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Abstract: In this work, we study the pose estimation problem of 

anautonomous mobile robot. Particularly, we compare the Extended 

Kalman Filter (EKF) to Lowe’s method based on the iterative Newton’s 

method for solving a system of nonlinear equations. Although the EKF is 

recursive which renders it suitable for the real-time problem at hand, 

Lowe’s method has much less dimensionality. This is the motivation for 

comparing both approaches. We have used the stereo information for 

obtaining the 3-D structure and outlier rejection. This has provided an 

opportunity to weigh feeding both algorithms with single measurements 

(from one camera) against feeding them with pair measurements (from 

the stereo pair). We have studied the effects of using three ranges of 

the number of features and the longevity on the accuracy of the obtained 

pose parameters. Moreover, we have investigated the impact of the 

number of iterations on the accuracy of Lowe’s method. An extensive set 

of simulations as well as real experiments using various motion patterns 

have been conducted. The main finding of this work is that Lowe’s 

method (due to its low dimensionality) is much faster with 

approximately the same accuracy. Besides, it can recover from a 

situation which is close to singularity. On the other hand, the EKF 

makes better use of multiple camera measurements which allows a 

sustained performance even if one camera is off or occluded.  

 

Keywords: Robot Navigation, Pose Estimation, Stereo, Extended Kalman 

Filter, Newton’s Method 

 

Introduction  

The Pose estimation is a classic problem of computer 

vision. It solves for both the location and orientation 

(rotation) and can be classified into two types. The first 

is model-based, when the pose of an object in the scene 

is sought. The second is vision-based, when we are after 

the pose of camera or its mobile platform. The 

applications include obstacle detection (Panich, 2010a) 

and real time tracking of human face and gesture 

(Arulananth et al., 2014). Additionally, pose estimation 

is indispensable for humanoid applications, autonomous 

robots, intelligent vehicles and man-machine interaction.  
Pose estimation is interconnected with another classic 

computer vision problem, structure from motion. On one 
hand, to obtain the three-dimensional (3-D) structure of a 
number of features in the scene, we need to know their 
pose (or the camera pose) across multiple views. On the 
other hand, the pose is estimated according to the 
structure of features tracked from frame-to-frame. Bundle 

Adjustment (BA) is the maximum likelihood solution for 
obtaining both pose and structure (Triggs et al., 2000). It 
is a global optimization technique that aims at reducing 
the errors between the 2-D measurements and their 
corresponding 3-D features of the model. However, it is 
iterative and requires a good initialization. Above all, the 
whole set of features across the sequence of all frames 
should be fed simultaneously into the algorithm. This not 
only increases the dimensionality of BA, but renders it 
unsuitable for real-time applications as well. 

In contrast, if our aim is to estimate the real-time 

pose of a mobile robot, we need to rely on recursive 

techniques working frame-to-frame. An optimal 

recursive linear estimator is the Kalman Filter (KF). 

However, to deal with the camera projective distortion, 

the Extended Kalman Filter (EKF) with the Jacobian of 

derivatives should be used (Chiuso et al., 2002). 

Multiple cameras were used with the EKF for estimating 

the pose of a mobile robot in (Ragab et al., 2007; 2008; 

Ragab and Wong, 2010). While in (Panich, 2010b), the 
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indirect KF was used (in simulations) to obtain the 

position of a mobile robot.  

Another different approach is the renowned 

Newton’s iterative method for solving systems of 

nonlinear equations. Lowe (1991) justified its use for 

model-based pose estimation in 2-D images. According 

to his work, although the projection from 3-D to 2-D is a 

nonlinear operation, it is a smooth and well-behaved 

transformation. Trucco and Verri (1998) derived the 

partial derivatives of the 2-D measurements with respect 

to the pose parameters. Their implementation was used 

in (Chang and Wong, 2005). In fact, the work in 

(Chang and Wong, 2005) extended the approach to 

obtain the structure besides the model-based pose. 

