

© 2015 Marini Abu Bakar, Surya Ismail, Sufian Idris and Zarina Shukur. This open access article is distributed under a

Creative Commons Attribution (CC-BY) 3.0 license.

Journal of Computer Science

Original Research Paper

seMeja API Design Based on CRUD+N Concept

Marini Abu Bakar, Surya Ismail, Sufian Idris and Zarina Shukur

Faculty of Information Science and Technology, Universiti of Kebangsaan Malaysia, Selangor, Malaysia

Article history

Received: 24-10-2014
Revised: 12-03- 2015
Accepted: 27-06-2015

Corresponding Author:
Marini Abu Bakar
Universiti Kebangsaan
Malaysia, Selangor, Malaysia
Email: marini@ukm.edu.my

Abstract: seMeja is an ongoing research to develop a desktop system for

university environment. To support the development of this system, an

Application Programming Interface (API) is needed to provide access to

online university services such as course notes, course schedules and course

registration interface. This paper proposes a research to create and design

the API for seMeja named seMejaAPI. The primary goal for this API is to

allow programmers to quickly develop applications that can interact with

university online system that support the API. The API needs to be versatile

enough to encapsulate the variations of online university services and yet

easy enough to be used by an application programmer. The design of the

API is based on the four operations of Create, Read, Update and Delete

(CRUD). In addition to these four basic concepts, the concept of 'Notify'

has been added to support the registration for push-style notifications.

These principles are then combined with an existing university-based

ontology. This ontology defines the various objects used in a university

environment. Two prototypes were then developed and tested to

demonstrate an implementation of a portion of the API, along with a

small working application.

Keywords: API, seMeja Desktop Environment, University Operating

System, Ontology, CRUD

Introduction

The seMeja Desktop Environment is an operating

system for university students running on a Linux

operating system. It was designed and developed at

Universiti Kebangsaan Malaysia (UKM) as a

collaborative effort between several research groups. The

desktop environment is meant to mimic the local

Malaysian education environment.

To increase the effectiveness of the seMeja system,
specialized applications can be developed to help
students gain expertise and learn the required material.
Application for seMeja should support some key features
to make them more useful for university students. These
features includes: (i) the use of student information to

create an individualized, student-oriented user
experience. The seMeja Desktop Environment requires a
login, which means that the operating system knows the
identity of the student user. This identification can be
used to retrieve information on the student. When a
student enters a university, the student’s basic

information is stored on various server-sides of the
university systems. As the student progresses, more
information is generated. For example, information like
the student’s faculty affiliation, registered courses and

grades record can all be accessed online. An effective
seMeja application should take advantage of this wealth
of information to create an individualized experience for
the student. (ii) The innovative use of university
educational resources. Modern universities provide

online access to large amounts of educational resources.
Materials such as course notes, lab manuals and
publications are all available online. Applications for the
seMeja system can take full advantage of these resources
by centralizing, organising and presenting them in new
and innovative ways. (iii) The use of research

technologies. The various seMeja research groups have
identified a few technologies that will potentially benefit
university students. These technologies include natural
language processing and notifications. seMeja
applications should make use of these technologies.

The proposed seMeja architecture has been discussed
by (Idris et al., 2010). The seMeja system runs on a
Linux-based netbook. The base operating system
provides access to system utilities such as memory,
processing and devices. The system utilities are accessed
through the system libraries and applications while the
user interface is managed by the GUI manager. The three
tiers of the seMeja Environment make use of the system
libraries and applications.

Marini Abu Bakar et al. / Journal of Computer Sciences 2015, 11 (4): 645.661

DOI: 10.3844/jcssp.2015.645.661

646

Fig. 1. Three tier architecture of the seMeja system

The three tiers are the seMeja Services layer, the seMeja
API and the seMeja Applications. The seMeja system
communicates with external university servers. The
university servers control data related to student
information and university resources.

Figure 1 presents a simplified view of the three tiers
of the seMeja system. The seMeja services layer contains
modules that provide useful functions for the
applications. The initial design requirement divides the
modules into Core Services and Application Services.
The Core Services provide basic services for the desktop
which are used by all applications. The Application
Services provide access to domain specific services.

