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Abstract: Minimization techniques are widely used for retrieving a 3D 

surface starting from a single shaded image i.e., for solving the shape from 

shading problem. Such techniques are based on the assumption that 

expected surface to be retrieved coincides with the one that minimize a 

properly developed functional, consisting of several contributions. Among 

the possible contributes defining the functional, the so called “smoothness 

constraint” is always used since it guides the convergence of the 

minimization process towards a more accurate solution. Unfortunately, in 

areas where actually brightness changes rapidly, it also introduces an 

undesired over-smoothing effect. The present work proposes two simple yet 

effective strategies for avoiding the typical over-smoothing effect, with 

regards to the image regions in which this effect is particularly undesired 

(e.g., areas where surface details are to be preserved in the reconstruction). 

Tested against a set of case studies the strategies prove to outperform 

traditional SFS-based methods. 

 

Keywords: Shape from Shading, Variational Approach, 3D Model, 

Smoothing, Minimization, Smoothness Constraint 

 

Introduction 

One of the most used methods to retrieve the three-

dimensional surface of the object represented in a single 

image is the Shape-from-Shading (SFS) method. As 

widely known, SFS is an inverse problem of computer 

vision that, starting from the pixel by pixel analysis of 

the shading of an image, leads to the reconstruction of 

the surface of the object represented in it. 

The problem, known since late ’60 s (Zhang et al., 

1999; Durou et al., 2008; Horn, 1970; Rindfleisch, 1966), 

can be presented in terms of reconstruction of the normal 

map of the unknown surface. A simplified formulation can 

be used once the following assumptions are made: 
 
• The image representing the shapes to be 

reconstructed is assumed to be the result of the 

orthogonal projection of the scene on the focal plane 

of the observer (i.e., perspective is absent and focal 

length of the observer is set at infinity) 

• Light beams illuminating the 2D scene are all 

positioned along the same, known, direction (i.e., 

the light source is set at infinity) 

• The surface is homogeneous and completely 

diffusing (Lambertian surface) 

• The represented surface does not presents hidden parts 

• The reference system Σxyz, that maps the three-
dimensional reconstruction space, is set so that the 
plane Пxy lies on the focal plane and the z axis is put 
toward the observer 

 
Under these hypotheses it is possible to formulate a 

relation between the surface normal N
�

, the unknown of 

the reconstruction problem and the light unit-vector for 

each pixel of the image: 
 

( ) ( )1
, ,L N i j I i j

ρ
⋅ =
� �

 (1) 

 
Where: 
I(i,j) = The image, size n × m representing the 

shaded object whose surface is to be 
retrieved (input image) 

(i,j) = The coordinates of the generic pixel 
(row: i; column j) 

L
�

=[lx, ly, lz]� = The unit-vector opposed to light 

direction 

N
�

=[nx, ny, nz]� = The normal to the surface 

ρ = The surface albedo 
 

This equation, where the unknown is the vector N
�

, is 

usually expressed using surface gradient �� as unknown 
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term thus resulting in the following non-linear Partial 

Differential Equation (PDE): 

 

( ) ( )21
, 1 | | , 0

x y z
I i j z l l z l

ρ
+ ∆ + ⋅ ∆ − =  (2) 

 

where, [ ], ,

T

Tz z
z p q

x y

 ∂ ∂
∆ = = ∂ ∂ 

is the surface gradient. 

Equation 2 regulates the irradiance of each pixel with 

coordinates (�,�) by modelling the reflectance of the 

surface as completely diffusive, i.e., without considering 

specular effects. Accordingly, the reconstruction 

problem results to be a system of irradiance equations, 

one for each pixel of the domain of reconstruction 

(generally the image without the background). 

If we figure the problem graphically, Equation 2 

imposes the normal N
�

(�,�) to lay on the lateral surface of 

a tipped cone, whose axis coincides with the vector L
�

 

and whose aperture is (Fig. 1): 

 

( )1 1
cos ,I i jβ

ρ
−  

=  
 

 (3) 

 
Equation 3 makes more evidence the fact that the 

reconstruction problem is under-determined and 

consequently, for each pixel, the equation has infinite 

solutions, since there are infinite orientations for N
�

(�,�) 

on the cone. This is the reason why the single image 

reconstruction problem using SFS, studied starting from 

70 s (Zhang et al., 1999; Durou et al., 2008), has no 

general (closed) solution until nowadays. 

