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Abstract: Optimization methods commonly are designed for solving the 
optimization problems. Local search algorithms are optimization method, 
which are good candidate in exploiting the search space. However, most of 
them need parameter tuning and incapable of escaping from local optima. 
This work proposes non-parametric Acceptance Criterion (AC) that not 
relies on user-defined, which motivate to propose an Adaptive Acceptance 
Criterion (AAC). AC accepts a little worse solution based on comparing the 
candidate and best solutions found values to a stored value. The value is 
stored based on the lowest value of comparing the candidate and best 
solution found, when a new best solution found. AAC adaptively escape 
from local optima by employing a similar diversification idea of a previous 
proposed (ARDA) algorithm. In AAC, an estimated value added to the 
threshold (when the search is idle) to increase the search exploration. The 
estimated value is generated based on the frequency of the solutions quality 
differences, which are stored in an array. The progress of the search 
diversity is governed by the stored value. Six medical benchmark datasets 
for clustering problem (which are available in UCI Machine Learning 
Repository) and eleven benchmark datasets for university course 
timetabling problems (Socha benchmark datasets) are used as test domains. 
In order to evaluate the effectiveness of the propose AAC, comparison 
made between AC, AAC and other approaches drawn from the scientific 
literature. Results indicate that, AAC algorithm is able to produce good 
quality solutions which are comparable to other approaches in the literature.  
 

Keywords: Local Search Algorithms, Adaptive Acceptance Criterion, 

Medical Clustering Problems, Multi K-Means, Course Timetabling Problem  

 

Introduction 

In optimization problems, there are various 

approaches inspired from a number of scientific 

disciplines like artificial intelligence, computational 

intelligence and operations research (Tripathy, 1980) in 

solving different optimization problems (i.e., scheduling 

and clustering). These approaches are classified into 

several categorizes (i.e. sequential, cluster, generalized 

search (meta-heuristic) and constraint-based methods) 

(Carter and Laporte, 1998), which re-categorized in 

different categorizes (Lewis, 2008).  

However, some of these algorithms are capable of 

producing good quality solutions and some perform 

poorly. Moreover, they need investigation to tune their 

parameters. Meanwhile, the successful methods usually 

maintain adaptive criterion, intelligent neigh borhoods 

selection and hybridization.  

In recent years, the researchers investigate the 
approaches toward enhancing the performance of the 
previous methods in the literature by hybridizing 
different acceptance criteria, which produce a complex 
methods for solving the optimization problems and 
needs more parameter tuning. The complexity of the 
problems needs to finding simple methods which 
employs an acceptance criterion that not relies on user-
defined (non-parameterized acceptance criterion), or find 
a mechanism that intensify and diversify the search to 
produce good quality solutions and may adaptively get 
out from local optima. 

Local Search (LS) Method is a simple meta-heuristics 

approaches widely used for solving the optimization 

problems by searching from current solution to its 

neighbor solutions (Pirlot, 1996). LS use the single based 

for solving computationally hard optimization problems. 

LS can be used for maximizing or minimizing the 
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solution quality (Schaerf, 1999). LS consist of three 

important entities, the search space, neighborhood 

relation and the objective function (which evaluates the 

solution quality) (Schaerf, 1999).  

The strength of the LS algorithm is in exploiting the 
search space (or the intensification process) (Ayvaz et al., 

2012). However, the disadvantage of the LS approaches 
(Ayvaz et al., 2012) and the descent heuristic techniques 
(Schaerf, 1999) is that they are incapable of escaping 
local optima (minima), which is the strength of the 
population based approaches (Ayvaz et al., 2012). 
However, the disadvantage of the LS approaches is 

referring to their acceptance criterions, which not 
employ an adaptive mechanism to escape from local 
optima and almost of them needs to tune their 
parameters. Therefore, in this study, non-parametric 
Acceptance Criterion (AC) is proposed for optimization 
problems to overcome the disadvantage of the LS h 

approaches in tuning the parameters, which motivates to 
increase the diversification strategy (or exploring the 
search space) by proposing an Adaptive Acceptance 
Criterion (AAC) to overcome the disadvantage of the LS 
approaches in their incapability of escaping from the 
local optima. AC acceptance criterion relies on the 

comparison between the candidate and best solutions with 
stored value. The stored value generated based on an 
improvement on the best solution. AAC employ a similar 
idea of the diversification in a previous proposed 
algorithm, which add an estimated value to the threshold 
(when the search idle) to increase the diversification. The 

estimated value is generated based on the repetition of the 
solutions quality differences that are stored in an array. 

The aim of this work is to propose an Adaptive 

Acceptance Criterion (AAC) for better diversification 

strategy for the optimization problems in order to 

produce a good solution quality.  

Two difference test domains are used (i.e. clustering 

and timetabling problems). The first test domain is a 

medical clustering problem, which is partitioning a set of 

objects into a number of clusters of similar characteristic 

(Brucker, 1978). A cluster is a collection of similar 

objects and dissimilar to the other objects in other 

clusters (Brucker, 1978). The similarity of a cluster is 

classified based on certain object function (or distance 

function) (Saha et al., 2010). Partitioning a set of objects 

into two or more clusters is an NP-hard problem for it is 

difficulty in finding an optimal partition in reasonable 

time (Dasgupta and Freund, 2009). Finding a good 

clustering partitions or near to optimal are depends on 

the problem representation and the methodology to 

partitions the clusters during the search (Jain et al., 1999). 

The methodologies (or algorithms) are used to generate 

the initial clusters partitions. The initial cluster partitions 

quality (which termed as the minimal distance value) is 

calculated by using a distance function. In clustering 

problem, there are a numerous approaches used to 

generate the initial cluster partitions (or minimal distance 

value) (Holland, 1975) such as, Multi K-Means 

algorithm (Davidson and Satyanarayana, 2003), Fuzzy 

C-Means algorithm (Hong, 2006) and others (Berry and 

Linoff, 1997). Then, the minimal distance value 

iteratively improve by any algorithm (such as local 

search algorithms) to produce good quality clusters. The 

second test domain is the university course timetabling 

problems, which involves assigning a set of courses 

(events) and students to a fixed number of rooms and 

timeslots subject to a variety of constraints (Petrovic and 

Burke, 2004). Constraints in a timetabling problem can 

be classified as hard and soft constraints (Petrovic and 

Burke, 2004). The goal of solving timetabling problems 

is to satisfy all the hard constraints and attempt to 

accommodate the soft constraints as much as possible (in 

order to produce a good-quality timetable). All hard 

constraints must be satisfied in order to obtain a feasible 

timetable, whilst soft constraints can be accommodate 

and violated if necessary, where each violated constraint 

is penalized. The smaller value of penalizing overall 

penalty values is a better quality of the timetable. 

University course timetabling problems have been 

classified as an NP-hard problem; therefore it is difficult 

(in general) to find an optimal solution (for larger size 

instances) in a reasonable time (Schaerf, 1999). Finding 

good quality solutions to these problems be subject to 

the approach used and the problem representation 

employed during the search (Schaerf, 1999). 