The seMeja API is the second tier of the seMeja
Environment. Its purpose is to the wrap services in a
standard API that is used by developers to create
applications for the seMeja Desktop Environment. The top
tier of the seMeja Desktop Environment contains the
seMeja applications. As mentioned in the previous section,
these applications are customized for university students.

Related Works

Robillard (2009) defined an API as an interface to
implemented functionality that developers can access to
perform various tasks. APIs support code reuse, provide
high-level abstractions that facilitate programming tasks
and help unify the programming experience.

Henning (2007) proposed that APIs should be
minimal. A small API, with fewer types, methods and
parameters, is easier to learn, remember and use.
Henning also concludes that when little is known about
the context in which an API will be used, the best choice
is to keep all options open and allow the API to be as
widely applicable as possible. Bloch (2006) added
another principle which is to not make the developer do
anything the library could do. Violating this rule leads to
developers having to write wrapper code that must be
used every time the library is used. This type of code,
known as boilerplate, is redundant and error-prone.

This section reviews existing APIs related to the
seMeja API. Two existing educational systems that use
APIs are discussed. In each case, the structure of the API
is reviewed and the API is analysed to find key factors
that make the API useful for developers.

The Sugar Toolkit

Sugar (SL, 2012) is an educational desktop

environment for younger children. It was originally

designed for the One Laptop per Child project. OLPC is

a non-profit organization established to provide low-cost

laptops to children in developing countries (OLPCF,

2012). Currently, Sugar runs on over two million laptops

in 25 languages in more than 40 countries.

Sugar has an unusual user interface. The interface is

designed to be comprehensible by young children,

including those who are unable to read. Applications run

on full screen and menus are iconic. Figure 2 shows the

Sugar home view. The view changes according to the

activity. The icons represent the child (the user) and his

or her favourite activities. The home view changes

depending on the current activity.

Developers do not develop programs using a compiled

language. Instead, they develop ‘Activities’ using the

Python programming language. Python is an interpreted

language, which means by using a simple text editor, any

Sugar laptop can be used to develop new Sugar ‘Activities’.

Architecturally, Sugar runs on a modified GNOME

Linux desktop (Fig. 3). Python is the preferred development

language. Python activities access services through the

Sugar toolkit. These services include a data store, clipboard

capabilities and a network presence service.

Sugar is an extreme example of a customized

educational Linux desktop. The seMeja Desktop

Environment does not need to be as customized.

However, Sugar shows the validity of the approach.

Sugar runs on a Linux core and adds variety of services

which can be accessed through the Sugar toolkit to create

activities. This is similar to the seMeja API and

applications approach used in the seMeja system.

Sugar, the API is known as the Sugar toolkit. The API

has a minimal look, which reflects the ideas of simplicity

and intelligibility that are part of the Sugar design

philosophy. The Activity and Presence packages are good

example. The Activity module provides the user interface

for a Sugar activity. This allows developers to create

programs with iconic menu and full screen behaviours that

are essential for Sugar. The Presence package allows

collaboration by providing services for native networking

and information sharing.

The Moodle Activities API

Moodle is an abbreviation for Modular Object-

Oriented Dynamic Learning Environment. It is an Open

Source Course Management System (MC, 2012).

Moodle is basically a web application. It needs to be

installed on a server and it’s accessed through a client

browser (Fig. 4). Moodle is used in over 200 countries

and has over 69,000 registered users. It is used by all

sorts of organizations including primary and secondary

schools, government bodies and the military.