In scientific literature, several approaches have been 

proposed to solve directly the PDEs by using propagation 

techniques (Kimmel and Setihian, 2004; Prados et al., 2006; 

Rouy and Tourin, 1992), or implementing approximation 

functions to both the irradiance equation and the final 

surface itself. However, the greater efforts in literature for 

solving the SFS problem are related to a range of 

approaches, called minimization techniques or 

variational methods. These methods are among the most 

adopted for solving the SFS problem since they prove to 

be extremely robust in presence of image noise or 

imprecise settings (e.g., guessed light direction when 

unknown) (Zhang et al., 1999; Durou et al., 2008; 

Worthington and Hancock, 1999; Huang and Smith, 

2009). For this reason, such methods result applicable to a 

wide range of shaded images. 
Variational approaches are based on the 

assumption that the expected surface to be retrieved, 
i.e., the solution that better resembles the “actual” 
surface represented in the shaded image, coincides 
with the one that minimized a properly developed 
functional, usually comprising the error between the 
(iteratively) reconstructed surface and the actual one.  

 
 
Fig. 1. Ambiguity cone 

 

One of the most adopted strategies, in order to address 

the retrieved surface towards the expected one, is to 

solve the functional by imposing a number of boundary 

conditions. In particular, among the wide variety of 

boundary conditions that can be imposed to the problem, 

an innovative kind of them, named Morphology Based 

(Governi et al., 2014), proved to be effective to 

interactively solve the typical ambiguity between 

convexity and concavity on the surface. For this reason, 

in this work this new kind of boundary condition is used 

as described below. 

Usually, the functional to be minimized is composed 

by the weighted sum of several contributions, often 

improperly called “constraints”, each one pulling the 

solution towards the respect of specific requirements. 

The main constraints, widely used in literature, are the 

following: Brightness Constraint (BC), Integrability 

Constraint (IC) and Smoothness Constraint (SC) 

(Zhang et al., 1999; Durou et al., 2008; Daniel and 

Durou, 2000). Accordingly, in general, the functional F 

to be minimized is provided by the following equation: 

 

S I
F BC SC ICλ λ= + +  (4) 

 

where, �� and �	 are, respectively, the weights of 

smoothness and integrability constraints. As detailed in 

the following section, despite the use of a smoothness 

constraint in the functional is highly advisable to ensure 

that the minimization procedure converge to a unique 

solution (Zhang et al., 1999), it unfortunately also 

introduces possible over-smoothing effects 

(Worthington and Hancock, 1999). This is an undesired 

effect, especially for areas where, actually, brightness 

changes rapidly i.e., the corresponding surface is 
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characterized by discontinuities of the shape or sharp 

edges (Huang and Smith, 2009; Ju et al., 2010; Chen and 

Dong, 2010). For this reason, the main aim of the present 

work is to propose two simple yet effective strategies 

able to avoid the typical over-smoothing effect in 

minimizing the SFS functional, with particular regard 

to the image regions in which this effect is 

particularly undesired (e.g., areas where brightness 

changes rapidly or where surface details are to be 

preserved in the reconstruction). 

Materials and Methods 

Functional Contributions 

As stated in Equation 4, the functional consists of a 

number of constraints. The Brightness Constraint (BC), 

also called “variation to data” (Zhang et al., 1999; 

Durou et al., 2008; Daniel and Durou, 2000), is the most 

relevant contribution for building a functional for 

solving the SFS problem and, for this reason, it is always 

included in all the functional-based formulations. It 

requires that the reconstructed shape produces the same 

brightness as the input image at each surface point. In 

other words, BC is directly derived from the image 

irradiance and indicates the total brightness error of the 

retrieved surface compared with the input image (under 

the assumption that a constant grid of size one is 

considered for the image): 

 

( ) ( )( ) ( ) ( )( )
( )

22

,

, , , ,
i j

BC I x y R x y dxdy I i j R i j
∈Ω

= − ≅ −∑∫∫  (5) 

 

where, R(i,j) is the estimated reflectance map and Ω is 

the set of all the pixel of the image (i.e., the image 

domain). However, the minimization of a functional 

comprising only this contribution would lead to an 

under-defined solution. This is the reason why several 

authors proposed a number of auxiliary constraints in 

order to limit the research to surfaces that satisfy not only 

BC but also some particular geometric or mathematical 

requirements. More specifically, two main kinds of 

constraints are, as mentioned above, available in literature: 