In recent years there are several approaches (or 
algorithms) used in both clustering and university 
timetabling problems to improve the solution quality. 
However, both Simulated Annealing (SA) (Kittaneh et al., 
2012; Abuhamdah and Ayob, 2009) and Great Deluge 

algorithm (GD) (Abuhamdah and Ayob, 2009; 
Abuhamdah, 2012) are applied in the both test domain 
(i.e. medical clustering and university course 
timetabling problems), in addition that, they are LS 
methods widely used for their good performance. 

Therefore, in order to evaluate the performance of AAC 
algorithm, six benchmark datasets for medical 
clustering problems (which available in UCI Machine 
Learning Repository) and eleven benchmark datasets 
for university course timetabling (Socha benchmark 
datasets) are used, to compare the performance between 

AC, AAC, SA, GD and other approaches drawn from 
the scientific literature. Results demonstrate that AAC 
is able to produce statistically significantly higher 
quality solutions, outperforming many other LS 
approaches like SA and GD and obtain good quality 
solutions with other approaches on both domains (the 

medical clustering and course timetabling) datasets 
performances in line with other researchers. 

This paper is structured as follows: the problem 

description is presented in section 2. Section 3 describes 

the methodology. AAC algorithm is presented in section 
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4. section 5 discusses the experimental results. Finally, 

section 6 presents the conclusion. 

Problem Description 

In this study, two problem domains are used. The 
first problem domain is a medical clustering problem 
described in section 2.1, while the second problem 
domain is university course timetabling problem 
described in section 2.2. 

Medical Clustering Problem  

In this problem domain, six benchmark datasets are used 
tackle the medical clustering problems that denoted for 
research purpose, which available in UCI machine learning 
repository (http://archive.ics.uci.edu/ml/index.html). These 
datasets are information about the diseases and were 
collected from real infected patients. These datasets are 
chosen with difference number of patterns and different 
complexity as summarized in Table 1. Each dataset is 
available with a fixed number of clusters for research 
purpose. Note that, Dataset 1 is Haberman’s Survival 
Database (H.S), Dataset 2 is BUPA Liver Disorders 
Database (B.L.D), Dataset 3 is Pima Indian Diabetes 
Database (P.I.D), Dataset 4 is Wisconsin Breast Cancer 
Database (B.C), Dataset 5 is Thyroid gland data Disease 
Database (T.D) and Dataset 6 is Lung Cancer Database 
(L.C). For example in Table 1, the dataset number 6 is 
Lung Cancer Database (L.C) have 56 attributes with 32 
integer instances and categorized as three clusters in the 
initial clusters partition, the first cluster takes 9 
instances, the second cluster takes 13 instances and the 
third cluster takes 10 instances.  

The initial cluster quality for each dataset can be 

evaluated by using a distance function to calculate the 

minimal distance value. The distance function value can 

evaluate the algorithm performance (Maulik and 

Bandyopadhyay, 2000). Where, the smallest value indicates 

better clusters quality (or minimal distance value). 
Euclidean Distance as illustrated in Equation 1 

(Wang, 2007) is a distance function widely used for 
calculating the minimal distance value, where it 
performs well when the clusters are isolated and compact 
(Zhang, 2001). For example, assume there is a dataset X 
= {x1, x2,… xn} with n objects and we need to cluster it 
into K number of clusters, where i and j are two of n-
dimensional data objects: 
 

( )
n

2

i j

i 1

d(i, j) x x
=

= −∑  (1) 

 

In this study, there are two different ways for calculating 

the minimal distance values are used, as follows: 

Between Objects Distance Function Value 

In this calculation, the minimal distance value is 
calculated based on distance between each data pattern 

and the pattern next to it. The idea of this calculation is 
to minimize the distance between the data patterns 
themselves in the same cluster (Wang, 2007). 

Between Centers Distance Function Value 

In this calculation, the minimal distance value is 

calculated based on the distance between each data 

pattern and their cluster center that it belongs to it 

(Wang, 2007), where a new center is calculated. The 

idea of this calculation is minimize the distance between 

the data patterns and their centers. 

University Course Timetabling Problem  

In this problem domain, eleven standard benchmark 
datasets were introduced by Socha et al. (2002) are used, 
which seek to optimize the students’ satisfaction for the 
university course timetabling problem. The problem 
consists of: 
 
• A set of Rooms R in which events can take place 
• A set of Events (courses) E to be scheduled in 45 

timeslots (5 days of 9 hours each and one hour for 
each timeslot) 

• A set of features F characterize the rooms 
• A set of Students S who attend the events 
 

These datasets are categorized into three groups: 

small (i.e. small 1, small 2, small 3, small 4 and small 5), 

medium (i.e. medium 1, medium 2, medium 3, medium 4 

and medium 5) and large (large) datasets (see Table 2 for 

more detailed description). 

Table 2 also shows the number of students, events, 

rooms and features as well as the conflict density (CD) for 

each dataset (representing the complexity), an 

approximation of the number of students enrolled in each 

event (Students/ Events) and an approximation of the 

number of available rooms for each event (Rooms/Events) 

which are calculated as in (Chiarandini et al., 2006). 

These datasets have three hard constraints (H1, H2 and 

H3) and three soft constraints (S1, S2 and S3), as follows: 

Hard Constraints 

H1: No student attends more than one event at the 
same time 

H2: The room has to be large enough for all the attending 
students and has all the features required by the event 

H3: Only one event takes place in each room in any 
timeslot 

 

Soft Constraints 

S1: A student should not have a class in the last timeslot 

of the day. 

S2: A student should not have more than two classes 

consecutively. 

S3: A student should not have a single class on a day. 
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Table 1. Six Benchmark datasets for medical clustering problems 

Dataset number Dataset name No. of attributes No. of instances Attributes type No. of clusters Clusters distribution 

 H.S 4 306 Integer 2 225 and 81 

 B.L.D 7 345 integer, categorical and real 2 145 and 200 

 P.I.D 8 768 integer and real 2 500 and 268 
 B.C 10 699 Integers 3 123, 240 and 363 

 T.D 21 215 categorical and real 3 150, 30 and 35 

 L.C 56 32 Integers 3 9, 13 and 10 

 
Table 2. The course timetabling datasets 

Dataset # Students # Events # Rooms # Features CD Students/Events Rooms/Events 

Small 1 80 100 5 5 10.96 4.98 0.82 

Small 2 80 100 5 5 13.92 5.36 0.79 

Small 3 80 100 5 5 9.71 4.65 1.00 

Small 4 80 100 5 5 7.16 3.45 1.39 

Small 5 80 100 5 5 15.10 5.99 1.17 

Medium 1 200 400 10 5 37.38 8.85 2.23 

Medium 2 200 400 10 5 37.66 8.84 1.91 

Medium 3 200 400 10 5 40.44 8.85 1.91 

Medium 4 200 400 10 5 37.50 8.81 1.88 

Medium 5 200 400 10 5 28.27 8.66 1.37 

Large 400 400 10 10 45.57 8.92 0.76 

 
The timetable quality is measured based on the number 

of the soft constraint violations (penalty cost). Each 

violation of a soft constraint will be penalized ‘1’ for each 

student who is involved in this situation (Mcmullan, 

2007). All hard constraints must be satisfied since we only 

deal with feasible solutions, which is usually the case for 

the majority of research in this domain. 

