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Abstract: Stress-free interaction between humans and robots is necessary 

to support humans in daily life. In order to achieve this, we anticipate the 

development of new robots equipped with tactile and vision sensors for 

receiving human instructions. In this article, we focus on spontaneous 

movements that do not require training, such as pointing and force 

adjustment and that are suitable for daily care. These movements, which we 

call natural instructions, involve the transmission of human instructions to 

robots. In this experiment, we examine a robot equipped with vision and 

tactile sensors capable of receiving natural instructions. Our new robot 

accomplishes a retrieving and passing task using the natural instructions of 

finger pointing and tapping with the palm. 
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Introduction 

Background and Purpose 

The demand for robots has been increasing not only 

in industrial fields but also in daily life. It has been 

suggested that human orders to robots vary according to 

the human’s needs in life. However, it is impossible for 

robotics companies to provide robot programs that 

address every single need and circumstance that may 

exist. Furthermore, requiring users to learn situation 

specific skills, gestures and utterances in order to 

command a robot increases user stress. 

Although some studies approached human-robot 

interaction using gestures, as described in the next 

section, it is often difficult for people to make a gesture 

during a cooperative task because the hands are already 

being used to perform the task. Furthermore, utterance 

recognition is dependent on the current environment and 

the speaker because noisy conditions and speech 

difficulties can prevent the successful transmission of 

commands. Consequently, we believe the use of both 

gestures and utterance creates stress. Thus, a new 

interaction that does not involve specific utterances and 

gestures will most effectively reduce daily human stress. 
In this study, we introduce a new interaction 

between humans and robots. Our method uses 

spontaneous or unconscious movements and signs that 

do not require training and that are concomitant with 

normal movement. For example, the iris position 

changes with the line of sight. Similarly, force changes 

are accompanied by hand actions. In such cases, a 

human unconsciously moves the iris and exerts force. 

In other words, there is no stress because these actions 

naturally accompany the main movement. Therefore, if 

robots can sense natural movements, such as eye 

direction and force direction changes, the robot can 

provide stress-free support to the human. We aim to 

utilize these movements as natural instructions. In this 

article, we mounted vision and tactile sensors capable 

of receiving such instructions on the robot. With our 

method, the robot mastered a retrieving and passing 

task without requiring special training or specific 

gestures and utterances. 

Literature Review 

Researchers have strived to develop robots capable of 

recognizing not only utterances but also nonverbal 

instructions. Since utterance recognition is being studied 

by many researchers, we focused our attention on 

nonverbal instruction. Several studies on nonverbal 

instructions have been presented, particularly for 

gestures (Kurata et al., 2002; Ong and Ranganath, 2005; 

Shotton et al., 2011). Kurata et al. (2002) achieved high-

speed image tracking using hand gestures, Ong and 

Ranganath (2005) surveyed recent automatic sign 

language analysis and Shotton et al. (2011) developed 

real-time 3D pose recognition. 

Furthermore, other studies looked into nonverbal 

instructions other than gestures. Although a method 

using a mounted tactile pad to accept human commands 
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(Ito and Tsuji, 2010) is related to our study, this system 

requires the user to learn special touching patterns in 

order to make the robot move according to his or her 

intention, which is burdensome. Recently, researchers 

have used the human body as a pointing device along 

with Kinect to make a robot comprehend commands 

(Quintero et al., 2013). Furthermore, for tutoring and 

coaching, nonverbal social cues like eye gaze and 

gesture are effective for socially assistive robots 

(Admoni and Scassellati, 2014). 

As shown by these related works, researchers have 

presented several methods for nonverbal instructions. It 

is our goal to transmit the desired intention in a natural, 

nonstressful manner using nonverbal instructions. 

Theory 

Overview of Robotic Instructions 

We first assume that the robot is situated relatively 

far from the operator. In order to perform a cooperative 

task with the robot, we should issue a command via 

gesture and utterance. Then the cooperative task will be 

performed over a short distance. 