Integrability constraint and smoothness constraint. 
Integrability Constraint (IC) requires the final 

surface to respect the principle of integrability, that 

limits the surface retrieval to surfaces “physically 

valid” (Frankot and Chellappa, 1988). From a 

mathematical point of view, this coincides the requirement 

that, for any point of the reconstruction domain, the 

surface height is (or needs to be) independent from the 

path of integration (Frankot and Chellappa, 1988; Horn, 

1989; Zheng and Chellappa, 1991). Considering that, it is 

possible to formulate a relation between normal N
�

 and 

surface gradient ∇Z as follows: 

( ) ( )( ) ( ) ( )( )
( ) ( )( ) ( ) ( )( )( )

2

,

, 1 , 1, 1 ,

1, , 1, 1 , 1i j

p q
IC dxdy

y x

p i j p i j p i j p i j

q i j p i j q i j q i j∈Ω

 ∂ ∂
= − 

∂ ∂ 

 + − + + + − +
 ≅
 − + − − + + − + 

∫∫

∑
 (6) 

 

Smoothness Constraint (SC) (Zhang et al., 1999; 

Durou et al., 2008; Governi et al., 2014; Daniel and 

Durou, 2000) is used to impose that the slope of the 

reconstructed surface changes gradually from a given 

pixel to its neighbourhood, so that the solution results as 

smooth as possible. SC is defined as follows: 

 

( )

( )
( ) ( ) ( ) ( )

2 2

2 2

,

|| || || ||

|| 1, , || || , 1 , ||

x y

i j

SC N N

N i j N i j N i j N i j
∈Ω

= + ≅

+ − + + −

∫∫
∑

� �

� � � �  (7) 

 

Consequently: 

 

( ) ( )( )
( )

( ) ( )( )
( ) ( )( ) ( ) ( )( )
( ) ( )( ) ( ) ( )( )

2

,

2

2 2

2 2

1, ,

1, ,

1, , , 1 ,

, 1 , , 1 ,

x x

i j

y y

z z x x

y y z z

CS n i j n i j

n i j n i j

n i j n i j n i j n i j

n i j n i j n i j n i j

∈Ω

≅ + −

+ + −

+ + − + + −

+ + − + + −

∑

 (8) 

 

The main advantage of adding this constraint into the 

functional is the reduction of the coarse zones on the 

final surface. Since minimization techniques are usually 

solved by imposing a number of boundary conditions 

(e.g., background and White points boundary conditions 

(Governi et al., 2013)), the SC propagates such 

information across the whole reconstruction domain. As 

already mentioned, the use of SC in the functional allows 

to avoid possible irregularities on the retrieved surface 

by limiting its roughness. Unfortunately, since it imposes 

a gradual change of surface normals, it might exceed in 

smoothing the surface, especially in areas where actually 

brightness rapidly changes. Consequently, the use of SC 

may lead to surfaces where smallest of softer details of 

the image are not taken into account. In other words, the 

over-smoothing error leads to a solution that does not 

satisfy the irradiance equation (Equation 1). In effect, if 

we observe the image obtained from the surface in the 

same light condition of the input image, it is possible to 

note that, especially in correspondence with the parts of 

the image in which the brightness changes rapidly, it 

appears blurred. Moreover, it appears more “rounded” 

and smoothed in correspondence with discontinuities of 

the shape or sharp edges, while in other zones, where the 

height changes more gradually, the over-smoothing 

effect is almost negligible (Fig. 2). 
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 (a) (b) 

 

 
 (c) (d) 

 
Fig. 2. (a) Exemplificative 3D surface generated using a CAD software package; (b) synthetic shaded image obtained by 

orthogonally projecting 3D surface (a); (c) surface retrieved using traditional SFS-based methods (Governi et al., 2014); (d) 

image obtained by orthogonally projecting 3D surface (c) 

 

Proposed Methods 

Moving from the last observation, it is possible to 

assert that the over-smoothing effect is concentrated in a 

number of zones of the surface/image, in which the slope 

or the brightness changes too fast. 

How is it possible to overcome this problem, related 

to the application of the smoothness constraint? 

Analysing the formulation of the smoothness 

constraint provided in Equation 8, it is evident that it is a 

sort of “chain” among the variables of the image, 

relating the ones relative to a given pixel to the ones 

relative to its neighbourhood. In the majority of the 

methods proposed in the scientific literature, the weight 

λS of SC is set constant from pixel to pixel. This means, 

for instance, that a pixel on a flat surface and a pixel on 

the edge of a hollow equally influence the functional in 

terms of smoothing. Some works have taken into 

account this problem (Gultekin and Gokmen, 1998; 

Vogel et al., 2007), in particular (Vogel et al., 2007) 

proposed to weight the SC with a function that considers 

|∇I(x,y)| an edge indicator. In the same work it’s 

proposed also the use of the evolving depth map |∇z| as 

an indicator of the edges. 

