 int nwN = w* N + 1; //amount of twisting iterations+1

 for (int k = 1; k <= nwN; k++)

 { Console.Write("k = {0,2} | ", k);

 BitX(x, w, N, maskW, false); //bit view of numbers

 qWrite(" | ", x, N, true); // decimal view

 Twist(x, w, N, maskW, maskU); // global twister

 }

 Console.ReadKey(); // result viewing

}

//---

static void BitX (int[] x, int w, int N, int maskW,

 bool newstr)

{ for (int i = 0; i < N; i++)

 { int b = 1 << (w – 1)); // number beginning

 for (int j = 0; j < w; j++)

 { Console.Write((x[i] & b) == 0 ? '0' : '1');

 b >>= 1; // for the next bit

 }

 Console.Write(" ");

 }

 if (newstr) Console.WriteLine();

}

//---
static void Twist (int[] x, int w, int N,
 int maskW, int maskU)
{ int z = (x[0] & maskU) >> (w – 1); // left bit
 for (int j = 0; j < N - 1; j++)
 { int g = (x[j + 1] & maskU) >> (w – 1);
 x[j] = ((x[j] << 1) & maskW) | g;
 }

 x[N - 1] = ((x[N - 1] << 1) & maskW) | z; // loop

}

After executing this program code the following

listing appears. The first string presents the initial

sequence of bits which consists of the first three binary

numbers. For visual convenience, at the last part of each

string the decimal equivalents of binary numbers are

pointed out. The next eight strings, from the 2nd to the

9th, are the result of step-by-step shifting to the left with

a step size of 1 bit. The 10th string is the same as the 1st

one what finishes a circular rotation:

w = 3 N = 3
k = 1 | 101 011 110 | 5 3 6
k = 2 | 010 111 101 | 2 7 5
k = 3 | 101 111 010 | 5 7 2
k = 4 | 011 110 101 | 3 6 5

k = 5 | 111 101 010 | 7 5 2

k = 6 | 111 010 101 | 7 2 5

k = 7 | 110 101 011 | 6 5 3

k = 8 | 101 010 111 | 5 2 7

k = 9 | 010 101 111 | 2 5 7

k =10 | 101 011 110 | 5 3 6

Now we may note here that number 5 is repeated 9

times, number 3 - 3 times, 6 - 3 times and 7 - 6 times.

This result looks far from the ideal case in which all the

generated numbers must be distributed uniformly.

1.5. Other Generators

In the theory of computational methods some other

principles to generate the uniform random numbers are

considered (Lewis and Payne, 1973; Chandrasekaran and

Amira, 2008; Pellicer-Lostao and Lopez-Ruiz, 2008;

Zhou et al., 2009; Bos et al., 2011). Let’s have a short

look at two general directions. In the first case, most

techniques are exploring the complicated algebraic

formulas, or multistep mathematical transformations,

which is a time-consuming process and so it’s discussible

to be included in routine practice even for modern fast

computers. In the second case, the simplest artificial

mathematical solutions, like so-called Neumann’s middle

square method (Rahimov et al., 2011), have some severe

weaknesses such as short loop and then the output

sequence after a while maybe converted to zero. So,

while simple and extremely fast to implement, their

output is of poor quality (Park and Miller, 1998).

In general, both directions have no hundred-percent

completeness of sets of non-repeated elements and

moreover, they are worse than twisting random

generators for the same tasks. So, in the following next

sections of current work we propose additional solutions

for twisting shift operations to improve the level of

completeness in generation of uniform sequences.

2. Fundamentals

In the technology of global twister one of the positive

results is the appearance of new values of random

numbers which aren’t presented in the initial sequence.

As in section 1.4, the last example resulted in two new

Aleksei F. Deon and Yulian A. Menyaev / Journal of Computer Sciences 2016, 12 (8): 363.378

DOI: 10.3844/jcssp.2016.363.378

367

numbers 010 and 111 after circular shifting of three

initial numbers 101, 011 and 110. At the same time, the

negative result is that in all received sequences the

numbers are repeated non-uniformly. The situation may

be improved if additional rule shown here in the

following is applied.

Let’s consider the issue of random number formation

with a finite length of w bits in each number. From the

informatics theory (Knuth, 1997) it is known that bit

length defines the interval of numbers 0,2 1
w

x
 ∈ −

. So,

the sequence can be named completed if all the numbers

in it are presented in interval 0,2 1
w −

. Thus, complete

sequence consists of numbers having w bit length each

and all the numbers in it may be found just once. Let’s

take this as a rule for the total of N = 2
w
 numbers in

initial sequence.

Now let’s find out the answer to the question: would

the unicity of global twister be saved if initially the

uniform sequence is taken? The next program code helps

in finding the answer. As an example let’s take the

numbers 5, 3, 6, 1, 7, 0, 4, 2 by chance; each of them has

the length of 3 bits in binary scale. All eight numbers

together organize a complete uniform sequence with a

length of N = 2
w
 = 2

3
 = 8 numbers. The use of functions

BitX(), qWrite() and Twist() is the same as it has been

shown in section 1.4:

static void Main(string[] args)

{ int w = 3; // number bit length

 int N = 8; // sequence length

 int maskW = 0x7; // number mask

 int maskU = 0x4; // elder bit mask

 Console.WriteLine("w = {0} N = {1}", w, N);

 int[] x = new int[] { 5, 3, 6, 1, 7, 0, 4, 2 };

 int nwN = w * N + 1; //amount of twisting iterations+1

 for (int k = 1; k <= nwN; k++)

 { Console.Write("k = {0,2} | ", k);

 BitX(x, w, N, maskW, false); // bit view

 qWrite(" | ", x, N, true); // decimal view

 Twist(x, w, N, maskW, maskU); // global twister

 }

 Console.ReadKey(); // result viewing

}

After this code executing, a listing below appears:

w = 3 N = 8

k= 1 | 101 011 110 001 111 000 100 010 | 5 3 6 1 7 0 4 2

k= 2 | 010 111 100 011 110 001 000 101 | 2 7 4 3 6 1 0 5

k= 3 | 101 111 000 111 100 010 001 010 | 2 7 0 7 4 2 1 2

k= 4 | 011 110 001 111 000 100 010 101 | 3 6 1 7 0 4 2 5

k= 5 | 111 100 011 110 001 000 101 010 | 7 4 3 6 1 0 5 2

k= 6 | 111 000 111 100 010 001 010 101 | 7 0 7 4 2 1 2 5

k= 7 | 110 001 111 000 100 010 101 001 | 6 1 7 0 4 2 5 1

k= 8 | 100 011 110 001 000 101 010 111 | 4 3 6 1 0 5 2 7

k= 9 | 000 111 100 010 001 010 101 111 | 0 7 4 2 1 2 5 7

k=10 | 001 111 000 100 010 101 011 110 | 1 7 0 4 2 5 3 6

k=11 | 011 110 001 000 101 010 111 100 | 3 6 1 0 5 2 7 4

k=12 | 111 100 010 001 010 101 111 000 | 7 4 2 1 2 5 7 0

k=13 | 111 000 100 010 101 011 110 001 | 7 0 4 2 5 3 6 1

k=14 | 110 001 000 101 010 111 100 010 | 6 1 0 5 2 7 4 2

k=15 | 100 010 001 010 101 111 000 111 | 4 2 1 2 5 7 0 7

k=16 | 000 100 010 101 011 110 001 111 | 0 4 2 5 3 6 1 7

k=17 | 001 000 101 010 111 100 011 110 | 1 0 5 2 7 4 3 6

k=18 | 010 001 010 101 111 000 111 100 | 2 1 2 5 7 0 7 4

k=19 | 100 010 101 011 110 001 111 000 | 4 2 5 3 6 1 7 0

k=20 | 000 101 010 111 100 011 110 001 | 0 5 2 7 4 3 6 1

k=21 | 001 010 101 111 000 111 100 010 | 1 2 5 7 0 7 4 2

k=22 | 010 101 011 110 001 111 000 100 | 2 5 3 6 1 7 0 4

k=23 | 101 010 111 100 011 110 001 000 | 5 2 7 4 3 6 1 0

k=24 | 010 101 111 000 111 100 010 001 | 2 5 7 0 7 4 2 1

k=25 | 101 011 110 001 111 000 100 010 | 5 3 6 1 7 0 4 2

In this listing there are 24 non-repeatable sequences

and last, the 25th one, confirms the circular properties

of twister. However, only 14 of them are satisfied to

uniformity, i.e., all of the numbers can be encountered

once. The other 10 sequences have repeatable numbers

and thus can’t be named as uniform. So, this example

confirms the fact that even if the random complete

sequence is taken initially, there is no guarantee that

global twister creates the complete set of all the unique

sequences. At the same time, even 14 uniform

sequences from the total of 24 of them might be

considered as a good result.

To obtain a twister having no any repeats we apply

the congruential generator xi+1 = (axi+1+c)& w for the

complete set of numbers. The next program code works

with congruential and twisting techniques of generation,

thus positive properties from both of them are combined.

In section 1.2, the function Repeating() provides the

complete uniform sequences. Each initial congruential

sequence is created by function Cong_Start() for what the

values a = 5 and c = 1 are chosen by chance. The

functions Twist() and qWrite() are taken from section 1.4:

static void Main (string[] args)

{ int w = 3; // number bit length

 int N = 8; // sequence length

 int maskW = 0x7; // number mask

 int maskU = 0x4; // elder bit mask

 Console.WriteLine ("w = {0} N = {1}", w, N);

 int[] x = new int[N]; // stochastic sequence

 int k = 0; // complete sequence number

 int a = 5, c = 1; // congruential constants

 int x0 = 1; // beginning of the sequence

 Cong_Start (x, N, a, c, x0, maskW);

 Console.WriteLine ("a = {0} c = {1}", a, c);

 k++; // sequence number

Aleksei F. Deon and Yulian A. Menyaev / Journal of Computer Sciences 2016, 12 (8): 363.378

DOI: 10.3844/jcssp.2016.363.378

368

 Console.Write ("k = {0,4} ", k);

 qWrite ("x = ", x, N, true);

 for (uint i = 1; i < w * N; i++)

 { Twist (x, w, N, maskW, maskU); // twister

 if (Repeating (x, N)) continue;

 k++;

 Console.Write ("k = {0,4} ", k);

 qWrite ("x = ", x, N, true);

 }

 Console.ReadKey(); // result viewing

}

//---

static void Cong_Start (int[] x, int N, int a, int c,

 int x0, int maskW)

{ x[0] = x0;

 for (int i = 1; i < N; i++)

 x[i] = (a * x[i - 1] + c) & maskW;

}

After this code executing, a listing below appears:

w = 3 N = 8

a = 5 c = 1

k = 1 x = 1 6 7 4 5 2 3 0

k = 2 x = 3 5 7 1 2 4 6 0

k = 3 x = 7 3 6 2 5 1 4 4

k = 4 x = 6 7 4 5 2 3 0 1

k = 5 x = 5 7 1 2 4 6 0 3

k = 6 x = 3 6 2 5 1 4 0 7

k = 7 x = 7 4 5 2 3 0 1 6

k = 8 x = 7 1 2 4 6 0 3 5

k = 9 x = 6 2 5 1 4 0 7 3

k = 10 x = 4 5 2 3 0 1 6 7
k = 11 x = 1 2 4 6 0 3 5 7
k = 12 x = 2 5 1 4 0 7 3 6
k = 13 x = 5 2 3 0 1 6 7 4
k = 14 x = 2 4 6 0 3 5 7 1
k = 15 x = 5 1 4 0 7 3 6 2
k = 16 x = 2 3 0 1 6 7 4 5
k = 17 x = 4 6 0 3 5 7 1 2
k = 18 x = 1 4 0 7 3 6 2 5
k = 19 x = 3 0 1 6 7 4 5 2
k = 20 x = 6 0 3 5 7 1 2 4
k = 21 x = 4 0 7 3 6 2 5 1
k = 22 x = 0 1 6 7 4 5 2 3
k = 23 x = 0 3 5 7 1 2 4 6
k = 24 x = 0 7 3 6 2 5 1 4

In section 1.2 we considered an example when initial

value is taken from interval
0

1, 1 1,2 1
w

x N ∈ − = −
. On

the other side, the twister allows reaching the set of w⋅N

= w⋅2
w
 sequences. Now let’s find out the answer to the

next question: for how many unique non-repeatable

sequences might be achieved if congruential and twisting

techniques are combined? It may be assumed that the

total number of unique congruential sequences, where

each of them has been generated by twister, is defined as

(w⋅2
w
)⋅N. However, this assumption is wrong and the

next testing trial clarifies that.

With help of function MatrixAdd() the program

code locates generated congruential and twisting

sequences in supportive matrix MS. In each string

there are one sequence and three additional elements.

The function MatrixCheck() compares the sequences

in all strings. The first additional element is to plot the

result of unicity and two others are to locate the

congruential constants a и c:

static void Main (string[] args)

{ int w = 3; // number bit length

 int N = 8; // sequence length

 int maskW = 0x7; // number mask

 int maskU = 0x4; // elder bit mask

 Console.WriteLine ("w = {0} N = {1}", w, N);

 int[] x = new int[N]; // stochastic sequence

 int[,] MS = new int[2000, N + 3]; // matrix

 int M = 0; // amount of sequences in matrix

 int k = 0; // complete sequence number

 int a = 5, c = 1; // congruential constants

 for (int x0 = 1; x0 < N; x0++)

 { Cong_Start (x, N, a, c, x0, maskW);

 if (Repeating (x, N)) continue; // repeating

 MatrixAdd (MS, ref M, x, N, a, c);

 Console.WriteLine ("a = {0} c = {1}", a, c);

 k++; // sequence number

 Console.Write ("k = {0,4} ", k);

 qWrite ("x = ", x, N, true);

 for (int i = 1; i < 24; i++)

 { Twist (x, w, N, maskW, maskU); // twister

 if (Repeating (x, N)) continue;

 MatrixAdd (MS, ref M, x, N, a, c);

 k++;

 Console.Write ("k = {0,4} ", k);

 qWrite ("x = ", x, N, true);

 }

 }

 MatrixCheck (MS, M, N, 1); // coincidence checking

 Console.WriteLine ("Matrix of unique sequences");

 MatrixWrite (MS, M, N); // matrix monitor

 Console.ReadKey(); // result viewing

}

//---

static void MatrixAdd (int[,] MS, ref int M,

 int[] x, int N, int a, int c)

{ for (int j = 0; j < N; j++) MS[M, j] = x[j];

 MS[M, N] = 0; // coincidence number

 MS[M, N + 1] = a; // constant a

 MS[M, N + 2] = c; // constant c

 M++; // amount of sequences in matrix

}

Aleksei F. Deon and Yulian A. Menyaev / Journal of Computer Sciences 2016, 12 (8): 363.378

DOI: 10.3844/jcssp.2016.363.378

369

//---

static void MatrixCheck (int[,] MS, int M,

 int N, int bMS)

{ for (int i = bMS; i < M; i++)
 for (int k = 0; k < i; k++)
 { int j = 0;
 for (; j < N; j++)
 if (MS[i, j] != MS[k, j]) break;
 if (j == N) // coincidence is found
 { MS[i, N] = k + 1; // coincidence number
 break;
 }
 }
}
//---

static void MatrixWrite (int[,] MS, int M, int N)

{ for (uint i = 0; i < M; i++)

 { Console.Write ("i = {0,5} |", i + 1);

 for (int j = 0; j < N; j++)

 Console.Write ("{0,3}", MS[i, j]);

 Console.Write (" | ");

 Console.Write ("{0,3}", MS[i, N]);

 Console.Write ("{0,5}", MS[i, N + 1]);

 Console.WriteLine ("{0,5}", MS[i, N + 2]);

 }

}

The listing below is the result of execution. Dash

lines show abridgments. So, the total number of all the

sequences generated by congruential and twisting

techniques is 7⋅24 = 168 and each of them consists of 8

different numbers. All those sequences are located in

matrix MS subsequently. The 2nd part of listing presents

the result of uniformity checking. If the string includes 0

(at the first position in the right part of string with

additional elements) it means that sequence is unique.