Marini Abu Bakar et al. / Journal of Computer Sciences 2015, 11 (4): 645.661

DOI: 10.3844/jcssp.2015.645.661

647

Fig. 2. The sugar home view

Fig. 3. Sugar architectural diagram

Fig. 4. Moodle as a web application

Marini Abu Bakar et al. / Journal of Computer Sciences 2015, 11 (4): 645.661

DOI: 10.3844/jcssp.2015.645.661

648

Table 1. Moodle core APIs

API Description

Access Determines what the current user is allowed to do.
Data manipulation Enables read/write to databases in a consistent and safe way.
File Controls the storage of files.
Form Defines and handles user data via web forms.
Logging Allows developer to add new entries to the Moodle log and define how they get displayed in reports.
Navigation Manipulate the navigation tree to add and remove items.
Page Used to set up the current page, add JavaScript, and configure how things will be displayed to the user.
Output Renders the HTML for all parts of the page.
String Get language text strings to use in the user interface, handles any language
 translations that might be available.
Upgrade Controls how a module installs and upgrades itself, by keeping track of its own version.

Moodle is modular and is designed for customization.
The interface is customized using themes. Themes can
be applied on various levels and granularities and can be
designed to suit different types of displays such as
tablets and net books displays. Functionality can be

customized by adding different plugins. Plugins are
developed in PHP and there are hundreds already
available. Plug in developers have access to basic
functionality through the Core API. Table 1 shows the
most frequently used Core API modules.

Moodle is different from the seMeja Desktop

Environment in that it is a web-based solution, not an
operating system. However, the Moodle Activity API
bears many similarities to the seMejaAPI. The Activity
API abstracts the functionality of class-based activities
and makes them easily accessible to developers.

seMeja API Design Principles

There are some issues that may make it difficult to
use traditional API design techniques for the seMeja
API. The seMeja API has many incompletely defined
variables including shifting requirements and unknown

server-side systems. Developers have documented
some common-sense principles that can be useful when
designing APIs in these circumstances.

These common-sense approaches can be summarized

into three design principles:

• The seMeja API should be small. The fewer

methods and parameters, the easier it is to be learnt

• The seMeja API should keep options open.

Developers may use the API in unforeseen ways,

therefore the API needs to be flexible

• The seMeja API should not appear complex. The

API should not require the developer to write code

that can be handled internally by the libraries

The Design of seMeja API

The seMeja Environment is a three-tier system, as

shown in Fig. 5. It sits on top of the Core Operating

System and utilizes the system libraries and applications.

The tiers are, from bottom to top, the seMeja Services,

seMeja API and seMeja Applications.

The seMeja Services layer consists of Core Services

and Application Services. As discussed previously, the

Core Services provide services used by all applications.

The Application Services are domain specific, used by

specific applications. In addition to the service

components, there are other components that support the

services. These include the profile manager, data cache

and other possible components.

On top of the seMeja Services is the seMeja API. The

API serves as a wrapper, providing standardised access

to the various components and agents. The final tier of

the seMeja architecture is the applications, which access

the seMeja Services through the API layer.

Requirements for seMeja API

In order to design the seMeja API, a study on the

requirement of the layer precedes the seMeja API needs

to be done, placing a special emphasis on the Core

Services. The Core Services can be grouped into two

categories: Services that access external functions and

services that do not. The services that access external

function are called agent services and it includes things

like accessing student data, registration information and

course material. The services that do not access external

functions, or the non-agent services, are based on key

technologies that have been identified by the other

seMeja research groups.

In term of agent services, there are several common

services with respect to the institutions of higher

learning. Works that has been done by the following

peoples show the importance of the services:

• Course Registration: By (Sherman, 2000; Xue-hua

et al., 2012; Dee and Bryan, 2011)

• Course Resources: By (Grabe and Sigler, 2002;

Soong et al., 2001; McNaught et al., 1999; Meinel

et al., 2002; BI, 2012)

• Assessment: By (Rovai, 2000; Joy et al., 2005;

Amelung et al., 2008)

• Research Project Management: By (Li et al., 2007)

• Self administration: By (Pollock, 2003)

Marini Abu Bakar et al. / Journal of Computer Sciences 2015, 11 (4): 645.661

DOI: 10.3844/jcssp.2015.645.661

649

Fig. 5. Architecture of the seMeja environment

Fig. 6. Agent services in the seMeja deskop environment

Table 2. seMejaAPI agent modules

Function Description

Course registration Stores information about the courses that a student is registered for.
Course resources Handles course materials including lecture notes, manuals, videos and tutorials.
Assessment Can as simple as a repository of assignment or can support automated assessment.
Research project management Module used to manage research projects containing interfaces to choose projects
 and track progress.
Self-administration Used to view and modify student data.