As previously stated, it is unthinkable to exclude the 

SC from the formulation of the functional, especially if 

dealing with the most recent (and effective) procedures, 

based on interactive boundary conditions (Governi et al., 

2013). Consequently, the only possible way to overcome 

the over-smoothness is to find a method for setting the 

weights of SC pixel to pixel. The use of light weights for 

the pixels that are in proximity of a discontinuity (that 

may corresponds to a coarse surface) and heavy weights 

for the ones that lay on a smooth surface could dramatically 

improve the surface retrieval. Accordingly, the present 

work describes two main strategies, respectively called 

“change connectivity” and “break connectivity” for 

imposing variable weights to the SC in order to allow a 

surface reconstruction without over-smoothing. In our 

approach, the functional is modified as follows: 
 

*

S I
F BC SC ICλ λ= + +  (9) 

 
Where: 
 

( )
( ) ( )

( ) ( )( )

2

* *

2
,

1, ,
,

, 1 ,
S

i j

N i j N i j
SC i j

N i j N i j

λ
∈Ω

 + − = ⋅  
 + + − 

∑
� �

� �

 (10) 

 

And where ( )* ,S i jλ is the local smoothness weight for 

the generic pixel (i,j). The whole set of ( )* ,S i jλ values 

define a matrix ΛS with the same size of the input image 

I(i,j). Obviously, in case of traditional approaches, the 

Equation 9 coincides with Equation 4 since *

S
λ is equal to 

1 for each pixel. 
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Method I-Change Connectivity Strategy 

This first method for imposing variable weights to 

the SC, named “change connectivity strategy” is based 

on the assumption that the “discontinuity” in the image 

brightness is strictly correlated to a discontinuity of the 

surface to be retrieved. In detail, we suppose that, in 

correspondence of a high variation of image brightness, 

there is (or, at least, there should be) a high variation in 

slope. Consequently, the weight of the smoothness 

constraint for a couple of adjacent pixels with significant 

difference in terms of brightness, should be less than the 

weight for couples of pixels with comparable brightness. 
The devised approach is based on the image entropy, 

which is a common tool of image analysis used to 
evaluate the disorder of the image, which can be 
generated both from noise or discontinuity. As widely 
known the entropy H of an image is defined as follows 
(Shannon, 1949): 
 

1

2

0

log
M

k k

k

H P P
−

=

= − ⋅∑  (11) 

 
where, M is the number of grey levels and pk is the 
probability associated with grey level k. In this study 
for each image pixel an entropy value is evaluated 
using Equation 11 applied to a v-by-v square 
neighbourhood (kernel): 
 

( )
1

2

0

, log
nM

n k k

k

H i j P P
−

=

= − ⋅∑  (12) 

 
where, Mn is the number of grey levels in the v-by-v 

neighbourhood of the pixel (�,�) and pk is the probability 

associated with grey level k. The set of values Hn(�,�) 

defines a matrix Hn, with the same size of the original 

image, called “neighbourhood entropy matrix”. Starting 

from this new matrix, a weight matrix ΛS, whose 

elements ( )* ,S i jλ , varying in the range [0, 1], are the 

variable weights for the SC, can be defined as follows: 
 

( )
1

max

n
S

n

H

H
∆ = −  (13) 

 
The above definition is justified by the fact that the 

aim here is to reduce the weight of SC in areas with 

greater discontinuities. Since, by definition, image 

entropy tends to zero if the image is uniform (flat) while 

it reaches its maximum value for highly disordered 

images, the local weight ( )* ,S i jλ evaluated for flat areas 

tends to 1 (i.e., high smoothness is allowed). Quite the 

reverse, in presence of noticeable discontinuities or 

edges, entropy increases thus implying the necessity of 

reducing the local weight to be applied to the 

smoothness constraint (Fig. 3). 

 
 

Fig. 3. Values ( )* ,S i jλ  obtained for an exemplificative image 

using the change connectivity strategy. Areas with greater 

discontinuities are characterized by lower weight values 
 

From the equation above it is evident that setting 

different sizes of the neighbourhood lead to different 

results. Moreover, the size of the neighbourhood should be 

chosen consistently with the size of the original image. On 

the basis of our experimental tests, a balanced value for v 

when dealing with images with maximum size 400×400 is 

equal to 9, since a 81 pixels kernel proves to be averagely 

sufficient to discriminate possible discontinuities in the 

image. The higher is the resolution of the original image the 

higher needs to be the kernel size. 