So, the total quantity is w⋅N = 3⋅8 = 24 and those

sequences are on the first 24 strings of the 2
nd

 part of

listing. The sequences on strings from 25 to 168 aren’t

unique because they repeat previous 24 sequences in

different combinations:

w = 3 N = 8

a = 5 c = 1

k = 1 x = 1 6 7 4 5 2 3 0

k = 2 x = 3 5 7 1 2 4 6 0

- - - - -

k = 6 x = 3 6 2 5 1 4 0 7

- - - - -

k = 16 x = 2 3 0 1 6 7 4 5

- - - - -

k = 167 x = 5 7 1 2 4 6 0 3

k = 168 x = 3 6 2 5 1 4 0 7

Matrix of unique sequences:

k = 1 | 1 6 7 4 5 2 3 0 | 0 5 1

k = 2 | 3 5 7 1 2 4 6 0 | 0 5 1

- - - - -

k = 16 | 2 3 0 1 6 7 4 5 | 0 5 1

- - - - -
k = 24 | 0 7 3 6 2 5 1 4 | 0 5 1
k = 25 | 2 3 0 1 6 7 4 5 | 16 5 1
- - - - -
k = 168 | 3 6 2 5 1 4 0 7 | 6 5 1

Another interesting fact to note is that congruential

sequence on string 25 is the same as twisting sequence

on string 16 and last the 168th twisting sequence is the

same as the 6th one.

So, the last received result is that congruential

technique while generating the random sequences having

any numbers could be the part of twisting technique. The

simulation with different bit lengths of w confirms this

statement.

3. Parameters

Showed in previous sections the peculiarities of

congruential and twisting generators allow us to ask the

next question regarding design of concrete generator for

complete uniform stochastic sequences. One of the basic

characteristics of generator tuning is a bit length w of

produced numbers. For real technical systems the lengths

of 16, 24, 32 and 64 bits are demanded. The next

required parameter is the amount of numbers in each

sequence. For uniform generating the abundant value N

= 2
w
 might be taken because this allows convenient

application of the twisting technique for each sequence.

Now it’s time to talk about formulas for generation

the numbers in sequences. Usually initial values are

derived by using congruential technique in linear mode

as xi+1 = (axi+c)mod m. For the complete sequences the

operation mod m may be changed to conjunction with a

bit length w. This is equal, so can be presented as:

()1
&

i i
x ax c w

+
= + (7)

The initial number x0, i.e., seed, for beginning of

generation may be pointed directly and manually, or by

using computer timer, i.e., automatically. For complete

sequences the interest is focusing on numbers which

belong to interval 0, 1 0,2 1
w

N − = −
. In section 2 it

has been shown experimentally that following two

directions of generation are possible:

• Create all the initial numbers for initiation of

generation in current sequence from interval

0
1,2 1

w

x
 ∈ −

 and number 0 hasn’t been using as

starting point in sequence

Aleksei F. Deon and Yulian A. Menyaev / Journal of Computer Sciences 2016, 12 (8): 363.378

DOI: 10.3844/jcssp.2016.363.378

370

• Create the initial stochastic sequence by using

congruential technique and other stochastic sequences

are generated by using global twister which allows

getting the sequences with a beginning number 0

In congruential linear formula (7) the parameter a

is chosen under conditions to reach complete

sequences for all the numbers having w bit length. It

is known that uniform sequences having N = 2
w

numbers are created when (a-1)mod 4 = 0. For

example, if w = 3, the sequence is completed and

consist of N = 2
w
 = 2

3
 = 8 numbers. Thus, the

parameter a has to be chosen as a = 1 or 5, due to

possible values belonging to interval

1, 1 1,7a N ∈ − = . At the same time, if w = 4 the

parameter a may take the values 1, 5, 9, 13 from interval

4
1,2 1 1,15a
 ∈ − =

. By using the program code described

in section 1.2 the simulation technique may verify this.

The parameter c in formula (7) above is chosen under

the same condition to reach complete generated

sequence. To get this, the parameter c has to be taken as

odd numbers from interval 1,2 1
w

c
 ∈ −

. Simulation

technique described in section 1.2 may also verify this.

As an example, the program code below confirms the

recommendations in choosing of parameters a and c,

where bit length of generated numbers is taken as w = 4

and matrix verification of unicity for each sequence is

done. The functions MatrixAdd(), MatrixCheck() and

MatrixWrite() are the same as described in section 2:

static void Main (string[] args)

{ int w = 4; // number bit length

 int N = 16; // sequence length

 Console.WriteLine ("w = {0} N = {1}", w, N);

 int maskW = (int)(0xFFFFFFFF >> (32 - w); // mask

 int maskU = 1 << (w – 1); // elder bit mask

 Console.WriteLine("maskW = {0:X} maskU = {1:X}",

 maskW, maskU);

 int[] x = new int[N]; // stochastic sequence

 int[,] MS = new int[3000, N + 3]; // matrix

 int M = 0; // amount of sequences in matrix

 for (int a =1; a < N; a += 4)

 for (int c = 1; c < N; c += 2)

 { int x0 = 1;

 Cong_Start(x, N, a, c, x0, maskW);

 if (Repeating (x, N)) continue; // repeating

 MatrixAdd (MS, ref M, x, N, a, c);

 for (int i = 1; i < w * N; i++)

 { Twist (x, w, N, maskW, maskU); // twister

 if (Repeating (x, N)) continue; // repeating

 MatrixAdd (MS, ref M, x, N, a, c);

 }

 }

 MatrixCheck (MS, M, N, 1); // coincidence checking

 Console.WriteLine ("Matrix of unique sequences");

 MatrixWrite (MS, M, N);

 Console.WriteLine ("Finish");

 Console.ReadKey(); // result viewing

}

The listing below is the result of execution. Dash

lines show abridgments. At the end of each string the

first additional element is the result of checking of

unicity and two others show the congruential constants a

и c. The quantity of packs of sequences is w⋅N = 4⋅16 =

64, which means total amount of unique sequences is

w⋅N⋅4a⋅8c = 4⋅16⋅4⋅8 = 2048:

w = 4 N = 16

maskW = F maskU = 8

Matrix of unique sequences

k = 1 |1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 0 |0 1 1

k = 2 |2 4 6 8 10 12 15 1 3 5 7 9 11 13 14 0 |0 1 1

- - - - -

k = 64 |0 9 1 10 2 11 3 12 4 13 5 14 6 15 7 8 |0 1 1

k = 65 |1 4 7 10 13 0 3 6 9 12 15 2 5 8 11 14 |0 1 3

- - - - -

k= 133 |6 11 0 5 10 15 4 9 14 3 8 13 2 7 12 1 |0 1 5

- - - - -

k= 600 |7 15 4 8 1 9 6 10 3 11 0 12 5 13 2 14 |0 5 3

- - - - -

k=1025|1 10 11 4 5 14 15 8 9 2 3 12 13 6 7 0 |0 9 1

- - - - -

k=2048|0 14 5 15 2 8 7 9 4 10 1 11 6 12 3 13|0 13 15

Finish

This listing shows that function Repeating() hasn’t

found any sequences having repeated numbers from the

total of 2048. The first additional element in each string

points to this because it takes 0 for each generated

sequence. In other words, this result means that

definitely now we are capable to generate all the unique

sequences by using this kind of parameter a. As it has

been said above, this result is achieved due to odd values

for constant c. Moreover, for any other possible values

of a and odd values of c all the generated stochastic

sequences are unique.