Marini Abu Bakar et al. / Journal of Computer Sciences 2015, 11 (4): 645.661

DOI: 10.3844/jcssp.2015.645.661

650

Figure 6 shows the illustration of the services

relationship with the university server, whilst Table 2

describes the agent modules.

In addition to the core agent services, the seMeja

Services layer also contains several modules that are not

related to university services-either students-centred and/or

low barrier for adoption. Hence two other core modules are

included: Natural language module and notification

modules. Natural language processing would make it easier

for students to learn how to use the operating system,

consequently, lowering the barrier for adoption. The details

of the natural language module are outside the scope of this

research and are left open for future research.

Design Concept

CRUD + N Concept

In a traditional API, there would need to be a fixed set

of functions and definition for every university services.

This would not be practical for the seMeja system, where

there is a great deal of variations between the different

online systems. The proposed solution is to use the

CRUD concepts. CRUD stands for Create, Read,

Update and Delete. These principles are familiar to

programmers because they are the commonly used for

database operations and web services. The CRUD

concepts were first used in database management in the

1980s to describe the functions for persistent storage

(Martin, 1983). Since the1980s, these concepts have been

applied to many other areas. One of the most widespread

applications of CRUD principles is in the Hypertext

Transfer Protocol (HTTP) verbs. The HTTP verbs POST,

GET, PUT, DELETE map directly to the CRUD

principles (NWG, 1999).

The CRUD principles cover most of the functionality

required for university services. In addition to the basic

four, the seMeja project proposes to add the principle of

‘Notify’. The principle of ‘Notify’ allows applications to

register to receive push-style notifications and updates.

The proposed seMeja API uses ideas from REST to

provide a simple interface to access university services.

The CRUD and notification principles (CRUD+N) are

used as method names for Java calls. This means that

there are only 5 methods. The first parameter to each

method will be the object that is the target of the method.

University objects are similar to REST resources and

include things like courses, students, lecturers and

documents used as course material. The other parameters

contain the rest of the information required to complete

the request. Parameter overloading is used to allow

different types of data to be used, depending on the object.

Object Description based on Bowlonga Ontology

Based on the CRUD+N principle, the seMeja API has

5 simple methods, with object names to identify the data

and overloaded parameters to provide context. This

design gives the API the flexibility to access the various

university functions identified in the previous section.

However, flexibility is useless if there is not enough

structure and documentation for a programmer to write

codes. Using the CRUD+N principles, the method names

for the seMeja API are known. The next step is to

determine the objects and parameters used in the methods.

To get an initial set of objects, it is proposed that an

existing ontology for universities be used. The Bowlonga

Ontology is a good fit for this purpose (Demartini,

2011). The Bowlonga Ontology was created as part of the

Bowlonga Process (BBS, 2010). The Bowlonga Process

was a multi-national reform process aimed at increasing

standardization among universities in Europe. The

Bowlonga Ontology defines a set of objects and properties

to use in a university environment (Table 3).

By using the CRUD+N principles paired with objects

defined in the ontology, a programmer can deduce a set of

steps to perform a task. For example, if a programmer

wants to create application to allow users to register for

courses, the steps would look as described in Table 4.

The same technique of combining CRUD concepts

and university objects can be extended to any operation

that requires access to university services. These

flexible function calls must be combined with detailed

documentation complete with examples. The result

should be a system that is interoperable between

various universities and faculties but still simple and

efficient for programmers to use.

Table 3. Examples of Bowlonga ontology

Object Description

Academic degree Two levels of academic degree are defined: Bachelor and Master.
Department A Department can be associated with a Study Track and Teaching Units.
Teaching unit Several types of teaching units are defined including obligatory, optional and specialisation modules.
Evaluation Conveys the concept of a grade for a class.
Person Includes professor and student.
Study program A program of teaching units and requirements needed to get an academic degree.
Thesis Scientific work written as part of the academic degree which presents the results of a research
 project on a topic related to the field of study covering the study program.
Teaching unit Equivalent to a class.