They initialized the structure orthographically (as if all 

3-D features lied on a plane with a known constant 

depth). Accordingly, they estimated the pose iteratively. 

In the second iterative stage, the structure was refined 

using the estimated pose. The loop continued until the 

residual error fell below a certain threshold. However, 

the orthographic assumption required that the depth of 

the object to be considerably smaller than the distance 

between the object and camera (like the case they used 

of a flask on a turntable). It deserves mention that the 

Newton’s method was used in computer vision in 

alternative ways. For example, Li and Hartley (2005) 

attempted to perform feature matching and pose estimation 

simultaneously using an alternating Newton iteration 

method. The matching was formulated as a nearest-matrix 

approximation problem and the orthogonality was made of. 

Additionally in (Baumann et al., 2004), obtaining the pose 

was formulated as an estimation task for essential matrices. 

The problem was reformulated as a constrained 

optimization for a time-varying family of cost functions. 

Then, a Newton-type path following method was applied 

to asymptotically track the minima of the cost functions.  

For more clarity, we will consider only the Lowe’s 

application of the Newton’s method as in (Lowe, 1991) 

and the implementations based on it as (Trucco and 

Verri, 1998; Chang and Wong, 2005). Additionally, 

from now on, we will refer to it as Lowe’s method. The 

localization based on Lowe’s method was combined 

with landmark-localization for better results in (Chen et al., 

2005). Both the KF and Lowe’s method were used in 

(Saeedi et al., 2003). The former was used to update the 

structure, while the latter was utilized in motion estimation. 

In this study, we compare the EKF to Lowe’s method 
for obtaining the pose of a mobile robot in an unknown 
scene. The motivation behind this is that although the 
latter is iterative, it has a lower dimensionality compared 
to the former recursive filter. Additionally, we study the 
effect of the number of features considered in both 
approaches (using three ranges). On one hand, the more 
the number of features, the more accurate the estimation 
in least-squares sense. On the other, as the number of 
features increases, the dimensionality increases as well 

as the effect of radial distortion. Moreover, we 
investigate how the accuracy and speed are affected by 
the number of iterations of the Lowe’s method. Since, 
we use a stereo pair of cameras for obtaining the 
structure and rejecting the outliers, we compare feeding 
the pose estimation algorithms with the measurements of 
only the reference camera to the double measurements of 
the stereo pair. To ensure the validity of our studies, we 
have carried them under different motion patterns.  

Method  

The camera layout used is shown in Fig. 1, where 

camera 1 and camera 2 form a stereo pair. The global 

coordinate system is attached to camera 1 (reference 

camera) at the initial position (i.e. at frame 0). While 

Camera 2 has its center displaced from camera 1 by the 

vector D2 and is rotated by the rotation matrix, R2. 

During the motion, at any general frame (frame j), 

camera 1 is rotated by the rotation matrix, Rj, with its 

center translated by the vector dj with respect to the 

reference coordinate system. Our task is to estimate the 

pose (dj and Rj), or equivalently to find its six parameters 

(translation components in direction of the coordinate 

axes: txj, tyj and tzj (m)) and (rotation angles around the 

coordinate axes: αj, βj and γj (rad)). The camera 

coordinates for camera 1 is given by:  
 

( )( )ij j i jP g R M d= −  (1) 

 

 
 
Fig. 1. The plant equation which relates the current state space 

the initial pose of each camera and the poses at a general 

frame, j. The pose we seek is rotation Rj and translation 

dj (rotation R2 is exaggerated for clarity) 
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Where:  

Mi = A (3×1) vector defining the 3-D location of the 

feature i (seen by the camera) with respect to the 

reference coordinate system (m)  

g(Rj) = A function of the camera rotation (e.g. the rotation 

itself or its transpose (Ragab and Wong, 2009)).  
 