Method II-Break Connectivity Strategy 

The second approach proposed in this work, called 

“Break Connectivity Strategy” (BCS), is based on the 

supposition that an efficient way to “limit” the over-

smoothing effect is to break the connectivity between 

adjacent pixels with “high” brightness gradient. By using 

image gradient, it is possible to isolate in the image the 

breaking pixels, along which propagate the fracture of 

the smoothness constraint. In fact, applying a gradient 

filter followed by a thresholding to the original shaded 

image it is possible to evaluate the gradient magnitude. 

As widely known (Gonzalez and Woods, 2008), gradient 

filter is a 3×3 high-pass convolution filter mainly used to 

detect edges in images. In particular, once the filter is 

applied to the generic image 	(�,�), a new binary image 


(�,�) is obtained. In such an image, edges are marked by 

white pixels (brightness equal to 1) while areas with low 

changes in slope (i.e., low brightness values) are black 

(brightness equal to 0). The set of white pixels in image 


(�,�) defines a subset Ω∗ of the image domain composed 
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by pixels where the SC shall not be applied. Accordingly, 

the values of local weights ( )* ,S i jλ are set as follows: 

 

( ) ( )
( )

* *

*

, 0 ,

, 1

S

S

i j i j

i j elsewhere

λ

λ

 = ∀ ∈Ω


=
 (14) 

 

As a consequence the resulting new formulation of 

smoothness constraint is the following one: 

 

( ) ( ) ( ) ( )
( ) ( )*

*

2 2

,

1, , , 1 ,
i j

SC

N i j N i j N i j N i j
∈ Ω−Ω

≅

+ − + + −∑
� � � �  (15) 

 

In other words, pixels belonging to the domain �∗ 

are characterized by a rapid change of slope or by a 

discontinuity with respect to a given neighborhood 

(e.g., abrupt uphill or downhill); for these pixels the 

smoothing constraint is not applied (i.e., the weight is 

set equal to zero). 

In all the other pixels of the domain (Ω−Ω∗), the SC 

is equal to the one defined using a constant weight. For 

such a domain, even if the rate of slope is not constant 

from pixel to pixel, the effect of adopting a variable 

weight is almost unnoticeable. 

Since this approach may completely separate a 

portion of the image from the rest of the reconstruction 

domain, it is crucial to pay attention in isolating only 

clusters of pixels in which, at least, one boundary 

condition is imposed. Otherwise, the solution retrieved 

for such partitions results incorrect, or even unfeasible 

and physically not valid. 

Minimizing the Functional and Surface Retrieval 

Once the functional is built according to Equation 9 

(using one of the two strategies described above for 

setting the variable weights to the SC
*
), the surface 

retrieval can be accomplished using traditional 

minimization techniques. In fact, the indirect 

minimization of the functional, aimed at evaluating a set 

of normals ( ),N i j
�

i.e., the so called “normal map”, can 

be performed by applying literature non-linear methods. 

In this study, the Barzilai-Borwein non-monotonic 

method (Barzilai and Borwein, 1988) has been used. The 

unique boundary condition for constraining the 

minimization process is the morphology based one 

described in (Governi et al., 2014) and the functional is 

initialized using the plane normal to the light direction 

(Governi et al., 2014; Daniel and Durou, 2000; 

Governi et al., 2013). Once the normal map is evaluated, 

it is possible to recover the depth map of the image (i.e., 

the z values of the surface) using the widely known 

approach proposed by (Frankot and Chellappa, 1988). 

Results and Discussion 

Two main case studies have been carried out in 

order to evaluate the effectiveness of both the 

procedures and to figure out which strategy performs 

better. We used two synthetic images, i.e., two images 

generated directly from a CAD model representing an 

object characterized by a Lambertian surface properly 

illuminated. As a consequence-differently from the 

general case of SFS, in which the geometry to be 

retrieved is completely unknown-both height and 

normal map of the target surface are known a priori. 

This is helpful in mathematically evaluating the 

effectiveness of both the approaches implemented. In 

particular, the error between the actual (known) and 

the retrieved normal map is evaluated. With this aim 

in mind, our idea is to evaluate the angles between the 

true normal map and the computed one; being the 

normal maps composed by normal vectors, the simply 

scalar vector can give us the cosine of the angles: 

 

( ) ( ) ( )( ) ( ), cos , , ,Angles i j N i j x i j i j= ⋅ ∀ ∈Ω  (16) 

 

where, (�,�) is the true normal in the generic pixel 

(�,�) of the synthetic surface and �(�,�) is the normal in 

the generic pixel (�,�) of the computed reconstructed 

surface. In this way it is possible to state a global 

error (��) in reconstruction by evaluating the mean 

value of the angles between normals in each pixel: 

 

( )
( ),

1
,g

i j

e Angles i j
n m ∈Ω

=
⋅ ∑  (17) 

 

where, n × m is the input image dimension. 