Marini Abu Bakar et al. / Journal of Computer Sciences 2015, 11 (4): 645.661

DOI: 10.3844/jcssp.2015.645.661

651

Table 4. Steps for course registration

Step Action

1 READ all the teaching units for the computer science department.
2 The application then displays the courses to the student in a nice user interface, allowing the user to
 pick and choose classes.
3 CREATE a new registration for the Student.
4 Call NOTIFICATION to receive notifications of changes in the teaching unit.
ITALIC indicates CRUD+N principles.
Bold indicates objects from the ontology.

Table 5. seMeja methods and parameters for learning activity object

CRUD+N CREATE, READ, UPDATE, DELETE, NOTIFY

Ontology Object Learning_Activity
Description / parameters / sample code A Learning_Activity is any activity conducted in conjunction with a
 Teaching_Unit. Examples include labs, assignments and tutorials. Calls to READ
 retrieve information about a learning activity. CREATE lets a user add new
 learning activities. For example, a user calls CREATE to submit an assignment.
 UPDATE allows users to change a learning activity. For example, adding an
 annotation to a tutorial. DELETE will remove a learning activity. NOTIFY allow
 users to receives notifications about changes to a learning activity.
 Possible parameters: Teaching_Unit
 Example:
 create(“Learning_Activity”, “Teaching_Unit=Algorithms101”, data);

Fig. 7. Components of the seMeja API

Marini Abu Bakar et al. / Journal of Computer Sciences 2015, 11 (4): 645.661

DOI: 10.3844/jcssp.2015.645.661

652

Fig. 8. seMeja API method summary

Components of the seMeja API

The seMeja API interacts with other components
within the seMeja Operating System (seMeja OS). It also
communicates with university services (as shown
previously in Fig. 4). These interactions are shown in the
component diagram Fig. 7.

The large box in the middle contains the modules that
make up the seMeja API. The boxes on the left represent
components that are part of the seMeja OS, but not part
of the API. Applications interact with the API by calling
any of the five CRUD+N methods.

The seMeja API acts as an interface between the
applications and the services. For simplicity, Fig. 7
shows only two of the five agent services. All five have
similar behaviour. As previously discussed, the agent
services access various university services provided by
the university servers. Henceforth, the university servers
and their functions may be referred to as university server-
side services, or simply server-side services. The server-
side services are shown as the boxes on the right (Fig. 7).

seMeja API Method

From a developer’s point of view, there are only five
methods in the seMeja API, each corresponds to the
CRUD+N methods. Documentation for the seMeja API
was created using Javadoc (Kramer, 1999), which is an
industry standard Java documentation technique. Figure
8 shows the Javadoc summary documentation for the 5
CRUD+N methods. Table 5 shows the one example of
seMeja API methods and parameters used to develop the
prototypes for this research.

Implementation of Application Prototype

Two prototypes were created to showcase that the

seMeja API fulfils its requirements. In another work,

the question is can the seMeja API be used to

successfully create applications that are useful for

university students? The prototypes were chosen to

cover a reasonable subset of the CRUD+N calls. The

first, a PDF transcript generator, focuses on the READ

operation. The second, a Facebook forums tool, shows

NOTIFICATION and CREATE operations. Both

prototypes are implemented with UKM students in

mind, using UKM server-side services.

PDF Transcript Application Prototype

The PDF transcript application is designed as a tool

to generate standardised and well-formatted grade

transcripts. The PDF format is a widely supported format

that is known for ease of viewing and printing. The

proposed use of the prototype is two-fold. For students,

it provides an easy way to generate a clean grade

transcript document than can be printed and/or emailed

for internships applications and transfer request. For

administrators, a standardised format makes it easier to

compare the results of students from different

educational programs. The PDF transcript application

was chosen as a prototype because it illustrates the use of

the READ operation. For many applications, the READ

operation is the one that is used the most.

