
 

 

© 2015 Mohamad Afendee Mohamed, Abdullah Muhammed and Mustafa Man. This open access article is distributed under 

a Creative Commons Attribution (CC-BY) 3.0 license. 

Journal of Computer Science 

 

 

 

Original Research Paper 

A Secure Chat Application Based on Pure Peer-to-Peer 

Architecture 

 
1
Mohamad Afendee Mohamed, 

2
Abdullah Muhammed and 

3
Mustafa Man 

 
1Faculty of Informatics and Computing, Universiti Sultan Zainal Abidin, Kuala Terengganu, Malaysia 
2Faculty of Computer Science and Information Technology, Universiti Putra Malaysia, Serdang, Malaysia 
3School of Informatics and Applied Mathematics, Universiti Malaysia Terengganu, Kuala Terengganu, Malaysia 

 
Article history 

Received: 08-03-2015 

Revised: 01-05-2015 

Accepted: 28-05-2015 

 

Corresponding Author:  

Mohamad Afendee Mohamed 

Faculty of Informatics and 

Computing, Universiti Sultan 

Zainal Abidin, Kuala 

Terengganu, Malaysia 
Email: mafendee@unisza.edu.my 

Abstract: Chat application is increasingly used as an alternative to older 

communication technologies such as telephony and telegraph. Equipped 

with advanced features, people can use it for education, business and 

socialize. Basic requirement for chatting is an ability to exchange text 

messages, however, recent releases include support for audio and video 

communications. For some reasons, peer-to-peer now turned out to be a 

popular architecture and as such, it becomes a choice for developing 

chat applications such as Skype. Skype however, makes use of 

centralized server for user registration, login and buddy list. Indeed, this 

idea could be disastrous in the event of a compromise. In this study, we 

proposed a chat application that is based on pure peer-to-peer 

architecture that totally rid of centralized or third party elements. The 

system is controlled by the users and its security is autonomously 

managed by the communicating parties. Each user will have their own 

database for peer’s profiles and communication parties authenticate 

among each other before exchanging messages. The main contribution 

of this paper is a state-of-the-art chat application having completely 

been designed with build in security measures.  

 

Keywords: Peer-to-Peer, Decentralized, Buddy List, Authentication, 

Encryption 

 

Introduction  

Communication is a mean for people to exchange 

messages. It has started since the beginning of human 

creation. Distant communication began as early as 1800 

century with the introduction of television, telegraph and 

then telephony. Interestingly enough, telephone 

communication stands out as the fastest growing 

technology, from fixed line to mobile wireless, from 

voice call to data transfer.  

The emergence of computer network and 

telecommunication technologies bears the same 

objective that is to allow people to communicate. All this 

while, much efforts has been drawn towards 

consolidating the device into one and therefore 

indiscriminate the services. 

The principle of communication can generally be 

categorized into two, client-server and peep-to-peer 

(Daswani et al., 2003; Eberspächer and Schollmeier, 

2005). In client-server environment, there is a dedicated 

server while the rest of other nodes are acting as clients 

throughout the whole communication. Whereby, in peer-

to-peer environment, a node can be either a client or a 

server depending whether it is a requestor or provider of 

the service at that specific time.  

Client-server technology has been around for some 

times. Some examples of client-server applications are 

web access, network time and windows login. Specific to 

user login, user’s credentials are stored in the database at 

the server side. Anyone who has an access to the server 

and the database can easily access user information. This 

creates the idea of single point of failure which may 

cause a devastated damage in case of breaks in. Another 

downside of client-server is the resource consumption 

which always concentrates on the server side. This gives 

rise to the infrastructure cost for the provider. 
Chat application is becoming an important digital 

communication tools, people use it for business, 

education and socialize. It offers users an ability to 

identify online friends, a user then just selects the one 



Mohamad Afendee Mohamed et al. / Journal of Computer Science 2015, 11 (5): 723.729 

DOI: 10.3844/jcssp.2015.723.729 

 

724 

that he/she wants to communicate before begins 

exchanging messages at will. Basic function of chat 

application is to be able to exchange a text-based 

message although today’s application is equipped with 

more advanced features such as audio, video 

conferencing to the least. The application can be 

developed based on either client-server or Peer-to-Peer 

(P2P) architectures. However, P2P now turned out to be 

the popular architecture as it offers many advantages 

such as low maintenance cost for server side 

(considering client-server scenario) and high availability 

content distribution system. For this reasons, many 

popular applications like Skype, BitTorent and eMule 

rely on P2P network.  