Similarly, the camera coordinates of camera 2 is 

given by:  

 

2 2( )( )ij j i j jP g R M d R D= − −  (2)  

 

According to Equations 1 and 2, the 2-D 

measurements in images (for camera 1 and camera 2 

respectively) should be: 

  

1 1

1 1

2 2 2 2
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K P K P

 × ×
 

× ×  

 × ×
 

× ×  

 (3) 

 
Where:  

K1 and K2 = (3×3) matrices encoding the intrinsic 

parameters of each camera e.g. focal 

lengths and image centers (pixel)  

K1 (1) = First row of the matrix and Pij (1) is the first 

component of the vector (second and third 

rows and components are indicated as well 

with respective numbers)  

EKF Implementation  

The state space vector at frame j, sj, consists of the pose 

parameters and their derivatives (velocities) in the form:  
 

T

j xj xj yj yj zj zj j j j j j jS t t t t t t a a β β γ γ =  
ɺɺ ɺ ɺ ɺɺ  (4)  

 
where, The superscript T transforms the row to a column 

vector and other elements are described above. 

The plant equation which relates the current state 

space vector sj to the previous one sj-1 and the plant noise 

nj assumed to be Gaussian is:  

 

1j j jS AS n−= +  (5) 

 

where, A is a (12×12) matrix whose main diagonal 

elements are ones. The odd rows have a τ (equal to the 

time step between frames) just to the right of the main 

diagonal. In this way, a robot uniform motion of constant 

speeds is assumed.  

The measurement equation relating the 2-D pixel 

locations of image features Ij and the state measurement 

relation h(sj) (given by Equation 3 above) assuming a 

Gaussian distribution for the measurement noise ηj: 

 ( )j j jI h s η= +  (6)  

 

For each frame, the EKF predicts the state space 

vector based on the previous one and updates it 

(enhancing the prediction) based on the measurements 

and the calculations of the Jacobian of the state 

measurement relation with respect to the twelve 

elements of the state space vector. The main time-

consuming step is calculating the Kalman gain since it 

includes an inversion of ((2×N) × (2×N)) matrix, 

where N is the number of features fed into the filter. 

More details about the EKF implementation can be 

found in (Chiuso et al., 2002). 

Lowe’s Method Implementation 

Here, we focus on the pose parameters (unlike 

Equation 4):  

 

[ ]T

j xj yi zj j j jq t t t a β γ=  (7)  

 

The algorithm can be summarized as follows:  

a) At frame 0, all pose parameters are zeros as 

mentioned above, 2-D features are obtained and 

matched for the stereo pair (more details are below). 

The 3-D structure is acquired using triangulation  

b) Move to next frame, initialize rotation and 

translation to that of the previous frame, construct 

the measurement relation h(qj) (given by Equation 

3 above) 

c) Compute the residual (difference between actual 2-

D features and the measurement relation):  

 

( )j j jI h qε = −  (8)  

 

d) Calculate the Jacobian, ϕj, which is a ((2×N) × 6) 

matrix containing the partial derivatives of h(qj) 

with respect to the six pose parameters  

e) Solve the system of equations: 

 

j j jϕ ε∆ =  (9) 

 

Where:  

∆� = Vector of required variations in pose parameters to 

minimize the residual of Equation 8:  

 

[ ]T

j xj yj zj j j jt t t aδ δ δ δ δβ δγ∆ =  (10) 

 

The standard solution of Equation 9 in least-squares 

sense is given by:  

 
1( )T T

j j j j jϕ ϕ ϕ ε−∆ =  (11)  



Mohammad Ehab Ragab / Journal of Computer Science 2015, 11 (7): 872.879 

DOI: 10.3844/jcssp.2015.872.879 

 

875 

where, ()
−1

 is the matrix inversion operator. 

f) Update the pose using ∆� obtained at Equation 11 
(translations are added, while angles form a 
rotation matrix which is multiplied). Go to step 
(c), iterate to step (f) for a specified number of 
iterations or until the residual falls below a 
certain threshold  

g) While the tracked number of features is more than a 
certain threshold, go to step (b) (to process all 
frames till the end of sequence). Otherwise, go to 
step (a) to acquire new features to track (using the 
current frame and its pose)  

In fact, the steps (a), (b) and (g) are common for 

Lowe’s method and the EKF implementation (which 

is written concisely above). Additionally, the matrix 

inverted in Equation 11 is of size (6×6) which is much 

lower than that of the EKF implementation 

((2×N)×(2×N)). Moreover, the number of required 

iterations (step (f)) is expected to be low since we 

always have the pose of the previous frame as a good 

initialization of the current. 