Methodology 

In this study, non-parametric Acceptance Criterion 

(AC) algorithm is propose, which motivate to propose an 

Adaptive Acceptance Criterion (AAC) algorithm for the 

optimization problems. AC and AAC starts with 

generating an initial solution (or initial clusters partition) 

and iteratively explores its neighbor solutions (other 

solution), looking for a better one by any algorithm. The 

neighbor solution is accomplished by restructure the 

current solution (or partition) using some neighborhood 

structures. The initial solution for the medical clustering 

problem is presented in section 3.1 and the neighborhood 

structures are described in 3.1.1. Where, the initial 

solution for the university course timetabling problem is 

presented in section 3.2 and the neighborhood structures 

are described in 3.2.1. 

Initial Solution for Medical Clustering Problem 

In this study, Multi K-Meansalgorithm (Holland, 

1975) is used as in (Kittaneh et al., 2012; Abuhamdah, 

2012) to generate the initial solution partition for 

medical clustering problem. Multi K-Means algorithm 

structure is similar to K-Meansalgorithm structure 

(which is well known by its simplicity to deal with a 

huge amount of data patterns). K-Means aims to 

minimize the squared error established from Euclidean 

distance (Equation (1)), where the algorithm takes X as 

input parameters and partitions the set of n objects into K 

clusters. The basic difference between them is that, in K-

Means a random cluster centers (centroids) is defined, 

whilst in Multi K-Means, we initially define a random 

cluster centers (centroids), then the final cluster centers 

is determined after the K-Means is restarted for 50 times 

as recommended (Holland, 1975) by re-computing the 

centroids vj of cluster j as illustrated in Equation 2: 
 

ic

j ij

i 1i

1
v x

C =

= ∑   (2) 

 

Neighborhood Structures for Medical Clustering 

Problem 

Two neighborhood structures (i.e., N1and N2) are 

used (which have been widely used in the literature) as 

in (Kittaneh et al., 2012; Abuhamdah, 2012). The 

neighborhood structures are: 
 

• N1: Randomly select one pattern from each cluster 

to swap their data with other pattern in other 

clusters.  

• N2: Randomly select two different patterns from the 

same cluster and swap their data. 
  

Initial Solution for University Course Timetabling 

Problem  

In this study, the initial solution generated by a 
constructive heuristic that was proposed in (Mcmullan, 
2007) for the course timetabling problems. There are 
three phases in the constructive heuristic as follow: 

largest degree heuristic (Landa-Silva and Obit, 2008), 
neighborhood search and tabu search. The constructive 
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heuristic starts with an empty timetable and 
consecutively invokes three phases to generate a 
feasible timetable. 

 In the first phase, all unscheduled courses are sorted 

depend on the number of students conflict with other 

courses. Then, the student who has the highest number of 

conflicts compared to the other selected courses is 

selected first. The selected course may assign to any 

random feasible timeslot-room. However, if cannot find 

a feasible room for this course, it will be assigned to any 

room. If all the courses have been scheduled to feasible 

timeslot-rooms, we ignore phases 2 and 3. Otherwise, 

phases 2 and 3 are invoked to achieve the feasibility.  

Phase 2, employs a simple decent algorithm to reduce 

the hard constraint violations. The neighborhood solution 

is generated by either moving one course from its current 

timeslot-room into another random timeslot-room, or it 

randomly selects two courses and swaps their rooms and 

timeslots. In both cases, the new solution is accepted if 

the move does not violate any hard constraints and the 

quality of the generated timetable is better than the 

previous solution quality in terms of hard constraints 

violation. Phase 2 is terminated after ten non-improving 

iterations. If the solution is feasible, we ignore phase 3, 

otherwise, phase 3 is invoked.  

Phase 3, employs a tabu search algorithm that explores 

neighboring solutions in a similar way to phase 2, but it 

also maintains a tabu list to prevent certain moves being 

made for a certain number of iterations. The size of the 

tabu list is calculated by tl = rand(10)+δ * nc, where 

rand(10) is a random number between 0 and 10, nc is the 

number of events that violate the hard constraints and δ is 

a constant which is set to 0.6 (Mcmullan, 2007). This 

phase will stop after 1000 non-improving iterations. If the 

generated solution is infeasible, re-call the constructive 

heuristic to generate a new solution from scratch until a 

feasible solution is found.  

Neighborhood Structures for University Course 

Timetabling Problem 

Two neighborhood structures (i.e., NS1and NS2) are 

used (which have been widely used in the literature) as 

in (Abuhamdah and Ayob, 2009). The neighborhood 

structures are: 
 

• NS1: Randomly select two courses and swap their 

timeslots (and rooms if feasible) 

• NS2: Randomly select a course, feasible timeslot and 

feasible room and move the course to the new timeslot 

(and move the course to the new room if necessary) 
 

AAC Algorithm 

This work is motivated by the strength of local based 
algorithms in exploiting the search space (intensification 
process) (Ayvaz et al., 2012). However, the disadvantage 

of the local search approaches (Ayvaz et al., 2012) and 
the descent heuristic techniques (Schaerf, 1999) is in 
tuning the parameters and incapable of escaping from 
local optima. Therefore, in this study, a non-parametric 

Acceptance Criterion (AC) algorithm is proposed to 
intensify the search and overcome the limitation of the 
parameter tuning, which motivates to propose an 
Adaptive Acceptance Criterion (AAC) algorithm to 
overcome the other limitation by increase the search 
exploration (or the diversification mechanism). Note 

that, the discussion bellow is for minimization on the 
clustering problem domain, which is similar to the 
minimization process of the university course 
timetabling problem domain (except in the initial 
solution, neighborhood structures and the terms).  

AC is a simple mechanism based on stored value that 
may able to control the diversification with good quality 
results and produce a consistent result for different 
problems. AC starts with a given Multi K-Means 
partitions i.e., the initial solution (Sinitial) is generated by 
Multi K-Means algorithm and then iteratively improve 
the constructed solution by generating a neighbor 
solution (candidate solution) by using neighborhood 
structure(s). AC always accept the generated candidate 
(new) solution (Sworking) if the quality is better (less) than 
the best solution (SArrange) value, or can probably accept a 
little worse solution by an adaptive acceptance criterion 
(AC objective function). AC Acceptance Criterion (AC) 
as illustrated in Equation 3, adaptively accepts the worse 
solution if AC value is greater than or equal to the stored 
value (SV, which is stored based or the best and candidate 
solutions), otherwise Sworking will be rejected. This process 
will be repeated until the stopping condition is met: 
 

( )Arrange workingAC = S / S   (3) 

 
SV value is initially stored when a new best solution 

found using AC acceptance criterion (see Equation (3)) 

and later when there is any new best solution found then, 

SV will be updated with the lowest value using AC 

acceptance criterion (which control the diversification 

with a little worse solution). For example, we initially 

calculate SV by the first improved value using AC 

criterion. Later on, when there is any enhancement for 

best solution found SArrange, we re-compute AC for the 

next iterations, however, if the computed AC is lowest 

than the SV value, then SV will be updated with AC value 

and so on. The process of updating SV is governed to 

increase a little diversification based on the solution 

improvement. In other words, when SV value is smaller 

or equal to AC value, then the candidate solution 

accepted for the next iteration. Please note that, in case 

of accepted solutions by the best solution found, then in 

Equation 3, we need to switch between solutions (i.e., 

AC=
 
Sworking / SArrange ) as the SArrange is lowest than the 

new best solution Sworking. However, initialize SV value 
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can be done in two ways, the first based on the first 

improvement as discussed and the second, we can 

maximize the problem for some iteration to identify SV.  
Figure 1 show the pseudo code for the AC approach, 

where the lists of notations that are used in Fig. 1 (AC 

algorithm) is for clustering problem. Table 3 differentiate 

between the notation used in the clustering problem 

domain and the notation used in university course 

timetabling problem domain. 