Being one of the most successful computer-based 

chat applications, Skype offers many user-friendly 

functions such as buddy list, video conferencing and file 

transfer. Skype is built on top of hybrid peer-to-peer 

architecture (Baset and Schulzrinne, 2006). The terms 

hybrid is used to refer to some element of client-server 

embedded within P2P architecture. 

By and large, before using Skype, a user needs to 

register to the centralized Skype server for setting up 

username and password. It is an easy process and is fully 

guided by the software itself. Fortunately, registration is 

only one-time operation. Upon completion, at any time 

when a user wants to communicate with a friend, he/she 

is required to authenticate him/herself to the login server 

for the purpose of self-identification and retrieving 

buddy list. To make sure the client having the right 

destination server, Skype hard codes the IP address and 

port number of the server in its executable. Client side 

uses this parameter when communicating credentials 

with the server. 

Skype user registration and authentication are 

considered as client-server like operations. During login 

procedure, the server side is responsible for validating 

user account and authenticating peers’ profile. For this 

purpose, the server side maintains a list of existing users 

in a huge database system. On top of that, the server is 

also in charge of listing online friends for the newly 

authenticated user. For once, this centralized storage is 

susceptible to attacks and it provides a single point of 

failure for attackers to challenge the security of the 

system (Vestola, 2010). In case of compromised, the 

damage can be disastrous. Moreover, in the event of 

server failure, all communications are halted and user 

needs to wait for the server side to come back up before 

being able to communicate again.  

In this research, we aim at replacing the idea of 

centralized server by distributed server resided at every 

user device. One maintains his/her own peers’ 

credentials and as such no need for centralized server 

anymore. The proposed chat application is based on a 

pure P2P architecture within a decentralized 

environment. This new application can be seen as an 

alternative to hybrid P2P found in Skype, but with a 

better security feature for users. This way, we manage to 

avoid some unnecessary dependencies on the third party 

and therefore bring up security to one step higher. 

Methodology 

The whole idea of this proposed application is to 

avoid a centralized system (registration, login and buddy 

list) as that found in Skype (Baset and Schulzrinne, 

2006; Azab et al., 2012). Using Skype, during 

registration, user profile will be stored in a centralized 

database and one can use the credential to login at 

anytime and anywhere as preferred. This certainly 

provides certain level of robustness although the 

question arises as to how secure the centralized database 

can be to prevent from attacks. 

Recently, a study on decentralized system was 

proposed but only for the purposed of improving the 

buddy list (Kundu, 2012). The idea was about 

developing a robust index system using distributed hash 

table for decentralized chat application. An indexing 

system is responsible for storing IP address and port of 

all users once they joined the chat. Users initialize their 

own buddy list by contacting the centralized indexing 

system once they logged in. When a user A wants to 

communicate to user B, B will act as a server and 

authenticate client A. As authentication is one-way, this 

opens up an opportunity for attackers to masquerade as 

user B. To cater some of these problems, in our 

proposed application, we come out with the following 

principle ideas: 
 

• Pure P2P architecture with no centralized server, 

peers’ profiles is managed locally by user 

• User registrations are done among themselves and 

therefore, multiple registrations are needed for 

communicating with different users 

• User login is done on each peer basis and it follows 

a two-way authentication protocol 

• Message is encrypted prior exchanging between two 

or more peers 
 

Another important feature of any chat application 

would be buddy listing. In this application, during 

initialization process, the system reads through the 

buddy list from local hash table and automatically 

determines their (device) availabilities by contacting 

them based on the IP address and port number of their 

devices. However, it could also be the case that someone 

else is on the device, for that we have an authentication 

procedure which makes use of username and password. 

Furthermore, message exchange is only allowed after 

peers have authenticated to each other. Unlike Skype, 

when user initializes the application, one is prompted for 



Mohamad Afendee Mohamed et al. / Journal of Computer Science 2015, 11 (5): 723.729 

DOI: 10.3844/jcssp.2015.723.729 

 

725 

login and if successfully authenticated, user will be able 

to see online buddies and start exchanging messages. 