Over a short distance, since we are close enough to 

touch the robot, communication via touch, rather than 

utterance, becomes possible. In this study, natural 

gesture and contact force are used for long and short 

ranges, respectively. 

In this study, the object-retrieving and -passing task 

is treated as a typical daily task. Accordingly, we explain 

our scenario using this task as an example. 

Human instructions utilize pointing and touch 

communication for long and short ranges, respectively. 

For each range, vision and tactile sensors are applied. 

The task of retrieving and passing an object is 

accomplished by the steps shown in Fig. 1: 

 

• The operator first points at the object that he or she 

wants and the robot then recognizes the object 

• The robot extends its hands to grasp the object, 

using tactile information 

• The robot recognizes how the grasped object should 

be treated through tactile information applied as 

contact communication. For example, the robot 

recognizes the release time of the object via drawing 

force applied to it and the conveyance course via 

force in cooperative tasks 

 

Pointing Method 

In order to achieve the scenario explained in the last 

section, we use visual and tactile sensor systems to 

recognize human instructions. The human tries to 

instruct the robot using natural mannerisms, such as 

pointing out the object, holding out a hand and pushing. 

 

 
 
Fig. 1. Scenario of object retrieving and passing task 
 

 
 
Fig. 2. Definition of θ and φ in Finger Direction Recognition 

(FDR) system 
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If we have something we wish brought to us, we 
point out the specific object with our index finger. 
Although this is a gesture, we understand it even without 
any prior instruction. We therefore consider this 
gesticulation to constitute a natural instruction. 

In our previous work (Ikai et al., 2013), we used stereo 

vision to create a Finger Direction Recognition (FDR) 

system that estimates the 3D direction indicated by human 

pointing (Fig. 2). For a detailed explanation, please refer 

to the paper, but here we discuss the key issues. 

First, in this system, the acute portions including the 

fingertip are searched for along the contour of the finger 

image according to the following formulas for three 

points on the contour as shown in Fig. 3: 
 

( ) ( )cos max , , ,
| ||

x x y y

x y x y

a b a b
A a a and B b b

A B
α

+
Θ = =

� �

� �  (1) 

 

0x y y xa b a b− >  (2) 

 

where, ax, bx, ay, by and Θα are values positioned as 

shown in Fig. 3. Through Equation 1 and 2, the FDR 

system finds a fingertip. 

Next, using stereo matching for the fingertip and 

centroid of the hand, the FDR system estimates two 

finger directions (θ and φ), which are projections on two 

planes, instead of a 3D finger direction as shown in Fig. 

2. Elevation θ is the sum of the vectors along the lines of 

the finger’s sides and it can be calculated by applying a 

finger straight-line detector from a fingertip image. 

Azimuth φ is calculated from a vector defined by the 

center of an image of the hand region and the fingertip 

point of which coordinates are obtained from stereo 

matching. Using this method, we get the 3D finger 

direction of pointing and the approximated position of 

the object that is being pointed to. 
In this study, for simplification, we define the 

pointing finger and pointed object as existing in the same 
plane and equidistant from the camera. 

Tactile Data for Contact Information 

Let us consider a situation in which an object is 
handed to us. If we instruct the robot to release the 
grasped object when the object bottom is lightly tapped, 
the robot recognizes the intentional tapping of the 
bottom of the object, or a hand holding the bottom of the 
object, as the release time. 

A very sensitive tactile sensor is required to measure 
subtle tactile sensation such as light tapping. The three 
axis tactile sensor developed in our previous work is 
useful for this objective (Abdullah et al., 2011). 

Figure 4 demonstrates this tactile sensor, which can 
measure three axis forces (one vertical and two 
horizontal) simultaneously. The three force components 
are measured based on the variations in rotational 
momentum occurring in the sensor’s tactile feelers. 