Figure 1 shows that, AC starts by initializing SV equal 

to zero and the only required parameter setting, the 

stopping condition (Niterations), where the initial solution is 

generated using Multi K-Means (Sinitial) as in Step-1. 

In the improvement phase (Step-2), we generate some 

candidate solutions (in this case, five candidate solutions 

are generated) as in (Kittaneh et al., 2012; Abuhamdah, 

2012) for each neighborhood structure (i.e., N1 and N2) 

and the best candidate solution is selected as the candidate 

solution (Sworking) as in Step-2.1. Later on, there are two 

cases to evaluate the candidate solution as follows: 

Good Solution 

If f(Sworking) is better than f(SArrange), then we update SV 

value by the computing AC (i.e. AC=Sworking / SArrange) 

value in case of SV equal to zero or in case of SV is greater 

than AC, otherwise SV value not updated. After, Sworking is 

accepted as a current solution (i.e. Ssource ← Sworking) and 

the best solution is updated (i.e. SArrange ← Sworking) as in 

Step-2.2. Note that, we have switch the solutions in 

Equation 3 as Sworking is a better solution than SArrange. 

Little Worse or Bad Solution 

The quality between Sworking and SArrange is compared by 

computing AC value as in Equation 3, (i.e., AC= SArrange / 

Sworking )) in case if SV initialized with a value (not equal to 

zero). If AC is greater than or equal to SV then Sworking is 

accepted and the current solution is updated (i.e. Ssource ← 

Sworking). Otherwise, Sworking will be rejected.  

Otherwise, the process of the step 2 continues until the 

stopping condition is met (i.e. Iterations> Niterations). 

However, if the stopping condition is met, then the 

termination phase (Step-3) is active to return the best 

solution found SArrange (or the best minimal distance). 

However, the preliminary experiments on AC 

algorithm idea show that, AC algorithm can easily 

trapped in local optima when we are dealing with small 

datasets with zero optimal solution. For example, when 

SArrange is equal to 2 and Sworking is equal to 1 in case of 

better solution, then AC value is 0.5 and SV is 0.5, where 

in the next iteration the candidate solution will not 

accepted as a little worse solution if it is greater than 2 

(as the new SArrange is 1 and SV is 0.5), but sometimes 

more worse solution can improve more, which motivates 

to increase the diversification strategy in AC. There are 

many strategy used for diversification, however, the 

Adaptive Randomized Descent Algorithm (ARDA) 

which was proposed by Abuhamdah and Ayob (2010) 

employ an adaptive mechanism proposed for their 

acceptance criterion in similar optimization (or 

minimization) problem which allow some slightly worse 

solution to be accepted and helps to escape from a local 

optima. The idea in ARDA motivates to utilize it in AC 

and termed as AAC algorithm. 

ARDA mechanism can adaptively attempt to escape 
from local optima by intelligently updating the threshold 

value when the search traps in local optima. This is done 

by estimating an appropriate threshold value based on 

the search history. ARDA mechanism based on array 

(LEV) of estimated values EV with their frequencies. 

These estimated values stored based on the difference 

between the new and old solutions found (i.e., EV= 

f(Sworking) – f(SArrange)), where when a new EV value found 

and it is different with the other EV values in the array, is 

then the array updated by adding the new EV value with 

frequency (or the number of repetition) is equal to one. 

In each improvement on the best solution, the new EV 

value is added and if the EV value is already in the array, 

then we add one to the frequency of EV value. However, 

in each time we update the array, then we rearrange the 

array in descending order based on their frequency value, 

in which the first value in the array is the value with the 

highest frequency value. ARDA mechanism starts when 

a counter (Cidle-iterations) of the idle improvement rate 

(idle-iterations) is met, then update the threshold value 

as their acceptance criterion by adding the value of the 

highest frequency value to their threshold value. 

However, AC algorithm threshold value is based on the 

solutions quality, therefore, we use ARDA mechanism to 

add the value for the best solution found f(SArrange) in AC 

acceptance criterion and termed as AAC algorithm. For 

example, when SArrange is equal to 2 and Sworking is equal to 

1 in case of better solution, then AC value is 0.5 and SV 

is 0.5, where in the next iteration the candidate solution 

will not accept the Sworking solution if it is greater than 2 

(as the new SArrange is 1 and SV is 0.5). However, if there 

the idle of improvement rates idle-iterations is met, then 

ARDA mechanism works to add EV value (e.g. EV is 

equal to 2) of the highest frequency to the SArrange 

solution for increase the diversification in case AC 

calculation for the worse solution, in which AC value 

will be equal to 1.5 (i.e., AC= (1+2) / 2 )). Note that, the 

case discussed above is in case of the near optimal 

solution, where if it is not near optimal, so adding EV 

will increase little diversification. Figure 2 shows the 

pseudo code for the extensions of AC approach (AAC), 

where the combination between Fig. 1 and 2 and 

eliminating the duplication illustrate AAC algorithm. 

As in Fig.2, AAC starts by initializing the idle 

improvement iterations (idle-iterations), Estimated 

Value (EV) and the array (LEV) of the estimated values 

equal to zero. 
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Table 3. The notations for clustering and university course timetabling datasets 
Notation in Clustering Notation in Course timetabling Description 

Sinitial Sinitial initial solution 

f(Sinitial) f(Sinitial) quality of initial solution 

SArrange Sbest best solution found 

f(SArrange) f(Sbest) the quality of best solution found 

Ssource So the current solution 

f(Ssource) f(So) the quality of the current solution 

Sworking S* the candidate solution 

f(Sworking) f(S*) the quality of the candidate solution 

Niterations Niterations number of iterations 

Iterations Iterations iteration counter 

AC AC acceptance criterion (objective function) 

SV                  SV Stored value 

LEV LEV array of the estimated values 

idle-iterations idle-iterations number of the idle iterations 

Cidle-iterations Cidle-iterations counter for the idle iterations 

EV EV estimated value 

 

 

 
 
Fig. 1. Pseudo code for Acceptance Criterion Algorithm (AC) 

for optimization problems 

 

 

 
Fig. 2. Pseudo code for the Adaptive Acceptance Criterion 

Algorithm (AAC) that extend Fig. 1 to the optimization 

problems 
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In the improvement phase (Step-2), in case of the 
good solution accepted, set the counter for the idle 
iterations Cidle-iterations equal to zero, we calculate the 
estimated value (i.e. EV= f(SArrange)-f(Sworking)), updates 
the frequency of EV value in LEV or we added EV to LEV if 
it does not exist, rearrange the array LEV values in 
descending order based on their frequency or if the values 
are equivalence then rearrange the equivalence values in 
ascending order, then Sworking is accepted as a current 
solution (i.e. Ssource ← Sworking) and the best solution is 
updated (i.e., SArrange ← Sworking) as in Step-2.2. While, in 
case of little worse or bad solution accepted, nothing 
changed except if the worse solution rejected, then the 
counter for the idle iterations (Cidle-iterations) is added by 
one. Finally, in the additional idle iterations phase (Step-
3), the counter for the idle iterations (Cidle-iterations) is 
compared to the maximum number of idle iterations 
(idle-iterations) and if it is greater or equal (i.e., Cidle-

iterations>= idle-iterations), then EV is generated by the 
first value of LEV (as it has the highest frequency value), 
rotate left all elements in LEV to use the next value in the 
next idle phase in case of non-improvement, then 
recomputed AC by adding EV to the best solution found 
(i.e. AC=Sworking / (SArrange + EV)) and if accepted set the 
counter of the idle iterations to zero. Otherwise, the 
process continues as it is illustrated in Fig. 1. 