Using CRUD+N and Ontology

By using the CRUD+N principles and studying the

Bowlonga ontology, a developer can get a good idea

of the seMeja API methods that need to be called.

Looking at the information that needs to be displayed,

the application programmer are able to deduce that

there are 2 READ operations required. The first

READ is to retrieve the list of courses and the second

READ to retrieve the grade.

Marini Abu Bakar et al. / Journal of Computer Sciences 2015, 11 (4): 645.661

DOI: 10.3844/jcssp.2015.645.661

653

By reading the ontology, the relevant objects are

identified. For this research, an open source ontology

viewer was used to read the Bowlonga ontology more

effectively (Mindswap, 2006). In the ontology,

courses are labelled as Teaching Units and a grade are

labelled as an Evaluation. Using this information, it is

possible to work out the steps that the application

needs to perform (Table 6).

Components and Processes

Figure 9 shows the components that are used by the

PDF transcript prototype. The components are as follows:

• Authentication module

The system already knows who the user is. The

authentication module has (or can obtain) the

authentication information needed for the other agents

• Course registration agent

The seMeja system interacts with the course

registration module to get a list of the user’s registered

courses

• Student data agent

• This module provides access to student data and

is used to obtain student grades

READ Operation for Teaching Units

Each READ operation is a multi-step process. The

sequence diagram in Fig. 10 shows the steps for reading

the registered courses. First, the application initiates a

READ operation, requesting to read a student’s

registered courses. The registered courses are returned as

a list of teaching units. Keep in mind that to perform this

process, the student must have logged into the seMeja

OS, therefore the seMeja OS already knows who the user

is. The system can now query the authentication module.

Based on the user and the operation, the authentication

module returns the correct authentication object. If the

authentication object (for reading registered courses) is

not available, the authentication module can then query

the user to get the authentication information.

The system now queries the course registration agent,

passing it the required authentication object. The course

registration agent communicates with the server-side

course registration system. The course registration

system may take the form of a web page or a database,

depending on the university services available.

The course registration agent passes the student’s

authentication object to the server-side system. The

authentication object may contain a user name, a matrix

number, a password and other information, as required

by the server-side system. The server-side system passes

the requested registration information to the course

registration agent. The course registration agent parses

the information and converts it into a list of Teaching

Units. Finally, the list of registered courses is passed to

the application and the application can use the data for

further processing. From reading the ontology, it is

known that each item in the list of registered courses has

a property called has Name. This property is used as

identifier. This identifier will be used by the application

as a parameter to perform further READ operations.

READ Operation for Grade Information

Once the course registration information has been

retrieved, the application needs to get the student’s grade

for each course. To do that, a further READ operation is

needed for each course. The READ operation retrieves

the student’s grades. For this operation, the server-side

student data system needs to know the identity of the

student. The external system may also require other

authentication information, such as a password, to access

private data. Therefore, this operation is similar to the

registration information READ operation (Fig. 11).

The READ operation is called, passing in the

Teaching_Unit has Name property. First, an

authentication object is acquired from the authentication

module. This authentication may be the same or different

from the previous authentication object, depending on

the external agents involved. The authentication object

and course identifier are passed to the student data agent.

The agent interacts with the external student data system

to get the grade. The agent parses the data and converts it

to an Evaluation, then returns it to the application. After

looping through all the courses, the application now has

a complete list of courses, course descriptions and

student grades. The application takes that information

and uses it to create a standardised PDF file.

Implementation

To retrieve the data, the two service agents (the

course registration agent and the self-administration

agent) behave like a web browser. The service agent

issues a HTTP POST command. The Student

Information System website, also known as Sistem

Maklumat Pelajar (SMP), returns a web page with the

required information. In a web browser, this file is

displayed to the user. For the service agents, the relevant

data is extracted from the file. The data is packaged into

correct objects and returned to the calling application.
Since the actual seMeja Desktop Environment is still

in development, the Ubuntu desktop was used to run the

prototypes. The first time the application is run, the

authentication information is not available, so the

authentication module triggers a dialog box to query the

user for the information (Fig. 13).