For what concerns the break connectivity strategy, 

given that the area of interest of this potential 

improvement is limited to a small bunch of pixels, it 

is necessary to focus on detail reproduction rather 

than on global relative errors like the one defined in 

Equation 17. For this reason, a local mean error (��) is 

also used: 

 

( )
( ),

1
,g

i jb

e Angles i j
n ψ∈

= ∑  (18) 

 

where, � is the domain of a 5-pixel band around the 

breaking pixels (composed by nb pixels). 

In the following case studies, the weights relative 

to each constraint (SC and IC) are the following ones: 

λS = 10
−1

 and λI 10
−5

. This set of weights resulted the 

most efficient for the reconstruction of this kind of 

surfaces, in this precise lighting condition.  
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Case Study 1: Hemisphere 

The first image used for testing the two implemented 

strategies represents a hemisphere illuminated frontally 

i.e., L
�

 = [0,0,1] (Fig. 4a). 

The input image is obtained by orthogonally 

projecting such a 3D surface on the plane whose normal 

is the vector L
�

 (Fig. 4b). Since the hemisphere is 

obtained using a CAD software package, its actual 

normal map is known and therefore used as a reference 

for assessing the performance of the proposed methods. In 

particular, the two devised strategies are compared with the 

traditional SFS-method proposed by (Governi et al., 2013) 

that makes use of a constant value as a weight for 

smoothness constraint and the classical method proposed 

by Daniel Durou. It’s worth to mention that Daniel-

Durou’s method uses a different strategy of integration 

from the solution given by height gradient (p, q). In fact 

it is used Wu and Li’s method (Wu and Li, 1988) that 

computes the height along diagonals, then the result is 

used as an initial shape for Horn and Brooks’ method 

(Horn and Brooks, 1986) which is iterative. For this 

reason the normals involved in the evaluation of the 

errors (�� and ��) are taken at the end of the algorithms 

before the integration, except for Daniel Durou 

algorithm where the normals are the ones given after its 

integration strategy. Moreover, the strategies are 

compared one each other. 

In Fig. 5a and 5b the weight matrix ΛS and the image 

(�,�) for the hemisphere case study are, respectively, 
depicted to visually show how the weight for the SC 
changes in the two different strategies (CCS and BCS). 

A visual comparison of retrieved surfaces is depicted 
in Fig. 6. In Fig. 6a a side view of the surface recovered 
using Durou method (Governi et al., 2014; 2013) is 
shown. A detail of such a view is provided in Fig. 6b. In 
Fig. 6c and 6d are depicted, respectively, a side view of 
the hemisphere reconstructed using the CCS and a 
detail. Finally, in Fig. 6e and 6f the side view and a 
detail of the surface retrieved using the BCS are 
respectively shown. By visually comparing the three 
reconstructed surfaces, the best performance of the 
BCS leaps out, since the resulting shape is better 
defined and sharper around the silhouette. 

The visual assessment can be confirmed by analysing 
the global error (Equation 17) between the actual 
(known) normal map and the ones obtained using, 
respectively, Daniel Durou algorithm, traditional method 
with fixed value for the weight (called “fixed lambda”), 
CCS and BCS methods. Such a comparison, shown in 
Table 1 and 2, demonstrates that the BCS method 
outperforms Daniel Durou (D.D. in the table), the 
traditional and the CCS ones. Furthermore, the 
performance in reconstruction using the CCS and BCS 
methods is, respectively, 72,27 and 76,66% better than 
traditional method with fixed lambda and 98,89 and 
99,06% better than Daniel Durou method.