Feature Management  

The 2-D features mentioned above are small 
windows of pixels within the image frames 
characterized by having a corner property (high 
intensity gradients in both directions). For each 

camera, the features are obtained and tracked using 
the Kanade-Lucas-Tomasi (KLT) feature tracker. The 
stereo matches are based on a cross-correlation 
measure. Additionally, matches violating epipolar 
constraints are filtered out as outliers. The locations of 
features in the 3-D space are obtained using the 

triangulation. The features fed to the algorithms are 
chosen to be as evenly distributed as possible around 
the center of projection of each image. Accordingly, 
the set of features may vary from frame to frame. 
When the number of tracked features falls under a 
certain threshold, a new set of fresh features is 

obtained using the stereo matching as mentioned 
above. The number of features fed to the algorithms is 
a critical factor for the performance. As this number 
increases, the accuracy increases in least-squares 
sense. However, both the dimensionality of the 
problem and the effect of radial distortion will increase. 

Therefore, the performance will be checked using 
different numbers of features. As mentioned above, 
stereo is used on demand for obtaining the 3-D structure 
and to reject the outliers (in each frame). However, we 
have two 2-D measurements for each feature (one by 
each camera). Feeding the two measurements into the 

pose estimation algorithms will unfortunately doubles 
the dimensionality. Nevertheless, the question is: would 
this be justified by an increase in accuracy? The 
question will be answered below.  

Experiments  

Simulations  

A stereo pair was put on a robot moving with random 
translations (tx, ty and tz) and random rotation angles (α, β 
and γ) in the directions of and around the x, y and z axes 
respectively. Initially, the center of camera 1 (reference 
camera) coincided with the origin of the coordinate 
system with zero angles of rotation. The translations 
were taken randomly from ±0.005 to ±0. 0225 m and the 
rotation angles were taken randomly from ±0.005 to 
±0.03 rad. Both cameras had a 6 mm focal length and 
(640×480) resolution with a 0.1 m baseline in-between. A 
random noise was added to each feature point with a normal 
distribution of zero mean and a 0.5 pixel standard deviation. 
The motion took place inside a spherical shell whose outer 
radius was 1 m and inner was 0.667 m having 10,000 
feature points distributed randomly within. A sequence of 
100 frames was taken simultaneously by each camera. We 
ran the simulations 1000 times to estimate the pose using 
the EKF (measurement of a single camera and of the pair), 
the Lowe’s method having 10, 20 and 30 iterations (single 
and pair measurements as well).  

Real Experiments  

We carried out the real experiments using a pair of 
calibrated Canon Power Shot G9 cameras with 
resolution (1600×1200). The cameras were put parallel 
atop the robot used with the baseline equal to 14 cm. A 
sequence of more than 200 frames was taken 
simultaneously by each camera in an ordinary lab scene. 
The motion of the robot followed various patterns: a 
pure translation, a pure rotation and mixed rotation and 
translation. In addition to the eight variations of the 
algorithms we had in simulations, we tested the use of 
three sets of features. For the first set, we used all 
available features for each camera and did not acquire 
new features until their number dropped to 200. The 
second set used a number of features starting from 200 
down to 140, while the third dealt with 100 down to 70 
features. We considered also the effect of the longevity 
of features upon the accuracy and speed. We dealt with 
the sequence of frames either as one section or as five 
sections with fresh features for each new section.  