Marini Abu Bakar et al. / Journal of Computer Sciences 2015, 11 (4): 645.661

DOI: 10.3844/jcssp.2015.645.661

654

Figure 12 shows a snippet of the PDF transcript code
using the seMeja API calls. As discussed, the READ
method is used to get a list of registered courses. For
each course, the course code is retrieved and passed to a
second read operation to get the grade information. After
the application runs, a PDF transcript file will be
available (Fig. 14). The file can be viewed with a
standard PDF viewer or sent as an email attachment.

Table 6. Steps for running the PDF transcript application

Step Action

1 READ all the teaching units for the student.

2 For each teaching unit, read the evaluation.

3 Create a PDF with the grade information.

ITALIC indicates CRUD+N principles.

Bold indicates objects from the ontology

Fig. 9. Component diagram for PDF transcript prototype

Fig. 10. Sequence diagram for READ teaching unit operation

Marini Abu Bakar et al. / Journal of Computer Sciences 2015, 11 (4): 645.661

DOI: 10.3844/jcssp.2015.645.661

655

Fig. 11. Sequence diagram for READ evaluation operation

Fig. 12. PDF transcript code snippet

Fig. 13. PDF Transcript authentication screen capture

Marini Abu Bakar et al. / Journal of Computer Sciences 2015, 11 (4): 645.661

DOI: 10.3844/jcssp.2015.645.661

656

Fig. 14. PDF Transcript screen capture

Facebook Forums Application Prototype

The Facebook forums application prototype is based on
a scenario where Facebook is used as a class forum. The
class instructor creates a Facebook group and invites
students to join the group. The instructor posts
announcements, assignments and other course related items
to the Facebook group’s feed. Students can comment on the
posts or create their own posts. The Facebook group
provides a forum for students to post questions and discuss
topic of interest through the use of comments. This is
especially useful at institutions that may not have complete
IT infrastructures. However, the approach requires that all
students have a Facebook account to participate.

Handling a Facebook account is quite easy for computer
literate students. However, it can be challenging for a new
user. Facebook has known privacy and security issues.
These problems can be managed if the user has a good
understanding of internet safety issues and is able to
configure Facebook’s many privacy options. This degree of
internet knowledge may take time for a new user to
develop. This may cause problems for new student users as
the student will need to access the course forums almost
immediately, starting from the beginning of classes.

There are also some institutions that block Facebook
on their networks. A part-time student, for example, may
access the internet over a public, shared network or
through a work network and may find themselves
blocked from using Facebook. Therefore, even

experienced student users may still face problems
accessing a Facebook based course forum. The purpose
of the Facebook forums application is to make the
Facebook forum accessible through the seMeja OS. The
application allows users to read the forum and create
posts without requiring direct access to Facebook and
without requiring a Facebook account.

Using CRUD+N Ontology

The steps the application needs to perform can be
determined using the CRUD+N concepts along with the
Bowlonga ontology. The Facebook forums application
needs to do two things. First, it needs to display new
messages on the forum. Secondly, it needs to allow the
user to post new items to the forum. In order to display
the newest messages in near real time, the application
needs to call a NOTIFY operation. As previously
discussed, calling the NOTIFY will register the
application to receive notifications about the Facebook
forum. To post new messages to the forum, the
application will need to call a CREATE method.

By reading the ontology, the relevant objects can be
identified. The Bowlonga ontology shows that a
Teaching Unit is related to a Learning Activity. A
Learning Activity is something that is done as part of a
course. A class forum is a learning activity.

Using this information, it is possible to work out
the steps that the application needs to perform, as
shown in the Table 7.