4. Construction and Results

From the special aspects which are considered in

section 3, now let’s consider the practical realization.

Below is the program code for name space

nsDeonYuliTwist28DA, in which the class

cDeonYuliTwist28DA includes all the required

parameters and functions of generating (the using of

class cDeonYuliTwist28DA is presented in the following

program P020401, after this program code):

Aleksei F. Deon and Yulian A. Menyaev / Journal of Computer Sciences 2016, 12 (8): 363.378

DOI: 10.3844/jcssp.2016.363.378

371

namespace nsDeonYuliTwist28DA

{ class cDeonYuliTwist28DA

 { public int w = 16; // number bit length

 public int N = 0; // sequence length

 public int N1 = 0; // maximum number

 int[] x; // sequence

 public int x0 = 1; // sequence beginning
 public double abf = 0.39; // beginning part of a
 public double aef = 0.39; // ending part of a
 public int a1b = 1, a1e = 0; // internal of a1
 int a1s = 0; // a1 interval state
 public int a2b = 1, a2e = 0; // interval of a2
 int a2s = 0; // a2 interval state

 int a1 = 5; // a1 interval constant

 int a2 = 5; // a2 interval constant

 int nA = 1; // a1 or a2 constant number

 public int a = 5; // constant a current value

 public double cbf = 0.1; // beginning part of c

 public double cef = 0.9; // ending part of c

 public int cb = 1, ce = 0; // ending part of c

 public int c = 1; // congruential constant

 public int st = 1; // generator state

 int nW = 0; // twister shift number

 int nT = 0; // nT twister number in N

 int nV = 0; // element number in x

 uint maskW = 0U; // number mask

 uint maskU = 0U; // elder bit mask

//---

 public cDeonYuliTwist28DA()

 { N = 1 << w; // sequence length

 N1 = N - 1; // maximum number

 x0 = N1 / 7; // generator starts

 }

//---

 public int Next()

 { bool flagW = true; // perpetual loop

 while (flagW) // status voyage

 { switch (st) // status switch

 { case 1: // initialization of generator

 nA = 1; // generation starts inside a1

 a1s = 1; // create twister 0 inside a1

 a1 = a1e; // a1 ending

 a = a1; // current constant a

 a2s = 0; // a2 while not used

 a2 = a2b - 4; // on the left to interval a2

 c = cb; // beginning of interval c

 st = 2; // twister 0 congruention

 break;

 case 2: // initial twister 0
 DeonYuli_Cong(a,c); // initialization of x
 nW = 0; // twister shift number
 nT = 0; // twister nT number inside nW
 nV = 0; // initial value number
 st = 101; // array x is ready

 break;

 case 101: // take from x

 if (nV <= N1) flagW = false;

 else st = 102; // change the twister

 break;
 case 102: // next twister with the same a, c
 nW++; // next bit of shift in word
 if (nW < w) { st = 103; break; }
 nT++; // twister beginning from next value
 nW = 0; // without shift

 if (nT < N) st = 103; // next twister

 else st = 201; // next constant c

 break;

 case 103: // next twister

 DeonYuli_Twist(); // next twister
 nV = 0; // initial value number
 st = 101; // take from x
 break;
 case 201: // change twister with c
 c += 2; // next constant c

 if (c <= ce) st = 2; // new twister

 else st = 202; // next constant a

 break;

 case 202: // change interval a

 c = cb; // initial value of c

 if (nA == 1) nA = 2; else nA = 1;

 if (nA == 1) st = 203; // interval a1

 else st = 204; // interval a2

 break;

 case 203: // new constant from a1

 a1 -= 4;

 a = a1;

 if (a1b <= a1) { a1s = 1; st = 2; }

 else { a1s = 2; st = 205; } // a1 is over

 break;

 case 204: // new constant from a2

 a2 += 4;

 a = a2;

 if (a2 <= a2e) { a2s = 1; st = 2; }

 else { a2s = 2; st = 205; } // a2 is over

 break;

 case 205: // a1 or a2 is over

 if (a2s != 2) st = 204;

 else if (a1s != 2) st = 203;

 else st = 1; // initial situation

 break;

 } // switch

 } // while

 return x[nV++]; // random number

 }

//---

 void DeonYuli_Cong (int a, int c)

 { x[0] = x0; // sequence beginning

 for (int i = 1; i < N; i++)

 x[i] = (int) (a * x[i - 1] + c) & maskW);

 }

//---

 void DeonYuli_Twist ()

Aleksei F. Deon and Yulian A. Menyaev / Journal of Computer Sciences 2016, 12 (8): 363.378

DOI: 10.3844/jcssp.2016.363.378

372

 { uint z = (uint)(x[0] & maskU) >> (w – 1); // left

 for (int j = 0; j < N - 1; j++)

 { uint g = (uint)(x[j + 1] & maskU) >> (w – 1);

 x[j] = (int)(((x[j] << 1) & maskW) | g);

 }

 x[N - 1] =

 (int)(((x[N - 1] << 1) & maskW) | z); // loop

 }

//---

 public void Start()

 { N = 1 << w; // sequence length

 N1 = N - 1; // maximum number

 maskW = 0xFFFFFFFF >> (32 - w); // mask

 maskU = (uint)(0x1 << (w - 1)); // elder bit mask

 DeonYuli_SetA(); // set a1 and a2 borders
 DeonYuli_SetC(); // set с border
 if (x0 > N1) x0 = N1;
 else if (x0 == 0) x0 = 1;
 x = new int[N]; // sequence
 st = 1; // initialization of generator
 }

//---

 public void TimeStart ()

 { x0 = (int)DateTime.Now.Millisecond;

 Start(); // generator starts

 }

//---

 public void SetW(int sw)

 { w = Math.Abs(sw); // random number bit length

 if (w < 3) w = 3; // minimum length

 else if (w > 28) w = 28; // maximum length

 }

//---

 public void SetA(double sab, double sae)

 { abf = Math.Abs(sab);

 aef = Math.Abs(sae);

 if (abf > 1.0) abf = 1.0;

 if (aef > 1.0) aef = 1.0;

 if (abf > aef) aef = abf;

 }

//---

 void DeonYuli_SetA ()