We depict the architecture of our proposed 

application as in Fig. 1. Every peer is equipped with 

internet or LAN connection. The chat software is 

installed and it has a simple database system for storing 

friends’ profiles. Considering Peer1, its index table 

consists of credentials belong to Peer3 and Peer4 but not 

Peer2 since there is no agreement between Peer1 and 

Peer2. Although Peer2 exists, Peer1 will not be able to 

see it via Peer3 and Peer4 since the database is one-to-

one and as such the security of peers’ credential is well 

maintained. In this scenario, Peer1 can only initiate 

communication with Peer3 since Peer4 is not 

connectable due to broken links although Peer4 may be 

online at that specific time. 

There are some noticeable drawbacks from this 

architecture and that are, user needs to register n number 

of times in order to warrant communication with n 

different peers and user needs to authenticate m (<n) 

number of times in order to start communicating with m 

different peers. However, the advantage is if the database 

of one peer is compromised, the damage is limited to 

communications specific with that peer and the rest of 

communications with another n-1 peers are still secured 

since a user can use different credentials when 

communicating with different peers. From this argument, 

we proposed that this idea is very suitable for those who 

require high level of security for data communication but 

probably not well suited for user having so many peers 

as it requires extra efforts to manage the database. As an 

example, this application can be implemented for the use 

within organization local area network. 

 

 
 

Fig. 1. Proposed architecture 

 

Registration Procedure 

In this application, user account registration is left to 

be done in many ways allowing certain level of 

flexibility. For examples, a user can visit another user to 

exchange credentials and manually store into each other 

database. For distant buddies, both can register to each 

other from the software and validation can be done via 

short messages or through email. Successful registration 

ends up with one’s username, hashed password, IP 

address and port number stored in the other peer’s 

database. Hashing algorithm helps to step up the security 

of user password in the database.  Moreover, IP address 

and port number is used for the purpose of device 

identification. Registration between two peers is made 

discreet; user is encouraged to user different credentials 

when registering to different peers. This way, it will 

enhance the security of the application. 

Within registration procedure, peers can also agree 
on secret key for later purpose of message encryption. 
This secret key can be exchanged together with 

username and password. 



Mohamad Afendee Mohamed et al. / Journal of Computer Science 2015, 11 (5): 723.729 

DOI: 10.3844/jcssp.2015.723.729 

 

726 

Login Procedure 

In order to provide a secure chat, we focus on a 

simple mutual exclusion in authentication procedure (Li 

et al., 2009; Xu and Li, 2010). Before authenticating to 

each other, users must have a valid permission to 

connect, given by a peer, of which authentication will 

follow. The application captures username, hashed 

password, Internet Protocol (IP) and port number of a 

transaction and compares to the one stored in XML 

database. We have proposed the use of hash function 

called SHA-256 for authenticating peers (Michail et al., 

2005). Since the hashed password that is stored in the 

peer’s database, only hashed password needs to be 

transmitted to that peer. 

Figure 2 shows an authentication protocol that we 

have implemented in this application. As an alternative, 

user authentication can also be seen as connection 

establishment phase. In this scenario, Peer1 wishes to 

communicate with Peer2. This protocol is responsible for 

asking and granting/rejecting permission from both/to 

parties.  Initially, Peer1 send a request to chat to Peer2 

and wait for replies. Peer2 in return have two choices of 

responses, accept or reject that lead to an end. In case of 

accept response, Peer1 is required to send their user 

profiles (username and hashed password) to Peer2. Peer2 

will authenticates this profile by comparing to the one 

exists in its database. In response Peer2 sends success or 

failure authentication message that lead to an end. Upon 

receiving authentication successful, Peer1 will ask for 

Peer2 user profiles. Peer2 sends the user profiles where 

Peer1 will perform the authentication. Upon successful 

authentication for both sides, they are ready to exchange 

messages. This additional procedure is very important to 

ensure that we are chatting with the correct user and not 

with someone else that used the computer temporarily. 