However, the limitation of AAC algorithm, that we 

added a new parameter (i.e. idle iterations, which is equal 

to 10 as in (Abuhamdah and Ayob, 2010), which need 

investigation for each problem, but it consider acceptable 

as it is the only parameter for the proposed AAC. 

Results 

In this study, AC and AAC algorithms are run 20 
times as in (Kittaneh et al., 2012; Abuhamdah, 2012) 
for, medical clustering problem by using 6 datasets that 
are available in the UCI machine learning repository 
(http://archive.ics.uci.edu/ml/index.html). Also, AC and 
AAC algorithms are run 11 times as in (Abuhamdah and 
Ayob, 2009) for, university course timetabling problem 
by using 11 datasets (Socha benchmark datasets). In both 
problem domains, the algorithms run on a PC with an 
Intel dual core 1.8 MHz, 2 GB RAM and were 
programmed for clustering using Java language as in 
(Kittaneh et al., 2012; Abuhamdah, 2012) and for course 
timetabling using Matlab as in (Abuhamdah and Ayob, 
2009). There is only one parameter is used in the AC 
algorithms for the stopping conditions (Niterations) which is 
equal to 100,000 iterations for clustering as in SA with 
prolonging the search and termed as IISA (Kittaneh et al., 
2012) and GD (Abuhamdah, 2012), where for course 
timetabling is equal to 200,000 iterations as in SA and GD 
(Abuhamdah and Ayob, 2009). In addition, there is 
another parameter is used in AAC for the number of idle 
iterations (idle-iterations) which is equal to 600 for 
clustering as in (Abuhamdah, 2012) and 10 for 
timetabling as in (Abuhamdah and Ayob, 2010). Table 4 

shows the quality of the initial solution (or clusters 
partitions) obtained by Multi K-Means algorithm for 
each dataset using two calculations ways of the 6 
datasets. Where, Table 5 shows the quality of the initial 
solution (or timetable) obtained by constructive heuristics 
(Mcmullan, 2007; Landa-Silva and Obit, 2008) for each 
dataset of the 11 datasets. 

In order to investigate the performance of AC and 

AAC algorithms, Table 6 shows the comparison between 

AC and AAC algorithms using the between objects 

calculation. Tables 6-14, illustrate the best minimal 

distance quality (fmin), the average score (favg) and the 

standard deviation (σ) for the 20 runs. In each table, the 

best results (fmin) are presented in bold.  

Results in Table 6 indicates that, AAC algorithm is 

able to produce good quality solution outperformed AC 

algorithm solutions in all datasets referring to the best 

minimal distance fmin, the average score favg and the 

standard deviation σ (except in B.L.D, P.I.D and L.C 

datasets, AC algorithm obtained better standard deviation 

than AAC algorithm, in addition to the average score in 

L.C dataset). Table 7 shows the comparison between 

AAC, IISA and GD algorithms using the between objects 

calculation for the six medical clustering datasets. 

Table 7 shows that, AAC algorithm also is 

outperformed IISA and GD algorithms in all datasets 

referring to the best minimal distance fmin, the average 

score favg and the standard deviation σ (where the 

standard deviation for GD is not known). Table 8 shows 

the comparison between AAC approach and other local 

hybrid meta-heuristic searches in the literature using the 

between objects calculation. 

According to Table 8, AAC algorithm is able to 

produce high quality solution outperformed IISA 

(Kittaneh et al., 2012), MGD (Abuhamdah, 2012), ISA-

MGD (Abuhamdah et al., 2012) and AGD (Abuhamdah 

et al., 2014) algorithms in all datasets referring to the 

fmin and favg (except in B.C dataset, MGD algorithm 

obtained same result with AAC algorithm). Figure 3 

shows a 3D scatter graph for Multi K-Means, AC and 

AAC algorithms over H.S dataset using between objects 

calculation. H.S dataset has two clusters represented by 

two colors (red and green). 

Partitions in between Objects Calculation 

Figure 3a show that, the initial minimal distance 

obtained by Multi K-Means is 2463.972. Where in Fig. 

3b, the best minimal distance obtained by AAC 

algorithm is equal to 947.64. However, in Fig. 3; the best 

minimal distance obtained by AAC algorithm (i.e., 

947.64) is slightly different from AC algorithm (i.e., 

987.68) to show their differences, therefore AC 

algorithm graph not included. 
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 (a) (b) 
 
Fig. 3. Scatter graph for Multi K-Means and AAC algorithm over H.S dataset using between objects calculation. Partitions in 

between Objects Calculation (a) The Initial Minimal Distance Found by Multi K-Means is 2463.972 (b) The Best Minimal 

Distance by AAC is 947.64 
 
Table 4. Initial solution quality for each dataset of the medical clustering using two calculations 

Datasets Initial solution quality for the between objects Initial solution quality for the between centres 

H.S 2463.97 3626.530 

B.L.D 17258.71 22646.890 

P.I.D 100880.39 102398.583 

B.C 6379.69 5360.710 

T.D 3178.71 2459.620 

L.C 182.57 168.520 

 
Table 5. Initial solution quality for each dataset of the 

university course timetabling 

Datasets Initial solution quality 

Small 1 301 

Small 2 332 

Small 3 463 

Small 4 342 

Small 5 312 

Medium 1 775 

Medium 2 834 

Medium 3 894 

Medium 4 953 

Medium 5 845 

large 1974 

 
Moreover, the (AC and AAC) algorithms 

investigated using the between centers calculation for 

the six medical clustering datasets as in Tables 9, 10 

and 11. Table 9 shows the comparison between AC 

and AAC algorithms; Table 10 shows the comparison 

between AAC, IISA and GD algorithms; and Table 11 

shows the comparison between AAC approach and 

other local hybrid meta-heuristic searches in the 

literature. 

Tables 9, 10 and 11 shows the comparison using the 
calculation of between centers, where the observation 

(Table 9) indicates that, AAC algorithm is outperformed 
AC algorithm in all datasets referring to the fmin and 
favg (except in L.C dataset they obtained same fmin and 
the favg for B.L.D and L.C datasets in AC algorithm is 
better than AAC algorithm), where σ in AC is better 
than AAC all datasets (except in B.L.D dataset). In 
addition, the observation (in Table 10) shows that, 
AAC algorithm also is outperformed IISA and GD 
algorithms in all datasets referring to the fmin, favg and 
σ (where in L.C dataset MGD is obtain same fmin in 
addition that in H.S and T.D datasets the σ for IISA is 
better than AAC and the σ for GD is not known). 
Where the comparison in Table 11 with the other 
approaches in the literature shows that, AAC algorithm 
is able to produce high quality solution outperformed 
IISA (Kittaneh et al., 2012), MGD (Abuhamdah, 2012) 
and ISA-MGD (Abuhamdah et al., 2012) and AGD 
(Abuhamdah et al., 2014) algorithms in all datasets 
referring to the fmin and favg (except in L.C dataset, 
MGD and AGD algorithms obtained same fmin).  