 { a1b = (int)(N1 * abf); // bottom border for a1

 a1b = DeonYuli_PlusA (a1b); // beginning of a1

 a2e = (int)(N1 * aef); // top border for a2

 a2e = DeonYuli_MinusA (a2e); // ending of a2

 int r = a2e - a1b;
 if (a1b >= a2e) // interval a like a point
 { a1e = a1b; // a1 is one point
 a2b = a1b; // a2 like a1
 a2e = a2b; // a2 is one point
 return;
 }
 if (r == 4) // one-point a1 and a2
 { a1e = a1b; // a1 is one point

 a2b = a2e; // a2 is one point

 return;
 }
 if (r == 8) // a1 has 2 points, a2 – one point
 { a1e = a1b + 4; // ending of a1
 a2b = a2e; // beginning of a2
 return;
 }
 a1e = (a1b + a2e) / 2; // middle of a
 a2b = a1e;
 a1e = DeonYuli_MinusA(a1e); // to the left

 a2b = a1e + 4; // to the right of middle

 }

//---

 int DeonYuli_PlusA (int a)

 { if (a < 1) { a = 1; return a; }

 int z = a; // bottom border for a

 for (int i = 0; i < 3; i++)

 if (a % 4 != 0) a--; // uniform condition

 else break;

 a++; // real value of constant a

 if (a < z) a += 4; // to the right of bottom border

 if (a >= N1) a -= 4; // to the left of top border

 return a;

 }

//---

 int DeonYuli_MinusA (int a)
 { if (a < 1) { a = 1; return a; }

 int z = a; // bottom border of a
 for (int i = 0; i < 3; i++)

 if (a % 4 != 0) a--; // uniform condition
 else break;

 a++; // real value of constant a

 if (a > z) a -= 4; // to the left of top border
 return a;

 }
//---

 public void SetC (double scb, double sce)

 { cbf = Math.Abs(scb);
 cef = Math.Abs(sce);

 if (cbf > 1.0) cbf = 1.0;
 if (cef > 1.0) cef = 1.0;

 if (cbf > cef) cef = cbf;
 }

//---

 void DeonYuli_SetC ()
 { cb = (int)(N1 * cbf); // bottom border of c

 if (cb % 2 == 0) cb += 1; // only odd c
 if (cb > N1) cb = N1; // maximal value

 ce = (int)(N1 * cef); // top border of c

 if (ce % 2 == 0) ce -= 1; // only odd c
 if (ce > N1) ce = N1; // maximal value

 if (cb > ce) ce = cb;
 c = cb; // beginning of congruential constant c

 }
//---

 public void SetX0 (double xs)

Aleksei F. Deon and Yulian A. Menyaev / Journal of Computer Sciences 2016, 12 (8): 363.378

DOI: 10.3844/jcssp.2016.363.378

373

 { x0 = (int)(N1 * Math.Abs(xs));

 }

//=======================================

 }

}

In class cDeonYuliTwist28DA some variables are

reserved. They may be tuned with help of encapsulated

functions. As a first example let’s use default arguments

for the simple task to generate several random numbers

having w = 16 bits from intervals

16
0,2 1 0,2 1 0,65535

w − = − =
. The program code for

this is presented below. The names P020401 and

cP020401 are chosen by chance:

using nsDeonYuliTwist28DA; // twisting generator

namespace P020401

{ class cP020401

 { static void Main(string[] args)

 { cDeonYuliTwist28DA CT =

 new cDeonYuliTwist28DA();

 CT.Start(); // generator starts

 for (int j = 0; j < 8; j++)

 { int z = CT.Next();

 Console.Write("{0,7} ", z); // monitor

 }

 Console.ReadKey(); // result viewing

 }

 }

}

The listing below is the result of execution:

9362 36699 52924 2805 8774 14575 51504 13129

For the next generating of new sequence as twister

0, the constant a in class DeonYuliTwist28DA is

chosen by turns from two different intervals as it is

shown in Fig. 2.

The value a1e is to the left from N/2 and value a2b

= a1b+4 is to the right from N/2. Moving of a in

interval a1 is accomplished from the right to the left,

i.e., from a1e to a1b with a step of -4; moving of a in

interval a2 is accomplished from the left to the

right, i.e., from a2b to a2e with a step of +4. This

choice of defining of a has been made artificially to

provide better confusion while applying the generation.

Fig. 2. Schematics of interval realization for constant a

Any other algorithms of confusion may be chosen if an

additional task to control the process of generation is

demanded. For example, if time sensor TimeStart() is

applied, the initial value of the stochastic sequence in

this case is defined by component having less than

millisecond size of real time.

The value a1b is defined by parameter b and value

a2e is defined by parameter e in the interface of their

assigned function SetA(). In the case of complete

generation of a the total numbers belong to interval

1, 3N − with a step of ±4. The call of tuning function

in this case looks as SetA(0.0, 1.0).

The program code presented below realizes the

ability of tuning such parameters as w, x0, a1b, a2e,

which may possess different meanings. Parameter с

takes all the odd numbers from interval 1, 1N − , which

start from 1 and finish at N-1. As it has been shown in

section 3, the first number may be defined directly while

other numbers - in the line of c. This kind of defining is

appropriate due to the twisting technique that is applied

for complete sequences and it provides generation of all

non-repeatable numbers in each next sequence. As an

example, let’s consider the program code containing the

following values: w = 4, N = 2
w
 = 16, a1b = 1, a2e = 13,

x0 = 1.0/5.0∗N = 3; for the each value of a = 5,9,1,13, an

assign parameter с takes the values c =

1,3,5,7,9,11,13,15. The names P020403 and cP020403

are chosen by chance:

using nsDeonYuliTwist28DA; // twisting generator

namespace P020403

{ class cP020403

 { static void Main(string[] args)

 { cDeonYuliTwist28DA CT =

 new cDeonYuliTwist28DA();

 CT.SetW(4); // number bit length

 CT.SetA(0.0, 1.0); // all of a

 CT.SetC(0.0, 1.0); // all of c

 CT.Start(); //generator starts

 Console.WriteLine("w = {0} N = {1}",

 CT.w, CT.N);

 Console.WriteLine("a1b = {0} a1e = {1}",

 CT.a1b, CT.a1e);

 Console.WriteLine("a2b = {0} a2e = {1}",

 CT.a2b, CT.a2e);

 Console.WriteLine("cb = {0} ce = {1}",

 CT.cb, CT.ce);

 int k = 0; // sequence number

 int NN = 0; // quantity of random numbers

 for (int nw = 0; nw < CT.w; nw++)

 for (int nt = 0; nt < CT.N; nt++)

 for (int na = 1; na <= 4; na++)

 for (int nc = 1; nc <= 8; nc++)

 { Console.Write("k={0,4} | ", ++k);

Aleksei F. Deon and Yulian A. Menyaev / Journal of Computer Sciences 2016, 12 (8): 363.378

DOI: 10.3844/jcssp.2016.363.378

374

 for (int i = 0; i < CT.N; i++)
 { Console.Write("{0,3}", CT.Next());
 NN++;
 }
 Console.WriteLine(" a={0,2} c ={1,2}",
 CT.a, CT.c);
 if (k % 250 == 0) Console.ReadKey();
 }
 Console.WriteLine("Finish");
 Console.WriteLine("NN = {0}", NN);
 Console.ReadKey(); // result viewing
 }
 }

}

The listing below is the result of execution. Dash

lines show abridgments:

w = 4 N = 16
a1b = 1 a1e = 5
a2b = 9 a2e = 13
cb = 1 ce = 15
k = 1 15 12 13 2 11 8 9 14 7 4 5 10 3 0 1 6
a=5 c=1
k = 2 15 9 10 5 7 1 3 12 14 8 11 4 6 0 2 13
a=5 c=1
- - - - -
k = 1000 6 10 1 13 4 8 7 11 2 14 5 9 0 12 3 15
a = 9 c = 15
- - - - -
k = 1230 9 6 5 2 0 15 12 11 8 7 4 3 1 14 13 10
a = 1 c = 7
- - - - -
k = 1900 8 5 13 6 10 7 15 0 12 1 9 2 14 3 11 4
a = 13 c = 11
- - - - -
k = 2048 11 6 12 3 13 0 14 5 15 2 8 7 9 4 10 1
a = 13 c = 15
Finish
NN = 32768

A total of 4⋅16⋅4⋅8 = 2048 sequences have been

received. Each sequence consists of 16 non-repeatable
random numbers which suggest that the total amount of
generated elements is 2048⋅16 = 32768.