Results  

Average absolute errors for the pose in simulations 

are shown in Table 1. Each method is tested with various 

settings for the real experiments (as shown in Fig. 2).  
Figure 3 compares the best overall performance for 

each method in real experiments under all studied 
motion patterns. The ground truth of Fig. 2 and 3 was 
obtained from the computer steering the robot. The 
timing information for the real experiments is shown in 
Table 2 (obtained using MATLAB on Intel Core i7 CPU 
with 1.73 GHz and 4GB RAM).  



Mohammad Ehab Ragab / Journal of Computer Science 2015, 11 (7): 872.879 

DOI: 10.3844/jcssp.2015.872.879 

 

876 

Table 1. Average absolute error of pose values per frame for 

simulations (rad/m) 

Method α β γ tx ty tz 

EkfPa 0.0071 0.0195 0.0027 0.0207 0.0072 0.0057 

EkfSb 0.0122 0.0227 0.0038 0.0238 0.0116 0.0066 

LPit10c 0.0398 0.0163 0.0111 0.0155 0.0355 0.0077 

LPit20 0.0415 0.0163 0.0122 0.0152 0.0362 0.0083 

LPit30 0.0439 0.0163 0.0138 0.0153 0.0378 0.0094 

LSit10 0.0122 0.0091 0.0028 0.0089 0.0116 0.0028 

LSit20 0.0122 0.0091 0.0028 0.0089 0.0116 0.0028 

LSit30 0.0122 0.0091 0.0028 0.0089 0.0116 0.0028 

a. “Ekf” denotes using the EKF algorithm, “P” denotes 

measurements of the stereo pair 

b. S” denotes taking measurements from a single camera 

(camera 1) 

c. L” denotes Lowe’s method, “it10” denotes 10 iterations 

Discussion  

For the simulations, Table 1, the best overall 

performance is verified by Lowe’s method with single 

measurements (LS). Next is the EKF with pair 

measurements (EkfP), then come the EKF with single 

measurements (EkfS) and Lowe’s method with pair 

measurements (LP). Since Lowe’s method has a least-

squares solution (Equation 11 above), it performs well 

with single measurements (where the measurements are 

distributed around the center of projection of one 

camera). In contrast, it is well-known that the EKF 

estimation capabilities improve when having more 

measurements (from both cameras). However, EkfS 

could sometimes verify the same accuracy as LS (for α 

and ty). For LS, using ten iterations is adequate for 

convergence. Additionally, increasing the number of 

iterations for LP might even degrade the performance 

slightly. The reason for this is that LP is not in harmony 

with the least-squares solution as mentioned above.  

Figure 2, for the real experiments depicts nearly the 

same results as the simulations. The aim of this figure is 

to find out the setting which verifies the best overall 

performance for each method. It is obvious, that dividing 

the sequence into five sections results in more accurate 

pose parameters than having only one. This proves that 

having fresh features more frequently reduces the 

tracking errors caused by the projective distortion 

affecting the feature windows. For most methods, having 

the range of feature numbers as “200-140” is the most 

accurate. This is the medium range which avoids the 

problems encountered by the two others. The smallest 

range, “100-70”, has all features in a small region around 

the image center of projection which is likely to cause 

the small aperture problem. In contrast, the largest range, 

“All-200”, includes all available features extending to 

the frame border which can suffer a lot of the radial 

distortion. Having ten iterations for Lowe’s method is 

adequate. Practically, fixing all other settings, the curves 

of 10, 20 and 30 iterations coincide. To use space 

efficiently, we show in Fig. 2 four pose parameters and 

one motion pattern for each method. However, this 

represents the results well since each method has the 

same displayed behavior for the other two pose 

parameters (angles α and γ which are kept zeros 

throughout the real experiments) and for all motion 

patterns (which is elucidated in Fig. 3).  
The best settings for all methods and motion patterns 