Data Exchange 

Once peers authentication completed, they can start 
exchanging messages. For security reason, message is 
encrypted using AES cryptosystem (Bardis and Ntaikos, 
2008) employing secret key (Al-Riyami and Paterson, 
2003) that we have agreed at the registration phase. The 

session is valid as long as user does not log out from the 
chat application. Otherwise, peers need to authenticate 
one another again. 

Implementation 

The implementation is subdivided into five main 
areas that are the Graphical User Interface (GUI), socket 
programming, user profile’s database, user 
authentication using hash function and message 
encryption using cryptographic algorithm. Figure 3 
shows a simple framework that serves as guidance 

during an implementation phase. From this framework, 
we divide our architecture using four modules. 

 

  
 

Fig. 2. Authentication protocol 
 

 
 

Fig. 3. Proposed framework 
 

The whole project was developed based on Java 
language. The development of GUI uses Swing and AWT 
technologies. For peers’ communication, simple socket 
programming was used. For the purpose of user 
authentication, SHA-256 is used for hashing user 
password. Peers’ IP address and port number are bind 
together and stored in XML database together with 
respective username and password. 

In authentication procedure, it involved verifying the 
validity of at least one form of identification. In this 
research, we have implemented SHA-256 in 
authentication phase. When a user creates a password, 
peers system hashes the input  using SHA-256 in to 
hexadecimal value. When a user performs authentication 
during login procedure, peer system compares the 
password to the one stored earlier. 



Mohamad Afendee Mohamed et al. / Journal of Computer Science 2015, 11 (5): 723.729 

DOI: 10.3844/jcssp.2015.723.729 

 

727 

To maintain the secrecy of communication, all 
messages will be encrypted using AES cryptosystem 
employing 256 bits of key prior transmitting to the other 
peer. This is the standard key size used by most of the 

current applications and is acceptable for medium secured 
application. The use of longer key size is possible but at 
the expense of some extra computational power. 

Results 

In this section we show the finish product in respect 
to the functionalities that we have discussed earlier. The 
product has been tested in local area network. Next 
discussion centers on the communication between two 
peers, namely Peer1 and Peer2. For simplicity, we 
assume both peers have registered to one another. 

Figure 4 shows a screenshot at Peer1 in listening 
mode. In this case, Peer1 is initiating a connection to 
Peer2 (192.168.1.20:13000). 

At Peer2, the listener will create a pop-up window 

informing someone (192.168.1.10) has initiated a 

connection and ask if the user wishes to allow or reject 

the communication as in Figure 5. 

On receiving communication accepted, Peer1 is 

required to enter the username and password. By 

clicking the button ‘login’ in Figure 6, the username and 

a hashed password will be transmitted to Peer2. 

Peer2 compares the received username and hashed 

password with the one store in its database. Upon 

successful validation, acknowledgement will be sent to 

Peer1. Peer1 will in turn request for Peer2 profile. The 

same procedure happens until both sides have 

authenticated to each other. 

After authentication successfully completed, users 

can start exchanging messages. Figure 7 shows the two 

peers successfully exchanged simple messages. 

 

 
 

Fig. 4. Initiating connection 

 

 
 

Fig. 5. Accepting connection 



Mohamad Afendee Mohamed et al. / Journal of Computer Science 2015, 11 (5): 723.729 

DOI: 10.3844/jcssp.2015.723.729 

 

728 

 
 

Fig. 6. Profile provision 
 

 
 

Fig. 7. Message exchange 

 

Conclusion 

Analysis has been conducted to investigate 

decentralized P2P architecture. In this study, we 

developed a secure chat application that can be 

implemented in decentralized environment. The main 

objective was to have a self-secured individual user 

database without any involvement of third party. Security 

element was built within user registration, user login, 

message exchange and database storage. 

Possible future works that need to be highlighted 

includes an update of security tools to the latest version, 

a variable file size for the purpose of file transfer and 

incorporating functionalities like voice communication 

or live chatting. 

Moreover, it would be beneficial if we can have a 

trusted group feature where the member only need a 

single username and password when communicating 

with any user within the group. In making the 

application more secure, we should also offer different 

authentication and encryption algorithms to be chosen by 

users. Whenever possible, key size should be allowed to 

be negotiated manually by the users. 