5. Discussion

In general, for the quantity Ns of generated sequences
to have complete non-repeatable elements depends on
the following reasons:

• Bit length w of random numbers

• Amount of numbers in one sequence N=2
w

• Amount of twisters NT = w⋅N = w⋅2
w
 for each pair of

congruential constants a and c

• Amount of possible variations Na = N/4 of a and of

possible variations Nc = N/2 of c

If all the mentioned parameters are combined in one

equation it appears as the following:

()
3

3 13 3

3

2 2 2
2 . 2 2

4 2 2

s T a c

w w w

ww w

N N N N

w w w w
−−

= ∗ ∗

= ⋅ ⋅ = = ⋅ = ⋅

 (8)

The quantity Nns of generated numbers in all

completed sequences is defined as:

3 3 4 3
2 2 2
w w w

ns s
N N N w w

− −

= ⋅ = ⋅ ⋅ = ⋅ ⋅ (9)

The bit length Nbs of non-repeating elements is

defined as the quantity of bits in all the numbers of all

non-repeatable sequences:

()3 1

2 4 3

2 2

2

ww

bs ns s

w

N w N w N N w w

w

−

−

= ⋅ = ⋅ ⋅ = ⋅ ⋅ ⋅ =

= ⋅

 (10)

Deriving Ns for w = 4 leads to Ns(w = 4) = 4⋅2
3⋅3

 = 4⋅512

= 2048 and this value is confirmed directly by using counter

k which has been used at the end of the section 4.

In the practical application of RNG the interest is

addressed to double-byte numbers having length of w

= 2
4
 = 16 bits. In this case, the amount of random

numbers in one complete sequence is N(w = 16) = 2
w

= 2
16

 = 65536. The total amount of non-repeatable

sequences is defined as: Ns (w = 16) = w⋅2
3w-3

= 2
3⋅16+1

=

2
49

. Thus, the amount of all the generated numbers is

Nns(w = 16) = N⋅Nns = 2
4
⋅2

49
 = 2

51
. So, the bit length in

this case is defined as: Nbs(w = 16) = w⋅Nns = 2
4
⋅2

51
 = 2

55
.

Let’s consider this result in comparison with the

generator MT19937 (Matsumoto and Nishimura, 1998).

By following the program code for this generator it’s

possible to find out that bit length of generated random

numbers is w32 = 32. The length of the array for initial

congruential generation is defined as MT32 = 624

elements. A global twister doesn’t use the circular

movement of elder bit of sequence. The data supports

that the total amount of generated random numbers is:

32 32 32
31

32 624 31 19968 31 19937

ns
MT w MT= ⋅ −

= ∗ − = − =

 (11)

Diminution of value 31 is because the twister doesn’t

take into account the circle of needless bits.

Theoretically, it appears that in all 19937 numbers it is

possible to reach a non-repeatable sequence with 2
19937

bits. However, this is hypothetical case only due to

congruential generator for twister 0 with following

single-bit twisters may provide just only MTns = 19937

numbers. To reach more numbers it’s required to define

a new initial value x0, because congruential constants a

and c are pointed as stationary values and thus they can’t

be changed automatically.

Aleksei F. Deon and Yulian A. Menyaev / Journal of Computer Sciences 2016, 12 (8): 363.378

DOI: 10.3844/jcssp.2016.363.378

375

The same properties have been found for the

generator MT19937-64, for which the bit length of

generated random numbers is w64 = 64. To retain the

twisting properties for the bit sequence of 19937, the

array of initial generation for twister 0 is halved in

distribution space and thus it consists of 312 elements.

This means that the length of the array after substitution

is the following: MT64 = 312 = 624/2. The calculation of

the total amount of random numbers generated is:

()
32 64 64

31 64 312 31

64 / 2 312 2 31 19968 31 19937

ns
MT w MT= ⋅ − = ∗ −

= ∗ ∗ − = − =

 (12)

The general properties for both Mersenne twister

generators are equal, however the 64-bit version has for

the benefit of parallel speed-up calculations. This is

important for the 128-bit registers of modern processors

(Saito and Matsumoto, 1998).

Significantly to note, congruential initial generation

can’t provide the rearrangement of numbers in sequence

due to the fact that congruence can never be equal to

factorial; they have very different natures of

mathematical phenomena. In principle the congruential

initial generation can’t realize the technique of creating

the theoretically completed random numbers having

uniform distribution. Let’s additionally clarify this

having used the discrete mathematics.

It is of great importance to pay attention to the

combinatory properties of uniform sequences with no

repeats. For this goal let’s assume that uniform sequence

consists of N numbers and each of them is found once.

The question is how many times such uniform sequences

may be reached? The answer gives the combinatorial

analysis (Waerden, 1991a; 1991b; Johnsonbaugh, 2008):

that is factorial N! due to uniform sequences admit any

rearrangement of N numbers. Congruential and twister

generation can’t provide the same result as factorial;

complete sets of stochastic sequences can realize this.

Let’s continue the discussion regarding the twisting

generator tuning proposed here. It’s highly important to

be satisfied that all the random numbers generated by

nsDeonYuliTwist28DA are found an equal quantity of

times. This is because the requirement of uniformity

explains that all the elements in complete generation

indeed must be presented equal quantity of times. In the

simplest case, all the numbers are found once in single

sequence. Therefore, in the set of rearrangements, any

number can be presented as many times as the quantity

of rearrangements is applied. This is because in each

uniform rearrangement any number is found once. So,

now we have a simple and well-organized tool to test the

uniformity for generators.
Below is the program code where each element of

arrayxC is a counter for random numbers, so the index

of counter is equal to the random number. In this code

the uniformity for twister 0 which corresponds to initial

congruential generation is verified. The bit length of 16

bits for each random number is taken, thus whole

length of sequence includes N = 2
w
 = 2

16
= 65536 of

random numbers:

using nsDeonYuliTwist28DA; // twisting generator
namespace P020501
{ class cP020501
 { static void Main(string[] args)
 { cDeonYuliTwist28DA CT =
 new cDeonYuliTwist28DA();
 CT.Start(); // generator starts
 Console.WriteLine("w = {0} N = {1}",
 CT.w, CT.N);
 int[] cX = new int[CT.N]; // array of counters
 for (int i = 0; i < CT.N; i++) cX[i] = 0;

 for (int n = 0; n < CT.N; n++)
 { int z = CT.Next();
 cX[z]++; // counter for random number
 }
 int count0 = 0; // amount of non-appeared elements
 int count1 = 0; // amount of single-valued elements
 int count2 = 0;// amount of double-valued elements
 for (int i = 0; i < CT.N; i++)
 { if (cX[i] == 1) count1++; // 1 time
 else if (cX[i] == 2) count2++; // 2 times
 else if (cX[i] == 0) count0++; // never
 }
 Console.Write("count0 = {0} ", count0);
 Console.Write("count1 = {0} ", count1);
 Console.WriteLine("count2 = {0} ", count2);
 Console.ReadKey(); // result viewing
 }
 }
}