Partitions in between Centers Calculation 

Figure 4 shows a 3D scatter graph for Multi K-

Means, AC and AAC algorithms on over H.S dataset 

using for the between centers calculation. 
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 (a) (b) 

 
Fig. 4. Scatter graph for Multi K-Means and AAC algorithm over H.S dataset. Partitions in between centers calculation (a) The 

Initial Minimal Distance Distance Found by Multi K-Means (b) The Best Minimal by AAC is 2703.11 

 
Table 6. Results obtained by between objects calculation for AC and AAC algorithms out of 20 runs on six datasets 

 fmin  favg   Std. Dev. (σ) 

 ------------------------------ ------------------------------ -------------------------------- 

Dataset AC AAC AC AAC AC AAC 

H.S 987.68 947.64 1020.94 969.61 24.23 14.33 

B.L.D 5403.57 5352.12 5435.70 5429.16 25.92 34.08 

P.I.D 21434.00 21000.35 21707.73 21573.30 238.59 329.77 

B.C 1951.00 1937.00 1982.85 1949.00 36.40 13.01 

T.D 902.89 844.74 918.89 866.51 15.78 13.42 

L.C 157.80 157.62 158.68 158.90 0.59 0.67 

 
Table 7. Results obtained by between objects calculation for AAC, IISA (Kittaneh et al., 2012) and GD (Abuhamdah, 2012) 

algorithms out of 20 runs on six datasets 

 fmin   favg   Std. Dev. (σ) 

 ------------------------------------------- --------------------------------------------- ---------------------------------- 

Dataset AAC IISA GD AAC IISA GD AAC IISA GD 

H.S 947.64 987.77 1215.22 969.61 1049.03 1311.76 14.33 32.65 - 

B.L.D 5352.12 5771.59 6476.68 5429.16 6028.67 6745.21 34.08 140.29 - 

P.I.D 21000.35 24920.39 29311.15 21573.30 26038.86 32311.91 329.77 796.96 - 

B.C 1937.00 2338.00 2085.00 1949.00 2430.05 2192.70 13.01 52.17 - 

T.D 844.74 1228.80 973.44 866.51 1375.23 1055.68 13.42 70.08 - 

L.C 157.62 158.98 159.27 158.90 161.14 161.38 0.67 0.86 - 

 
Table 8. Comparison between AAC algorithm and other approaches in the literature using between objects calculation 

 20  Runs-Minimal Distance Calculated as between Objects 

 -------------------------------------------------------------------------------------------------------------------------------------------------- 

 AAC  IISA  MGD  ISA-MGD  AGD 

 ----------------------- -------------------------- ---------------------- ------------------------ --------------------------- 

Dataset fmin favg fmin favg fmin favg fmin favg fmin favg 

H.S 947.64 969.61 987.77 1049.03 1023.96 1069.57 1014.05 1043.21 1016.00 1044.53 

B.L.D 5352.12 5429.16 5771.59 6028.67 5509.21 5809.55 5466.33 5631.02 5483.19 5599.16 

P.I.D 21000.35 21573.30 24920.39 26038.86 23281.12 24239.71 22919.27 24118.18  23004.09 23897.48 

B.C 1937.00 1949.00 23380.00 2430.05 1937.00 2088.40 2090.61 2124.76 1937.00 1964.80 

T.D 844.74 866.51 1228.80 1375.23 893.33 946.69 892.57 929.28 898.97 919.92 

L.C 157.62 158.90 158.98 161.14 159.27 161.38 157.80 159.20 158.98 159.98 
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Table 9. Results obtained by between centers calculation for AC and AAC algorithms out of 20 runs on six datasets 
 fmin  favg   Std. Dev. (σ) 

 ----------------------------- --------------------------------- ------------------------------------- 

Dataset AC AAC AC AAC AC AAC 

H.S 2721.36 2703.11 2721.7700 2719.88 0.5700000 5.76000 

B.L.D 10498.90 10493.95 10708.6700 10722.59 296.8700000 293.31000 

P.I.D 48909.20 48851.62 54266.2900 54029.54 4830.1100000 4856.38000 

B.C 3007.32 2778.00 3029.1655 3012.35 31.5232438 60.92018 

T.D 2039.89 2028.27 2043.0300 2032.80 5.6400000 8.38000 

L.C 151.62 151.62 152.7400 152.89 0.9900000 1.09000 

 
Table 10. Results obtained by between centers calculation for AAC, IISA (Kittaneh et al., 2012) and GD (Abuhamdah, 2012) 

algorithms out of 20 runs on six datasets 

 fmin   favg   Std. Dev. (σ) 

 ------------------------------------------- ------------------------------------------ ----------------------------------- 

Dataset AAC IISA GD AAC IISA GD AAC IISA GD 

H.S 2703.11 2721.36 2721.36 2719.88 2722.00 2726.37 5.76000 0.60 - 

B.L.D 10493.95 10498.90 10498.90 10722.59 10855.71 10839.38 293.31000 354.91 - 

P.I.D 48851.62 48909.20 48909.20  54029.54 54751.22 56357.49 4856.38000 4889.73 - 

B.C 2778.00 2778.00 3014.72  3012.35 3104.40 3326.92 60.92018 304.30 - 

T.D 2028.27 2039.89 2039.89  2032.80 2054.09 2051.72 8.38000 4.85 - 

L.C 151.62 152.37 151.62  152.89 154.28 153.70 1.09000 1.30 - 

 
Table 11. Comparison between AAC algorithm and other approaches in the literature between centers calculation 

 20  Runs – Minimal Distance Calculated as between  Centers 

 ---------------------------------------------------------------------------------------------------------------------------------------- 

 AAC  IISA  MGD  ISA-MGD  AGD 

 ---------------------- --------------------- ------------------------ -------------------- --------------------- 

Dataset fmin favg fmin favg fmin favg fmin favg fmin favg 

H.S 2703.11 2719.88 2721.36 2722.00 2721.36 2721.594 2721.36 2730.16 2721.36 2721.594 

B.L.D 10493.95 10722.59 10498.90 10855.71 10498.90 10836.970 10498.90 10969.26 10498.90 10749.850 

P.I.D 48851.62 54029.54 48909.20 54751.22 48909.20 56159.740 48909.20 57098.70 48909.20 51248.780 

B.C 2778.00 3012.35 2778.00 3104.40 3014.72 3316.570 3007.32 3281.79 3010.70 3227.381 

T.D 2028.27 2032.80 2039.89 2054.09 2039.89 2047.040 2070.16 2079.52 2039.89 2046.090 

L.C 151.62 152.89 152.37 154.28 151.62 153.490 152.37 153.04 151.62 153.230 

 
Figure 4a shows, the initial minimal distance obtained by 
Multi K-Means is 2463.972. Where in Fig. 4b, the best 
minimal distance obtained by AAC algorithm is equal to 
947.64. Also, in Fig. 4; the best minimal distance 
obtained by AAC algorithm (i.e., 2703.11) is slightly 
different from AC algorithm (i.e., 2721.36) to show their 
differences, therefore AC algorithm graph not included. 