 
 
Fig. 3. Θα on finger contour; in order to search for Ptarget (xtarget, 

ytarget) of a fingertip, we chose Pa(xa, ya), Pb(xb, yb) Ptarget 

(xtarget, ytarget) inside a certain range and checked whether 

cos Θα exceeds a certain threshold 

 

The tactile sensor contains 41 sensing elements that 

have local coordinates as shown in Fig. 5. We display 

element #00 to element #08’s locations and coordinates 

in Fig. 5 because they will be used in the experimental 

results described in section 4. 

In the sensor, three components of applied force 

( )sensor sensor sensor, andx y zF F F are calculated according to the 

following formulas: 

 

( )sensor sensor, sensor, -1t t

x x x xF K u u= −  (3) 

 

( )sensor sensor, sensor, -1t t

y y y yF K u u= −  (4) 

 

GKF
zz

=sensor  (5) 

 

where, sensor

x
u  and sensor

yu  are components of centroid 

displacement in the sensor coordinate. Superscript t and 

t-1 show the current step and preceding step, 

respectively. G is the obtained grayscale value observed 

by the fiberscope in Fig. 4. Kx, Ky and Kz are constants 

determined by calibration tests. 

It should be noted that ( )sensor , ,iF i x y z= is the force 

component in the embedded coordinate of the sensor 

element. When force applied to the robotic finger is 

obtained, sensor

i
F should be transformed through the 

robotic kinematics to obtain the force component in the 

world coordinate of the robot (OG-xG yG zG) shown in 

Fig. 7 to obtain contact information between a grasped 

object and another object. 

Algorithm 

Using the pointing method and tactile data 

processing, the robot performs the task according to the 

flowchart in Fig. 6, which shows the main flow of the 

program for robotic instruction. 
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Fig. 4. Three-axis tactile sensor 
 

 
 
Fig. 5. Position and local coordinates’ tactile sensor elements 

 
In the FDR block, first, a pointing finger is 

identified and then the pointing direction is estimated 
according to the FDR system as described in the 
preceding section. Second, the distances between 
objects and the camera are obtained using a graph-cut 
algorithm of OpenCV to estimate the specific object 
pointed at by FDR. Then, an opened palm is 
determined as the largest skin-colored area and its 
centroid is calculated. 

Next, by solving inversed kinematics of the 

manipulator, motor control variables are calculated to 

control the motors so that the robot extends its arm-hand 

to approach the object. After the intermediate point 

between two fingertips reaches the object centroid, the 

hand grasps the object. During the grasping operation, 
sensor

z
F is measured by the tactile sensor to prevent the robot 

hand from exceeding the limit force. 

After the robot brings the object over the palm, it 

tries to put the object on the hand by lowering the hand. 

If the object bottom is touched and sensor

or /x ydF dt or 

reaches a specific value, it stops its lowering motion to 

complete its task. 

 
 
Fig. 6. Flowchart of robotic instructions 



Takuya Ikai et al. / Journal of Computer Sciences 2016, 12 (5): 246.254 

DOI: 10.3844/jcssp.2016.246.254 

 

250 

 
 
Fig. 7. Robot equipped with two hands and two eyes 

 

Experimental Procedure 

Robotic System 

The robotic system used in this study is shown in Fig. 

7. It has two hands and two eyes. We built this robot by 

adding a two-eyed robotic head to the robot produced in 

our previous paper (Abdullah et al., 2011). The robotic 

head has two Degrees of Freedom (DOF) (pan and tilt) 

and each arm has six DOF. We mounted two tactile 

sensors on each hand so that the robot’s two fingertips 

would face each other. Consequently, the robot can 

recognize not only a human hand but also the tapping 

force applied to the grasped object, which is the 

instruction from the human. 

Object Recognition 

Using the FDR system described in section 2.2, the 

robot identifies the specific object that the human wants. 

In this algorithm, we assume that both the specific object 

and the pointing finger exist on the same photographed 

plane (in Fig. 2, φ = 0° is assumed). The distance is 

obtained from a disparity map attained from right and 

left camera images using a stereo matching technique. 