are compared in Fig. 3. For the pure translation pattern, 
“EkfP” is the closest to the ground truth which shows the 
accurate prediction of the filter in uniform translational 
motions. Then come very close both of “LS” and “EkfS” 
which nearly coincide. The angle β increases gradually up 
to 0.1 rad for most methods which indicates a possible 
slight slipping of the robot wheels. “LP” deviates for most 
pose parameters for the reason mentioned above in this 
section. For the pure rotation pattern, “LS” verifies the 
best performance which agrees with the results 
obtained so far. Additionally, the deviation of both 
“LS” and “LP” near the end of sequence remains limited. 
What might be unexpected is the divergence of both 
“EkfP” and “EkfS” near the middle of the sequence. This 
behavior is explained by having the blank-wall effect 
throughout tens of frames starting from the initial frame 
of the sequence. A large portion of each frame is 
occupied by a carton and a table surface without reliable 
features to track (as shown in Fig. 4). This leads to a 
singularity of the matrix inversion when calculating the 
Kalman gain. On the other hand, Lowe’s method could 
survive due to its low dimensionality and the collectivity 
of the least-squares (as shown in Equation 11). When 
starting the sequence after the blank-wall effect 
disappears (e.g. from frame 70), both “EkfP” and “EkfS” 
perform well (lowest row of Fig. 4). For the mixed 
motion pattern, all methods perform well for both tz and 
β which dominate the change in pose parameters. “LP” 
deviates for both tx, ad ty while the other methods remain 
close to the ground truth. “LS” and “EkfS” verify the best 
performance for tx while “EkfP” is the most accurate for ty.  

From the timing information, in Table 2, we deduce 

that in most cases “sec5” takes longer time than “sec1”. 

Starting a new section repeatedly leads generally to 

having more features throughout each section with 

more calculations. This is especially obvious for the 

highest range of feature number “All-200”. For “EkfP” 

and “EkfS”, increasing the range of feature numbers 

raises dramatically the time which is dominated by a 

((2×N) × (2×N)) matrix inversion as explained above. 

The complexity is approximately cubic which is clear 

when comparing the range “100-70” to its 

approximate double “200-140”. For “LS” and “LP”, 

fixing the number of iterations, the time averages 

remain close to each other throughout most of the 

ranges of feature numbers. The reason for this is 

explained in section 2.2 above. Having the highest 

range of features “All-200” with “sec5” is an 

exception which is clarified above in this paragraph.  
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Table 2. Average time per frame for real experiments (s) 

Method setting EkfPa EkfSb it10d LPc it20 it30 it10 LS it20 it30 

100-70sec1e 0.0429 0.0067 N/Ag N/A 0.0258 0.0043 0.0085 0.0177 

100-70sec5f 0.0305 0.0074 N/A N/A 0.0175 0.0075 0.0080 0.0120 

200-140sec1 0.2154 0.0373 0.0101 0.0193 0.0279 0.0055 0.0099 0.0181 

200-140sec5 0.2425 0.0591 N/A N/A 0.0276 0.0100 0.0075 0.0109 

All-200sec1 3.4542 0.7529 0.0100 0.0190 0.0284 0.0044 0.0097 0.0142 

All-200sec5 5.5511 0.9309 0.0113 0.0299 0.0802 0.0146 0.0328 0.0584 

a. Ekf” denotes using the EKF algorithm, “P” denotes measurements of the stereo pair 

b. “S” denotes taking measurements from a single camera (camera 1) 

c. “L” denotes Lowe’s method 

d. “it10” denotes 10 iterations 

e. “100-70” denotes number of features per camera, “sec1” denotes taking all sequence of frames as one section 

f. “sec5” denotes dividing the sequence into five sections and starting each with new features 

g. “N/A” denotes not carrying out 10 and 20 iterations since even 30 iterations did not converge 

 

 
 