Furthermore, the (AC and AAC) algorithms 

investigated using the eleven university course 

timetabling problems as in Tables 12 to 14. Table 12 

shows the comparison between AC and AAC 

algorithms; Table 13 shows the comparison between 

AAC, SA and GD algorithms; and Table 14 shows the 

comparison between AAC approach and other local 

hybrid meta-heuristic searches in the literature. 
According to the results in Table 12, AAC algorithm 

is able to produce good results outperformed AC 
algorithm in all Medium and large datasets, where they 
obtain same best result in all the small datasets, in 
addition that AAC standard deviation for all the small 
and medium 2 datasets is better than AC algorithm. The 
results in Table 12 also show that, AAC average scores 

are better than AC. Where the comparison in Table 13 
indicates that, AAC outperformed SA and GD 
algorithms in all datasets; except in small 5 dataset they 
obtain the same best result, in addition that GD obtains 
same best result with AAC for small 1, 2 and 4 datasets. 
Table 13 also shows that SA and AAC obtained same σ, 
SA σ is better than AAC in Medium 5 dataset and GD σ 
is better than AAC in small 4 dataset. 

Table 14 shows that AAC algorithm is able to 

produce good quality solution are equivalence with some 

approaches (i.e., A1, A2…, etc) in the small datasets and 

comparable with other approaches (i.e., A1, A2,.., A26) 

in the literature in the other datasets. The best results for 

Medium 1, Medium 2 and Medium 3 datasets is obtained 

by Abuhamdah et al. (2013), and the best results for 

Medium 4 is obtained by Turabieh and Abdullah (2009), 

whilst, the best results for Medium 5 and large datasets 

is obtained by Turabieh et al. (2010).  

However, all these result are obtained with 

population based algorithms which makes the percentage 

deviation (∆ (%)) of AAC algorithm between 0.56 and 

1.16 is acceptable. 
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Table 12. Results for AC and AAC algorithms using the eleven datasets for course out of 11 runs on eleven datasets 

 fmin  favg   Std. Dev. (σ) 

 -------------------------- ---------------------------- --------------------------- 

Dataset AC AAC AC AAC AC AAC 

Small 1 0 0 1.09 0.63 1.22 0.81 

Small 2 0 0 2.09 0.73 1.51 1.01 

Small 3  0 0 1.45 1.18 1.21 1.17 

Small 4 0 0 1.18 1.09 0.75 0.70 

Small 5 0 0 1.00 0.64 1.18 0.81 

Medium 1 122 75 134.36 91.82 10.03 10.73 

Medium 2 114 61 124.90 70.18 8.77 6.43 

Medium 3 157 124 163.73 137.36 6.63 9.59 

Medium 4 108 69 112.91 74.27 4.78 5.16 

Medium 5 116 96 129.55 117.45 11.18 12.32 

large 724 634 740.82 660.27 13.56 20.86 
 
Table 13. Results for AAC, SA (Abuhamdah and Ayob, 2009) and GD (Abuhamdah, 2012) algorithms using the eleven datasets for 

course out of 11 runs on eleven datasets 
 fmin   favg   Std. Dev. (σ) 

 --------------------------- -------------------------------------- ------------------------------------ 
Dataset AAC SA GD AAC SA GD AAC SA GD 

Small 1 0 1 0 0.63 2.72 2.45 0.81 1.01 1.630 
Small 2 0 1 0 0.73 2.72 1.72 1.01 1.01 1.500 

Small 3 0 1 1 1.18 2.54 1.69 1.17 1.29 1.580 
Small 4 0 1 0 1.09 2.09 2.45 0.70 0.94 1.630 

Small 5 0 0 0 0.64 2.63 1.72 0.81 1.63 1.790 

Medium 1 75 143 151 91.82 174.00 169.36 10.73 22.11 16.060 
Medium 2 61 148 148 70.18 168.09 160.90 6.43 16.38 10.870 

Medium 3 124 191 174 137.36 211.63 187.45 9.59 16.44 10.650 

Medium 4 69 152 137 74.27 168.00 150.09 5.16 12.77 8.083 
Medium 5 96 158 121 117.45 181.45 145.18 12.32 11.81 16.190 

Large 634 772 734 660.27 838.90 808.00 20.86 34.47 23.740 
 

For example, if we consider an individual 
comparison with the results obtained in Medium 4 
dataset, we can see that AAC algorithm rank is 9 over all 
26 approaches with the percentage deviation of 0.96, 
where all the approaches that outperform AAC algorithm 
in medium 4 dataset are better for their structure such as 
a population based approaches or hybridization 
approaches or intelligent neighborhood selection, in 
addition that they employs many neighborhood structure, 
while AAC employ two neighborhoods structure. Where, 
in A3 (Abdullah et al., 2007) is a hybridize mechanism 
for great deluge, A15 (Turabieh and Abdullah, 2009), 
A18 (Al-Betar et al., 2010), A19 (Turabieh et al., 2010), 
A20 (Jaradat and Ayob, 2010) and A26 (Abuhamdah et 
al., 2013) are a population based algorithm and some of 
them hybrid approaches, in A24 (Abuhamdah and Ayob, 
2010) it is also hybridization with adaptive mechanism 
and in A25 (Abuhamdah and Ayob, 2010) employ 
hybridization and systemic neighborhood selection. 
However, if we compare the results in Medium 2 dataset, 
then we can see that AAC ranked as 4 over all with the 
percentage deviation of 0.56. Where, AAC outperformed 
by A19 (Turabieh et al., 2010), A25 (Abuhamdah and 
Ayob, 2010) and A26 (Abuhamdah et al., 2013); and the 
reason behind that A19 and A26 are a population based 
approaches with hybridization and employs many 
neighborhood structure, where A25 is a hybridization 
with intelligent neighborhood selection. This poses a 

future work, to employ more neighborhood structures 
with intelligent selection, which may help in producing 
better solution and outperform other approaches. 

Figure 5 shows the box and whisker plot that 

summarize the results of 11 runs on Socha benchmark 

datasets (note that in the clustering problems results, 

the minimal distances difference are so high, therefore, 

AAC behaviour can be more understandable in 

timetabling problem).  

In Fig. 5 the results for the small datasets are obtained 
between 283 to 1,299 seconds (for more details see Table 
15). Meanwhile, the medium and large datasets ranged 
from 19,152 to 35,744 seconds.  

In all datasets, we can see that the median is slightly 

closer to the best than to the worst of these runs. This 

indicates that the algorithm is stable and consistent most 

of the time and may produce very good quality solutions. 

The result also shows that AAC is capable of producing 

feasible solution for all datasets with high quality 

solutions that are comparable with the best-known 

results obtained in the literature. 