Mohamad Afendee Mohamed et al. / Journal of Computer Science 2015, 11 (5): 723.729 

DOI: 10.3844/jcssp.2015.723.729 

 

729 

With large migration from PC based to mobile based 

application, we could also use phone number for device 

identity as that found in Whatapps application. 

Acknowledgement 

The authors wish to thank anonymous reviewers for 

their valuable comments and insights to improve the 

quality of this paper. 

Funding Information 

The authors have not received any funding 

corresponding to this research. 

Author’s Contributions 

All authors equally contributed in this work. 

Ethics 

This material in this article is original and has not 

been published elsewhere; all authors declare that there 

is no conflicts of interest. 

References 

Al-Riyami, S.S. and K.G. Paterson, 2003. Certificateless 

public key cryptography. Proceedings of the 9th 

International Conference on the Theory and 

Application of Cryptology and Information Security, 

Nov. 30-Dec. 4, Springer Berlin Heidelberg, Taiwan, 

pp: 452-473. DOI: 10.1007/978-3-540-40061-5_29 

Azab, A., P. Watters and R. Layton, 2012. 

Characterising Network Traffic for Skype 

Forensics. Proceedings of the 3rd Cybercrime and 

Trustworthy Computing Workshop, Oct. 29-30, 

IEEE Xplore Press, Ballarat, pp: 19-27.  

DOI: 10.1109/CTC.2012.14 

Bardis, N.G. and K. Ntaikos, 2008. Design of a secure 

chat application based on AES cryptographic 

algorithm and key management. Proceedings of the 

10th WSEAS International Conference on 

Mathematical Methods, Computational Techniques 

and Intelligent Systems, (TIS’ 08), ACM, USA, pp: 

486-491. 

 

 

 

 

 

 

 

 

 

 

Baset, S.A. and H.G. Schulzrinne, 2006. An analysis of the 

skype peer-to-peer internet telephony protocol. 

Proceedings of the 25th IEEE International Conference 

on Computer Communications, (CCC’ 06), IEEE 

Xplore Press, Spain, pp: 1-11.  

DOI: 10.1109/INFOCOM.2006.312 

Daswani, N., H. Garcia-Molina and B. Yang, 2003. 

Open problems in data-sharing peer-to-peer systems. 

Proceedings of the 9th International Conference 

Siena, Jan.8-10, Springer, Italy, pp: 1-15.  

DOI: 10.1007/3-540-36285-1_1 

Eberspächer, J. and R. Schollmeier, 2005. First and 

second generation of peer-to-peer systems. Peer-to-

Peer Syst. Appl., 3485: 35-56.  

DOI: 10.1007/11530657_5 

Kundu, A., 2012. Decentralised indexed based peer to 

peer chat system. Proceedings of the International 

Conference on Informatics, Electronics and Vision, 

May 18-19, Dhaka, IEEE Xplore Press, pp: 416-419. 

DOI: 10.1109/ICIEV.2012.6317378 

Li, Z., X. Xu, L. Shi, J. Liu and C. Liang, 2009. 

Authentication in peer-to-peer network: Survey and 

research directions. Proceedings of the 3rd 

International Conference on Network and System 

Security, Oct. 19-21, IEEE Xplore Press, Gold 

Coast, pp: 115-122. DOI: 10.1109/NSS.2009.30 

Michail, H., A. Milidonis, A. Kakarountas and C. 

Goutis, 2005. Novel high throughput 

implementation of SHA-256 hash function through 

pre-computation technique. Proceedings of the 12th 

IEEE International Conference on Electronics, 

Circuits and Systems, Dec. 11-14, IEEE Xplore 

Press, Gammarth, pp: 1-4. 

DOI: 10.1109/ICECS.2005.4633433 

Vestola, M., 2010. Security issues in structured P2P 

overlay networks. Helsinki University of 

Technology. 

Xu, Z.B. and Z.W. Li, 2010. Efficient and secure 

certificateless authentication and key agreement 

protocol for hybrid P2P Network. Proceedings of the 

2nd IEEE International Conference on Information 

Management and Engineering, Apr. 16-18, IEEE 

Xplore Press, Chengdu, pp: 272-276. 

DOI: 10.1109/ICIME.2010.5477831 