 

  
 (a) (b) 
 

Fig. 4. (a) 3D surface of a hemisphere obtained using a CAD software package; (b) input image to be reconstructed 
 

 
 (a) (b) 

 
Fig. 5. (a) image of the weight matrix ΛS devised for the BCS; (b) image 
(�,�) obtained after the application of the gradient filter to 

image 	(�,�) 
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Fig. 6. (a) Side view of the retrieved surface using Daniel Durou method; (b) detail of the surface (a). (c) side view of the surface 

retrieved using constant lambda; (d) detail of surface depicted in (c); (e) side view of the hemisphere reconstructed using the 

CCS; (f) detail of surface (e); (g) side view of the surface retrieved using the BCS; (h) detail of surface (g) 

 
Table 1. Global error (eg), see Equation 17 

 Hemisphere-Global error (eg) 

 ----------------------------------------------------------------------------------------------------------------- 

Daniel Durou Fixed lambda CCS BCS 

3,676755E-01 1,472888E-02 4,083816E-03 3,438323E-03 

 
Table 2. Global error (eg) performance increasing, see Equation 17 

 Hemisphere-Global error (eg) performance increasing 

 -------------------------------------------------------------------------------------------------------------------------------- 

Fixed lambda    CCS Vs BCS Vs 

Vs D.D. CCS Vs D.D. BCS Vs D.D. Fixed lambda Fixed lambda BCS Vs CCS 

95,99% 98,89% 99,06% 72,27% 76,66% 15,81% 

 
Table 3. Local error (el), see Equation 18 

 Hemisphere-Local error (el) 

 ----------------------------------------------------------------------------------------------------------------- 

Daniel Durou Fixed lambda CCS BCS 

5,437008E-01 5,371318E-02 3,497383E-02 3,431007E-02 

 
Table 4. Local error (el) performance increasing, see Equation 18 

 Hemisphere-Local error (el) performance increasing 

 -------------------------------------------------------------------------------------------------------------------------------- 

Fixed lambda    CCS Vs BCS Vs 

Vs D.D. CCS Vs D.D. BCS Vs D.D. Fixed lambda Fixed lambda BCS Vs CCS 

90,12% 93,57% 93,69% 34,89% 36,12% 1,90% 
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Local errors and their comparison are listed in Table 
3 and 4. It can be noticed that also local error in 
reconstruction using the proposed strategies results 
extremely lower with respect to traditional SFS-based 
reconstruction. In this case BCS proves to be 1,90% 
better than CCS. 

Case Study 2:“Bowling Pin 

The second case study consists of a figure in which a 

smooth surface (with a shape similar to a “bowling pin”) 

is broken by 9 discontinuous elements (pits) i.e., 

discontinuities are into the reconstruction domain (and 

not only limited to the contour silhouette like in case 

study 1). In Figure 7 the CAD surface, the input image, 

the weight matrix �� and the image 
(�,�) for the case 

study are shown. It has to be noticed that for applying 

the BCS method only the contours of the discontinuities 

into the domain have been taken into account (Fig. 7d). 
In Fig. 8a visual comparison between the “fixed 

lambda” method and the ones proposed in this work are 
depicted with reference to the discontinuous regions. 

In Table 5 and 6 the global errors between the actual 

(known) normal map and the ones obtained using, 

respectively, Daniel Durou, fixed lambda, CCS and BCS 

methods are listed. In this case, it can be noticed that the 

global error obtained using the BCS is lower than the 

fixed lambda, Daniel Durou and the CCS ones, while the 

CCS results to be the worst one between fixed lambda 

and BCS methods while it’s still better than Daniel 

Durou method. As shown in Table 7 and 8, however, the 

local error obtained using the CCS decreases thus 

demonstrating that this strategy better performs locally. 

 

 
 

Fig. 7. (a) CAD surface; (b) input image; (c) weight matrix ΛS; (d) image 
(�,�) 
 

 
 

Fig. 8. Detail of discontinued area on the surface retrieved using (a) Daniel Durou; (b) fixed lambda; (c) CCS; (d) 
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Fig. 9. (a) CAD surface; (b) input image; (c) weight matrix ΛS; (d) image 
(�,�) 

 

 
 

Fig. 10. View of the Golf Ball surface retrieved using (a) Daniel Durou; (b) fixed lambda; (c) CCS; (d) BCS 
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Fig. 11. Detail of discontinued area on the Golf Ball surface retrieved using (a) Daniel Durou; (b) fixed lambda; (c) CCS; (d) BCS. 
 