We adopted OpenCV in the basic program modules used 

for image processing. The process flow of the object 

recognition is shown in Fig. 8: 
 

• A human points at a specific object using a pointing 

gesture with their index finger. The FDR system 

identifies the direction in which the finger is pointing 

• Using a graph-cut algorithm, the disparity map is 

obtained from the captured images of the right and 

left cameras 

• Regions at the same distance as the pointing 

fingertip are extracted 

• The width of the pointing vector is expanded 

• The specific object is identified as the overlapped 

area of the expanded pointing vector and the object 

is obtained from the preceding procedure 

• After ignoring as noise any small areas with a 

circumference of length less than a specific 

threshold, the left area is identified as the specified 

object. If multiple objects are identified, the nearest 

object to the hand’s centroid is identified as the 

specified object 

 

Object Retrieving and Passing 

Using our method, we performed a series of 

experiments on passing an object from the robot to a 

human. The robot grabs the object that the human 

indicates and places it on the human’s palm. First, the 

human performs a natural pointing gesture to indicate the 

object. The human then merely extends his hand palm 

up. The robot recognizes the human signs that are 

concomitant with the main movement; the human 

stretches his arm and applies force to the object where 

the human intends to receive the object. Thus, this 

system does not need information of a human hand 

position or detachment timing. 

This experiment’s method proceeds according to the 

following steps: 

 

• A human indicates an object by pointing. The robot 

estimates the position of the indicated object using 

the procedure explained in Object Recognition 

• The robot moves its head to set the object image at 

the center of its eyesight 

• The human shows his palm to indicate the 

destination of the object. The palm is recognized as 

the largest skin-colored area other than the face area. 

In addition, the palm’s centroid is obtained 

• The robot grasps the object. At that time, if the 

vertical force in the fingertip exceeds a threshold, 

the robot finishes its grasping motion 

• The robot moves its hand over the human’s hand 

recognized in the preceding procedure 

• The robot puts its hand down and places the object 

on the palm of the human’s hand. If the shearing 

force on the fingertip exceeds the threshold, the 

robot completes this placing motion 

• The robot opens its hand and releases the object 

when the time derivative of the shearing force, 

which represents slippage, exceeds the threshold due 

to the tapping of the cube’s bottom by the palm 
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Fig. 8. Object recognition algorithm 

 

 
 
Fig. 9. Cube specimen in image data 

 
In the above task, we used the object in Fig. 9, which 

is a paper cube that is 40 mm on each side. Our tactile 

sensor is designed to recognize the grasping force so as 

to not crush the cube. 

Experimental Results and Discussion 

Scene of Experiment 

In this experiment, the robot’s progress in passing the 

object is shown by the photographs in Fig. 10. Photos (1) 

to (3) show the object and palm positions using the theory 

of robot instruction explained in section 2. The robot then 

retrieves the object and passes it to the human by placing 

it  on  the  human’s  palm,  as  shown in Photos (4) to (7). 

 
 
Fig. 10. Sequential photographs showing the robot passing 

the object (http://www.ohka.cs.is.nagoya-

u.ac.jp/~ohka/ohka_lab2/images/JCS.wmv) 

 

After Photo (7), the bottom of the object is tapped by the 

palm to generate upward slippage force on the robotic 

fingers. The slippage force generated by the tapping acts 

as a force sign for the robot to release the object. 

Position and Force Data 

The experimental results are shown in Fig. 11-14. 

Figure 11 shows the time variation of the fingertip’s 

position. Figure 12 and 13 show changes in the normal 

force distribution of fingers #1 and #2, respectively and 

Fig. 14 shows the time derivative of the tangential force 

of the specific elements, which indicates slippage 

(Ohka et al., 2012). The element numbers in Fig. 12 and 

14 are the same as those in Fig. 5. 