The listing below is the result of execution:

w = 16 N = 65536

count0 = 0 count1 = 65536 count2 = 0

To be sure that single complete twister having given

values for congruential constants a and c satisfies to

uniformity, it’s necessary to generate nwN = w⋅N =

16⋅65536 = 1048576 of random numbers. This task may

be solved by the following code, where each uniformly

distributed random value has to be found 16 times. The

names P020502 and cP020502 are chosen by chance:

using nsDeonYuliTwist28DA; // twisting generator

namespace P020502

{ class cP020502

 { static void Main(string[] args)

 { cDeonYuliTwist28DA CT =

 new cDeonYuliTwist28DA();

 CT.Start(); // generator starts

Aleksei F. Deon and Yulian A. Menyaev / Journal of Computer Sciences 2016, 12 (8): 363.378

DOI: 10.3844/jcssp.2016.363.378

376

 int nwN = CT.w * CT.N; // quantity of twisters
 Console.WriteLine(
 "w = {0} N = {1} nwN = {2}",
 CT.w, CT.N, nwN);
 int[] cX = new int[CT.N]; // array of counters
 for (int i = 0; i < CT.N; i++) cX[i] = 0;
 for (int n = 0; n < nwN; n++)
 { int z = CT.Next();
 cX[z]++; // random number counter
 }
 int count16 = 0; // amount of 16-times elements
 for (int i = 0; i < CT.N; i++)
 if (cX[i] == 16) count16++; // 16-times
 Console.WriteLine("count16 = {0} ", count16);
 Console.ReadKey(); // result viewing
 }
 }
}

Two strings appear after executing the last code:

w = 16 N = 65536 nwN = 1048576

count16 = 65536

The task of testing which is discussed above is

completed. Thorough investigation of twisting generation

requires special resources like a powerful processor,

additional random-access memory, hard-drive storage, etc.

Fortunately, the principles of verification are the same as

have been described in detail in this study.

6. Conclusion

In the beginning we started with the fact that

congruential technique of random number generation

can’t provide the uniform distribution for all

congruential constants and initial values in the linear

function xi+1 = (axi+c)mod m. Fortunately, the result may

be improved to uniform distribution if complete

sequences are considered in the assumption that total

amount of random numbers is N = m. In this case the

sequences could be organized as completed and

uniformly distributed where each element is found once.

To speed up the calculation capability for complete

sequences the modulus operation may be changed to the

operation of bit conjunction (&) with a mask having w =

log2N of bit length. By using circular rotation for elder

bit of current sequence while applying the left global

twister, the value w⋅N of unique sequences has been

reached. In this case each sequence consists of N non-

repeatable random numbers having uniform distribution

and presented just once. Herein, by using matrix

verification it’s confirmed experimentally that all the

various combinations of pairs of congruential constants a

и c can include any initial settings of seed x0. All these

fundamental properties have allowed us to consider the

questions addressed to realize tuning of twisting

generators, where the intervals for congruential constants

are chosen. The maximal length of intervals for those

constants, which are required for the complete

sequences, provides the maximum possible quantity of

generating twisting sequences and twisting random

numbers. In general, the techniques presented in this

work seem to be very promising for many applications

and primarily for such areas as information technology,

cryptography, engineering, biology, medicine and others.

Funding Information

The authors have no support or funding to report.

Author’s Contributions

The authors equally contributed in this work.

Ethics

This article is original and contains unpublished

material. The corresponding author confirms that all of

the other authors have read and approved the manuscript

and no ethical issues involved.

References

Aluru, S., 1997. Lagged fibonacci random number
generators for distributed memory parallel
computers. J. Parallel Distr. Com., 45: 1-12.

 DOI: 10.1006/jpdc.1997.1363

Blum, L., M. Blum and M. Shub, 1986. A simple

unpredictable pseudo-random number generator.

SIAM J. Comput., 15: 364-383.

 DOI: 10.1137/0215025

Bos, J.W., T. Kleinjung, A.K. Lenstra and P.L.

Montgomery, 2011. Efficient SIMD arithmetic

modulo a mersenne number. Proceedings of the

IEEE 20th Symposium on Computer Arithmetic,

Jul. 25-27, IEEE Xplore Press, pp: 213-221.

 DOI: 10.1109/ARITH.2011.37
Cai, C., K.A. Carey, D.A. Nedosekin, Y.A. Menyaev

and M. Sarimollaoglu et al., 2016a. In vivo
photoacoustic flow cytometry for early malaria
diagnosis. Cytometry A, 89A:531-542.

 DOI: 10.1002/cyto.a.22854
Cai, C., D.A. Nedosekin, Y.A. Menyaev, M. Sarimollaoglu

and M.A. Proskurnin et al., 2016b. Photoacoustic
flow cytometry for single sickle cell detection in
vitro and in vivo. Anal. Cell. Pathol., 2642361: 1-11.
DOI: 10.1155/2016/2642361

Chandrasekaran, S. and A. Amira, 2008. High
performance FPGA implementation of the mersenne
twister. Proceedings of the 4th IEEE International
Symposium on Electronic Design, Test and
Applications, Jan. 23-25, IEEE Xplore Press,
pp: 482-485. DOI: 10.1109/DELTA.2008.113

Aleksei F. Deon and Yulian A. Menyaev / Journal of Computer Sciences 2016, 12 (8): 363.378

DOI: 10.3844/jcssp.2016.363.378

377

Entacher, K., 1998. Bad subsequences of well-known

linear congruential pseudorandom number

generators. ACM Trans. Model. Comput. Simulat.,

8: 61-70. DOI: 10.1145/272991.273009

Entacher, K., 1999. Parallel streams of linear random

numbers in the spectral test. ACM Trans. Model.

Comput. Simulat., 9: 31-44.

 DOI: 10.1145/301677.301682
Johnsonbaugh, R., 2008. Discrete Mathematics. 7th

Edn., Pearson Prentice Hall, Upper Saddle River,
ISBN-10: 0131354302, pp: 766.

Juratly, M.A., E.R. Siegel, D.A. Nedosekin, M.
Sarimollaoglu and A. Jamshidi-Parsian et al., 2015.
In vivo long-term monitoring of circulating tumor
cells fluctuation during medical interventions.
PLoS One, 10: e0137613-e0137613.

 DOI: 10.1371/journal.pone.0137613
Juratly, M.A., Y.A. Menyaev, M. Sarimollaoglu, E.R.

Siegel and D.A. Nedosekin et al., 2016. Real-time

label-free embolus detection using in vivo

photoacoustic flow cytometry. PLoS One, 11:

e0156269. DOI: 10.1371/journal.pone.0156269

Knuth, D.E., 1997. The Art of Computer Programming:

Seminumerical algorithms. 3rd Edn., Addison-

Wesley, Reading, ISBN-10: 0201896842, pp: 762.

Leeb, H. and S. Wegenkittl, 1997. Inversive and linear

congruential pseudorandom number generators in

empirical tests. ACM Trans. Model. Comput.

Simulat., 7: 272-286. DOI: 10.1145/249204.249208
Leonard, P. and D. Jackson, 2015. Efficient evolution of

high entropy RNGs using single node genetic
programming. Proceedings of the Annual
Conference on Genetic and Evolutionary Computation,
Jul. 11-15, Madrid, Spain, pp: 1071-1078.

 DOI: 10.1145/2739480.2754820
Lewis, T.G. and W.H. Payne, 1973. Generalized

feedback shift register pseudorandom number
algorithm. J. ACM, 20: 456-486.

 DOI: 10.1145/321765.321777

Makino, J., 1994. Lagged-fibonacci random number

generators on parallel computers. Parallel Comput.,

20: 1357-1367. DOI: 10.1016/0167-8191(94)90042-6
Matsumoto, M. and T. Nishimura, 1998. Mersenne

twister: A 623-dimensionally equidistributed
uniform pseudo-random number generator. ACM
Trans. Model. Comput. Simulat., 8: 3-30.