For example of AAC behaviour on the medium 1 

dataset (see Fig. 6). Figure 6 shows the correlations 

between the minimize number of iterations to 200 

iterations and the solution quality (or penalty) to be 

more understandable for observing AAC algorithm 

performance.
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Table 14. Comparison between AAC algorithm and other approaches in the literature using the eleven datasets for course 

timetabling problem 

Data set Rank ∆(%) AAC A1 A2 A3 A4 A5 A6 A7 A8 A9 A10 A11 A12 A13 

Small1 Same 0 0 0 0 0 0 5 10 2 0 6 3 1 1 8 

Small2 Same 0 0 0 0 0 0 5 9 4 0 7 4 3 2 11 

Small3 Same 0 0 0 0 0 0 3 7 2 0 3 6 1 0 8 

Small4 Same 0 0 0 0 0 0 3 17 0 0 3 6 1 1 7 

Small5 Same 0 0 0 0 0 0 0 7 4 0 4 0 0 0 5 

Medium1 7 0.83 75 317 175 80 221 176 243 254 242 372 140 195 146 199 

Medium2 4 0.56 61 313 197 105 147 154 225 258 161 419 130 184 173 202.5 

Medium3 8 1.07 124 357 216 139 246 191 249 251 265 359 189 248 267 - 

Medium4 9 1.16 69 247 149 88 165 148 285 321 181 348 112 164.5 169 177.5 

Medium5 9 0.96 96 292 190 88 130 166 132 276 151 171 141 219.5 303 - 

large 8 0.56 634 926 912 730 529 798 1138 1027 - 1068 876 851.5 1166 - 

Data Set AAC A14 A15 A16 A17 A17 A18 A19 A20 A21 A22 A23 A24 A25 A26 

Small1 0 5 0 0 0 0 0 0 0 0 0 0 0 0 0 

Small2 0 3 0 1 0 0 0 0 0 0 0 0 0 0 0 

Small3 0 2 0 0 0 0 0 0 0 0 0 0 0 0 0 
Small4 0 3 0 0 0 0 0 0 0 0 0 0 0 0 0 

Small5 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 

Medium1 75 316 55 126 71 88 168 45 84 117 105 82 64 51 41 
Medium2 61 243 70 123 82 88 160 40 82 108 108 78 65 54 39 

Medium3 124 255 102 185 137 112 176 61 123 135 156 136 91 95 60 

Medium4 69 235 32 116 55 84 144 35 62 75 84 73 66 48 39 
Medium5 96 215 61 129 106 103 71 49 75 160 141 103 89 75 55 

large 634 - 653 821 777 915 417 407 690 589 719 680 576 609 463 

Note: A1: (Abdullah et al., 2005.  A2: (Abdullah and Turabieh, 2009). A3: (McMullan, 2007). A4: (Abdullah et al., 2007). A5: (Ejaz and Javed, 2007). 

A6 (Asmuni et al., 2005). A7: (Abdullah and Turabieh, 2008). A8: (Abdullah et al., 2007). A9: (Burke et al., 2007). A10: (Landa-Silva and obit, 2008). 
A11: (Socha et al., 2002).  A12: (Burke et al., 2003). A13: (Socha et al., 2003). A14: (Al-Betar et al., 2008). A15: (Turabieh and Abdullah, 2009). 

A16: (Landa-Silva and obit, 2009). A17: (Obit et al., 2009). A18: (Al-Betar et al., 2010). A19: (Turabieh et al., 2010). 

A20: (Jaradat and Ayob, 2010). A21: (Shaker and Abdullah, 2010).  A22: (Abuhamdah and Ayob, 2009). A23: (Abuhamdah and Ayob, 2010).  
A24: (Abuhamdah and Ayob, 2010). A25: (Abuhamdah and Ayob, 2010). A26: (Abuhamdah et al., 2013). 

The value for AAC and A1-A26 are the minimum penalty cost obtained by each approach. 

 

Table 15. Statistical analysis of AAC algorithm applied to Socha benchmark datasets 

Dataset fmin Iterations Time/s 

Small 1 0 31,311 346.58 

Small 2 0 158,086 1009.79 

Small 3 0 60,641 287.60 

Small 4 0 34,008 181.38 

Small 5 0 10,812 298.49 

Medium 1 75 151,346 29139.00 

Medium 2 61 152,414 30495.00 

Medium 3 124 166,142 32374.00 

Medium 4 69 117,529 25835.00 

Medium 5 96 134,942 28581.00 

large 634 173,852 34148.00 

 

In Fig. 6 the curve slope shows that when the 

number of iterations increase, then the penalty cost 

improved. In the beginning of the search, we can see 

that the penalty cost can be quickly reduced when the 

worse solution accepted, which show a flexible 

acceptance criteria (i.e., AC). In addition that, 

accepting the worst solution in AAC is capable of 

escaping from local optima and acceptance a little 

worse solution from the beginning to the end of the 

curve became more smaller, which may help the 

search to produce a better quality solutions. For more 

understanding about AAC algorithm in producing 

good quality solutions, the following table illustrates 

the statistical analysis of applying AAC algorithm on 

the Socha benchmark datasets. The statistical readings 

are based on the following performance indicators: 

The best score (fmin), the total number of iteration 

moves (Iterations) for the best solution and the total 

CPU time on the computer needed to find the best 

solution fmin (Time/s). 
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Fig. 5.   Box and whisker plot of AAC for all datasets of the course timetabling problem 
 

 
 

Fig. 6.  AAC algorithm behavior of course timetabling problem on the medium 4 dataset 

 

If there are multiple hits on the best solution in each 

independent run (11 runs for small, 11 runs for 

medium and 11 runs for the large instance), then the 

values listed in the table are the average over these 

multiple best hits (see Table 15). However, the 

average scores (favg) and the standard deviation σ for 

AAC algorithm is shown in Table 12. 

Conclusion and Discussion 

This work has proposed a non-parametric Acceptance 
Criterion (AC) that not relies on user-defined that is 
motivated by weakness of the local search algorithms in 
tuning the parameters. However, the other limitation 
of many local based algorithms is in exploring the 
search space (diversification strategy), which 
motivates to increase diversification strategy in AC by 

employing a similar idea of an adaptive mechanism 
previously proposed in ARDA algorithm to overcome 
the other limitation of the local based algorithm and 
termed as AAC algorithm. 

In order to evaluate the AC and AAC algorithms 
performance, AC and AAC are tested on two problem 
domain for optimization, the first domain problem is six 
medical clustering benchmark dataset and the second is 
eleven benchmark datasets for university course 
timetabling problem. A comparison made between the 
performance of AC, AAC, SA, GD and other approaches 
in the literature. Results indicate that AC is a good 
acceptance criterion as it outperformed SA, GD in some 
datasets for both domains. Results also shows that, AAC 
outperform AC, SA and GD algorithms in both domain 
problems in most datasets, outperformed other methods 
in the literature for the clustering problem in most 
datasets; and obtain comparable results with other 
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methods in the literature for the course timetabling 
problem and the results are generally statistically 
significant comparing to those methods. Thus we can 
conclude that AAC has more capability in intensifying 
and diversifying the search than AC. The limitation of 
AC approach is that we need to increase the 
diversification, where the limitation in AAC is to 
control the diversification intelligently with better 
mechanism of diversification or hybridize it with a 
good mechanism. The limitation in both AC and AAC 
algorithms is in the neighborhood selection, which 
needs to be selected intelligently and more 
investigation on increasing the number of 
neighborhood structure for its role in the results quality.  
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