Table 5. Global error (eg), see Equation 17 

 Bowling pin-global error (eg) 

 ------------------------------------------------------------------------------------------------------------------ 

Daniel Durou Fixed lambda CCS BCS 

1,754481E-01 2,540573E-02 2,553353E-02 2,255123E-02 

 
Table 6. Global error (eg) performance increasing, see Equation 17 

 Bowling pin-global error (eg) performance increasing 

 -------------------------------------------------------------------------------------------------------------------------------- 

Fixed   CCS Vs BCS Vs 

lambda Vs D.D. CCS Vs D.D. BCS Vs D.D. Fixed lambda Fixed lambda BCS Vs CCS 

85,52% 85,45% 87,15% -0,50% 11,24% 11,68% 

 
Table 7. Local error (el), see Equation 18 

 Bowling Pin-Local error (el) 

 ------------------------------------------------------------------------------------------------------------------ 

Daniel Durou Fixed lambda CCS BCS 

2,924600E-01 1,252374E-01 1,236658E-01 6,985659E-02 

 

Table  8. Local error (el) performance increasing, see Equation 18 

 Bowling Pin-Local error (el) performance increasing 

 -------------------------------------------------------------------------------------------------------------------------------- 

Fixed   CCS Vs BCS Vs 

lambda Vs D.D. CCS Vs D.D. BCS Vs D.D. Fixed lambda Fixed lambda BCS Vs CCS 

57,18% 57,72% 76,11% 1,25% 44,22% 43,51% 

 
Table 9. Global error (eg), see Equation 17 

 Golf Ball-Global error (eg) 

 ------------------------------------------------------------------------------------------------------------------ 

Daniel Durou Fixed lambda CCS BCS 

2,690568E-01 4,751543E-02 4,312322E-02 3,941438E-02 

 
Table 10. Global error (eg) performance increasing, see Equation 17 

 Golf Ball-Global error (eg) performance increasing 
 -------------------------------------------------------------------------------------------------------------------------------- 
Fixed   CCS Vs BCS Vs 
lambda Vs D.D. CCS Vs D.D. BCS Vs D.D. Fixed lambda Fixed lambda BCS Vs CCS 

82,34% 83,97% 85,35% 9,24% 17,05% 8,60% 
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Table 11. Local error (el), see Equation 18 

 Golf Ball-Global error (el) 

 ------------------------------------------------------------------------------------------------------------------ 

Daniel Durou Fixed lambda CCS BCS 

2,966112E-01 1,044780E-01 1,003834E-01 8,984830E-02 

 

Table 12. Local error (el) performance increasing, see Equation 18 

 Golf Ball-Global error (el) performance increasing 
 -------------------------------------------------------------------------------------------------------------------------------- 
Fixed   CCS Vs BCS Vs 
lambda Vs D.D. CCS Vs D.D. BCS Vs D.D. Fixed lambda Fixed lambda BCS Vs CCS 

64,78% 66,16% 69,71% 3,92% 14,00% 10,49% 

 

Case Study 3: “Golf Ball 

The last case study taken into account is a sort of golf 

ball with 91 pits over the surface, like the ones in the 

bowling pin. This particular image is the biggest and 

has the greater number of details (e.g., holes). For these 

reasons the computed error is greater than the one 

evaluated for the previous two case studies. In Fig. 9 

are shown the CAD surface, the input image, the 

weight matrix �� and the image 
(�,�) for this case 

study. It’s worth to notice that for applying the BCS 

method in this case study, differently from the Bowling 

Pin case, also the background contours have been taken 

into account together with the contours of the 

discontinuities into the domain (Fig. 9d). 

Also in this case study, in Table 9 and 10 it is 

possible to see that BCS performs better than all other 

methods (Fig. 10), while CCS achieves a better result 

than the fixed lambda and Daniel Durou methods (Fig. 

11). This is evident in the local error values presented in 

Table 11 and 12. 

Conclusion 

The present paper described two simple yet effective 

strategies for avoiding the over-smoothing effect 

typically arising using the smoothness constraint for 

solving the SFS problem with minimization techniques. 

Since the smoothness constraint is used in all the 

literature approaches dealing with this particular topic 

and, to the best of our knowledge, only a few attempts in 

reducing the over-smoothing effect have been devised so 

far, the present paper could be really helpful for 

researchers and practitioners working in SFS field. 

Test against simple case studies demonstrate the 

effectiveness of the two proposed strategies for surface 

retrieval using shaded images as input. This is 

particularly true when discontinuities are inside the 

reconstruction domain. Future work will be addressed to 

increase the number of test cases, with particular regard 

to non-synthetic and noisy images; this will allow to 

stress method’s possible drawbacks and to conceive 

possible improvements. Moreover, since the BCS 

method seems to outperform the CCS ones, we will try 

to modify Equation 14 by introducing weight values in 

the range [0, 1] instead of constant values (0 for pixels 

belonging to the domain Ω*
 and 1 elsewhere). This could 

be carried out, for instance, using some outcomes of our 

paper (Governi et al., 2014; 2013). 
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