 DOI: 10.1145/272991.272995
Matsumoto, M. and Y. Kurita, 1992. Twisted GFSR

generators. ACM Trans. Model. Comput. Simulat.,
2: 179-194. DOI: 10.1145/146382.146383

Matsumoto, M. and Y. Kurita, 1994. Twisted GFSR
generators II. ACM Trans. Model. Comput.
Simulat., 4: 254-266. DOI: 10.1145/189443.189445

Menyaev, Y.A. and V.P. Zharov, 2006a. Experience
in development of therapeutic photomatrix
equipment. Biomed. Eng., 40: 57-63.

 DOI: 10.1007/s10527-006-0042-6

Menyaev, Y.A. and V.P. Zharov, 2006b. Experience in

the use of therapeutic photomatrix equipment.

Biomed. Eng., 40: 144-147.

 DOI: 10.1007/s10527-006-0064-0

Menyaev, Y.A. and I.Z. Zharova, 2006. A technique for

surgical treatment of infected wounds based on

photodynamic and ultrasound therapy. Biomed.

Eng., 40: 284-290.

 DOI: 10.1007/s10527-006-0102-y

Menyaev, Y.A., V.P. Zharov, E.A. Mishanin, A.P.

Kuzmich and S.E. Bessonov, 2006. Combined

photovacuum therapy of copulative dysfunction.

Proc. SPIE, 6078: 241-248. DOI: 10.1117/12.656713

Menyaev, Y.A., D.A. Nedosekin, M. Sarimollaoglu,

M.A. Juratli and E.I. Galanzha et al., 2013. Optical

clearing in photoacoustic flowcytometry. Biomed.

Opt. Express, 4: 3030-3041.

 DOI: 10.1364/BOE.4.003030

Menyaev, Y.A., K.A. Carey, D.A. Nedosekin, M.

Sarimollaoglu and E.I. Galanzha et al., 2016.

Preclinical photoacoustic models: Application for

ultrasensitive single cell malaria diagnosis in

large vein and artery. Biomed. Opt. Express, 7:

3643-3658. DOI: 10.1364/BOE.7.003643

Niederreiter, H., 1995. Some linear and nonlinear

methods for pseudorandom number generation.

Proceedings of the 27th Conference on Winter

Simulation, Dec. 03-06, Arlington, VA, USA,

pp: 250-254. DOI: 10.1145/224401.224611

Nishimura, T., 2000. Tables of 64-bit mersenne twisters.

ACM Trans. Model. Comput. Simulat., 10: 348-357.

DOI: 10.1145/369534.369540

Ozturk, E., B. Sunar and E. Savas, 2004. Low-power

elliptic curve cryptography using scaled modular

arithmetic. Proceedings of the 6th International

Workshop Cryptographic Hardware and Embedded

Systems, Aug. 11-13, Cambridge, MA, USA,

pp: 92-106. DOI: 10.1007/978-3-540-28632-5_7
Panneton, F., P. L'Ecuyer and M. Matsumoto, 2006.

Improved long-period generators based on linear
recurrences modulo 2. ACM Trans. Math. Software,
32: 1-16. DOI: 10.1145/1132973.1132974

Park, S.K. and K.W. Miller, 1998. Random number

generators: Good ones are hard to find. Commun.

ACM, 31: 1192-1201. DOI: 10.1145/63039.63042

Pellicer-Lostao, C. and R. Lopez-Ruiz, 2008. Pseudo-
random bit generation based on 2D chaotic maps of
logistic type and its applications in chaotic
cryptography. Proceedings of the International
Conference on Computational Science and its
Applications, Jun. 30-Jul. 3, Perugia, Italy, pp: 784-
796. DOI: 10.1007/978-3-540-69848-7_62

Politano, G., A. Benso, A. Savino and S. Di Carlo, 2014.

ReNE: A Cytoscape Plugin for Regulatory Network

Enhancement. PLoS ONE, 9: e115585.

 DOI: 10.1371/journal.pone.0115585

Aleksei F. Deon and Yulian A. Menyaev / Journal of Computer Sciences 2016, 12 (8): 363.378

DOI: 10.3844/jcssp.2016.363.378

378

Politano, G., F. Orso, M. Raimo, A. Benso and A.

Savino et al., 2016. CyTRANSFINDER: A

Cytoscape 3.3 plugin for three-component (TF,

gene, miRNA) signal transduction pathway

construction. BMC Bioinformatics, 17: 157.

 DOI: 10.1186/s12859-016-0964-2

Rababbah, A., 2004. Jacobi-bernstein basis

transformation. CMAM, 4: 206-2014.

 DOI: 10.2478/cmam-2004-0012

Rababbah, A., 2007. High Accuracy Hermite

approximation for space curves in R
d
. J. Math.

Anal. Applied, 325: 920-931.

 DOI: 10.1016/j.jmaa.2006.02.054

Rahimov, H., M. Babaie and H. Hassanabadi, 2011.

Improving middle square method RNG using

chaotic map. Applied Math., 2: 482-486.

 DOI: 10.4236/am.2011.24062

Riguzzi, F., 2016. The distribution semantics for normal

programs with function symbols. Int. J. Approx

Reason, 77:1-19. DOI: 10.1016/j.ijar.2016.05.005

Saito, M. and M. Matsumoto, 2008. SIMD-Oriented Fast

Mersenne Twister: A 128-bit Pseudorandom

Number Generator. In: Monte Carlo and Quasi-

Monte Carlo Methods 2006, Keller, A., S. Heinrich

and H. Niederreiter, (Eds.), Springer Science and

Business Media, Berlin, ISBN-10: 3540744967,

pp: 607-622.

Sarimollaoglu, M., D.A. Nedosekin, Y.A. Menyaev,

M.A. Juratly and V.P. Zharov, 2014. Nonlinear

photoacoustic signal amplification from single

targets in absorption background. Photoacoustics, 2:

1-11. DOI: 10.1016/j.pacs.2013.11.002

Schildt, H., 2010. C# 4.0: The Complete Reference. 1st

Edn., Tata McGraw-Hill Education, New York.

ISBN-10: 007070368X, pp: 949.

Tusnoo, Y., T. Saito, T. Suzaki, M. Shigeri and H.

Miyauchi, 2003. Cryptanalysis of DES

implemented on computers with cache.

Proceedings of the 5th International Workshop on

Cryptographic Hardware and Embedded Systems,

Sept. 8-10, Cologne, Germany, pp: 62-76.

 DOI: 10.1007/978-3-540-45238-6_6

Waerden, B.L. van der, 1991. Algebra: Volume I. 1st

Edn., Springer-Verlag, New York,

 ISBN-10: 978-0-387-40624-4, pp: 265.

Waerden, B.L. van der, 1991. Algebra: Volume II. 1st

Edn., Springer-Verlag, New York,

 ISBN: 978-0-387-40625-1, pp: 284.

Wiese, K.C., A. Hendriks, A. Deschenes and B.B. Youssef,

2005. The impact of pseudorandom number quality

on P-RnaPredict, a parallel genetic algorithm for

RNA secondary structure prediction. Proceedings of

the 7th Annual Conference on Genetic and

Evolutionary Computation, Jun. 25-29, Washington,

DC, USA, pp: 479-480.

 DOI: 10.1145/1068009.1068089

Zhou, Q., X. Liao, K.W. Wong, Y. Hua and D. Xiao,

2009. True random number generator based on

mouse movement and chaotic hash function.

Inform. Sci., 179: 3442-3450.

 DOI: 10.1016/j.ins.2009.06.005