Fig. 2. Finding out settings of best overall performance. Four parameters are compared to the ground truth (tx, ty, tz, and β the 

only angle varied during motion). Upmost row shows performance of EKF with pair measurements “EkfP” under pure 

translation pattern. Numbers e.g. “100-70” show the range of features used per camera, and “sec1” denotes having the 

sequence as one section in contrast to 5 sections “sec5”. Second row shows performance of EKF with single 

measurements “EkfS” under mixed motion pattern. Third row shows performance of Lowe’s method with pair 

measurements “LP” under pure translation motion pattern. The number of iterations is indicated e.g. “it10”. Smallest 

markers are used for “it10”, medium size is used for “it20”, and largest size is used for “it30”. Lowest row shows 

performance of Lowe’s method with single measurements “LS” under mixed motion pattern. Legends are put in the 

middle of rows with fewer entries for “LP” than “LS” (when “it30” does not converge, lower iterations are not carried out) 
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Fig. 3. Comparing all methods (setting of best overall performance). Four parameters are compared to the ground truth (tx, ty, tz, and 

β the only angle varied during motion). Upmost row shows the performance under pure translation motion pattern. The second 

row shows the performance under pure rotation motion pattern while the lowest row belongs to the mixed motion pattern. 

Numbers e.g. “200-140” show the range of features used per camera, and “sec5” denotes dividing the sequence into 5 

sections. “EkfS”: EKF with single measurements, “EkfP”: EKF with pair measurements, “LP”: Lowe’s method with pair 

measurements, and “LS”: Lowe’s method with single measurements. “it10”: using ten iterations 

 

 
 
Fig. 4. Pure rotation, first and second rows: Frames 1, 25, 50, 100 

and 200 for stereo. Large areas till frame 50 do not have 

enough features to track. Lowest row: Starting at frame 70, 

both “EkfP” and “EkfS” perform well as shown for tz and β 

 
Fixing the range of feature numbers, the time increases 
nearly linearly with the number of iterations (not exactly 
since some calculations are made outside the loop). 
Since “LP” considers double the measurements of “LS”, 
it generally requires double the time when all other 
settings are fixed. This is clear for the highest range of 
feature numbers “All-200” and “sec1”. We conclude this 

section by comparing the time for the most accurate 
settings (shown in Fig. 3). Although “EkfP”, “EkfS” and 
“LS” are close in accuracy to each other, they have wide 
variations in speed. “LS” is the fastest of them all with a 
capability of handling 100 frames/s. “EkfS” can handle 16 
frames/s while “EkfP” can handle only four frames/s. We 
should mention that there is a room for improvement 
using a faster processor and compiler (compared to that 
mentioned in section 4). Additionally, the time of feature 
detection and tracking is excluded. However, this task can 
be handed to a parallel processing unit.  

Conclusion  

In this study, we have probed the pose estimation of a 

moving robot in an unknown indoor scene. The stereo 

information is used for obtaining the 3-D structure and 

feature outlier rejection. We have compared Lowe’s 

method based on iterative Newton’s method for solving 

a system of equations to the EKF. Both have nearly the 

same accuracy. However, Lowe’s method has a lower 

dimensionality which results in more speed and more 

immunity against some singular settings (e.g. a blank- 

wall effect across large areas of the frames). We have found 
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that ten iterations are adequate for Lowe’s method to 

converge. More speed can be gained by combining an error 

threshold with ten iterations as a maximum. In contrast to 

Lowe’s method, the EKF is scalable with respect to the 

measurements. Taking the measurement of the same 3-

D feature twice from the stereo pair increases the 

accuracy. Therefore, the EKF approach benefits from 

adding more cameras and can tolerate any of them 

being off or occluded. However, this comes at the 

expense of more processing time. An important finding 

of this work is that it is not always beneficial to 

increase the number of features fed to the pose 

estimation approaches. A range of features that avoids 

both the small aperture problem and the radial 

distortion would be more beneficial. Additionally, 

having moderate longevity of features by dividing the 

motion sequence into a suitable number of sections avoids 

much projective distortion of feature windows and leads 

to a more accurate estimation of pose parameters.  
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