As shown in Fig. 11, after approximately three 

seconds, the robot arm moves to the position of the 

object at (XG, YG, ZG) = (218, 375, 70) [mm], which is 

obtained by the FDR system. The robot then begins the 

grasping motion and completes it by exceeding a 

threshold at around 20 sec, as shown in Fig. 12 and 13, 



Takuya Ikai et al. / Journal of Computer Sciences 2016, 12 (5): 246.254 

DOI: 10.3844/jcssp.2016.246.254 

 

252 

due to the normal forces of element #04 of finger #1 and 

element #06 of finger #2 reaching the maximum. As 

shown in Fig. 5, since elements #04 and #06 are not at 

the center of the tactile elements, the hand does not grasp 

the object with just the center of the fingers. 

At approximately 48 sec, the robot starts the release 

motion as the normal forces suddenly diminish. This 

release motion is induced by slippage force, which is 

demonstrated as the second peak of the tangential force 

derivative of elements #04 (finger #1) and #06 (finger 

#2) in Fig. 14 and is caused by the object’s bottom 

touching the human’s palm. The first peak at around 18 

sec shows the slippage force when the robot picks up the 

object and strengthens its grasp to prevent slippage. 

 

 
 
Fig. 11. Time variation in arm position 
 

 
 
Fig. 12. Time variation in normal force of finger #1 

As the results demonstrate, the robot can receive 

instructions and successfully complete the retrieving 

and passing task without special gestures or 

utterances. 

Multiple Object Status 

Even among multiple objects, the robot should 

recognize the specific requested object. In order to test 

for this, we checked whether this system could select the 

specific object by adopting the object recognition 

program (Fig. 15). We used three objects for this test: A 

wood cube, a ping-pong ball and the paper cube and they 

have almost the same size as shown in Fig. 12. 

 

 
 
Fig. 13. Time variation in normal force of finger #2 

 

 
 
Fig. 14. Time variation in tangential force 
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Fig. 15. Time variation in normal force of finger #1 
 

 
 
Fig. 16. Estimation error of object position 

 
Table 1. Detection rate of object position 

Angle θ [°] d = 100 mm (%) d = 150 mm (%) 

180 70 70 

185 45 35 

190 40 30 

 

Since the robot has tactile sensors, a slight position 

error does not pose a problem for grasping an object. 

Since the size of the image data is around 60 pixels, as 

shown in Fig. 15, the robot can grasp the object even if 

there is a 30-pixel error. Therefore, we determined that 

object recognition was successful when the position 

estimation of the object was within 30 pixels. In this 

experiment, we adopted two parameters: The distance 

between the object and the centroid of hand d and finger 

inclination θ. For each condition, we performed 20 trials. 

Figure 16 shows the estimation error of object 

position for the d = 100 and 150 mm cases. As shown in 

this figure, if the finger direction deviates from 

horizontal (θ = 180°), the position error becomes greater 

than 30 pixels and, when distance d increases, the 

estimation error becomes larger. 

The detection rates are shown in Table 1. If the finger 

direction maintains a horizontal direction, the percentage 

of success is 70%, even if there is another object along 

the finger’s direction. However, if the angle deviates 

from the horizontal plane, the detection rate becomes 

less than 50%. We will make improvements to handle 

this issue in the future. 

Conclusion 

In this study, we proposed a new robot system 

equipped with tactile and vision sensors for receiving 

human instructions. With this system, the robot retrieves 

an object requested by a human and places it on the 

human’s palm. Although the pointing direction is limited 

to the horizontal plane, there is the possibility of 

applying this system to housekeeping. 

The system does not require a human hand position 

or detachment timing because it obtains the information 

through visual and tactile sensations. Since pointing and 

holding out one’s palm to receive an object is natural for 

humans, the instructions for completing this task with 

the robot are stress-free. 

In the future, we will further develop this system to 

apply it to cooperative tasks between humans and the 

robot. Accordingly, we will improve the detection rate at 

angles outside the horizontal direction. 
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