Marini Abu Bakar et al. / Journal of Computer Sciences 2015, 11 (4): 645.661

DOI: 10.3844/jcssp.2015.645.661

657

Table 7. Steps for running the face book forums application

Step Action

1 NOTIFY to receive notifications about a learning activity.

2 If a new notification is received, show it to the user

3 On a users’ command, CREATE new data for the learning

activity (add a new message to the Learning Activity)

ITALIC indicates CRUD+N concepts

Bold indicates objects from the ontology

Components and Processes

The following diagram shows the components that

are used by the Facebook forums prototype. The

components are as follows:

• Authentication module

The authentication module has the authentication

information needed for the various other agents

• Course resources agent

The seMeja system interacts with the course

resources module to manage access to the various

NOTIFY Operation for Course Resources

To register to receive notifications from a Facebook

forum, the application calls the NOTIFY method, as

shown in Fig. 15. When the application calls the

NOTIFY method, it passes the name of the Learning

Activity as a parameter. When it receives the call, the

seMeja API first calls the Authentication Module to get

an authentication object. For the Facebook forums, the

authentication object is a special token generated by the

Facebook system.

Once the seMeja API has obtained the authentication

object, the application passes it to the Course Resources

service, along with the Learning Activity. Based on the

Learning Activity, the Course Resources service can

determine which server-side services need to be accessed

to register for notifications. In this case, the server-side

service is actually a light-weight web application that

accesses the Facebook system.

After the notification is executed on the relevant

university system, the status of the notification is

returned to the notification module. If the registration

for notification is successful, the notification module

adds the Learning Activity to its list of notifications.

The notification list contains the server-side

university services that need to be monitored for

notifications, along with a list of applications that are

registered to receive notifications. Finally, the status

of the NOTIFY call is returned to the Facebook

forums applications (Fig. 16).

CREATE Operation for Course Resources

The Facebook Forums application has an interface

that allows the user to reply to an existing post or

create a new post on the forum. To implement this, the

application calls the CREATE method. The CREATE

sequence is similar to the NOTIFY sequence, as

shown in Fig. 17.

The application calls the CREATE method, passing it

the name of the Learning Activity, along with the data to

be created. In this case, the data is a message that will be

posted to the Facebook forum. The seMeja API retrieves

the authentication object form the authentication module.

The Learning Activity, both the data and authentication

object, are passed to the course resources service. The

course resources service passes the data and

authentication object to the Facebook system. The

message is created on the Facebook forum and the status

is returned to the application.

Implementation

Accessing the Facebook forums is done through the

use of a dummy account. A dummy Facebook account is

created specifically for the seMeja system. The dummy

account is used to retrieve posts from the Facebook

group. It is also used to create new posts. On Facebook,

these posts will appear to come from the dummy

account. To avoid confusion, the seMeja system will tag

the posts with the user’s name, which is obtained from

the authentication object.

Figure 18 shows a snippet of the Facebook forums

code using the seMeja API calls. As discussed, the

NOTIFY method is used to register to receive

notifications. For this early prototype, this is

implemented using a callback handler. More

sophisticated message passing methods may be used

in later iterations. For this version of the Facebook

Forums prototype, the callback simply pops up a

message box with the newest message (Fig. 19).

Future versions could perform more complicated

operations such as message translation, or parsing

messages for data for synchronising with calendars or

contact lists.

Figure 20 shows a snippet of code using the

seMeja API call to create a new post on the Facebook

forum. The call is similar to the previous calls. First a

dialog box is created to query the user for the message

to be posted. Then the message is passed to the

seMeja API create function.

As a result of the seMeja API CREATE method, a

new message appears on the Facebook forum (Fig. 21).

As discussed, a dummy account is used to post the

message, so the message is tagged with the user’s name.

Marini Abu Bakar et al. / Journal of Computer Sciences 2015, 11 (4): 645.661

DOI: 10.3844/jcssp.2015.645.661

658

Fig. 15. Component diagram for facebook forums prototype

Fig. 16. Sequence diagram for NOTIFY operation

Marini Abu Bakar et al. / Journal of Computer Sciences 2015, 11 (4): 645.661

DOI: 10.3844/jcssp.2015.645.661

659

Fig. 17. Sequence diagram for CREATE operation

Fig. 18. Facebook forum notify code snippet

Fig. 19. Facebook forum notification screen capture

Marini Abu Bakar et al. / Journal of Computer Sciences 2015, 11 (4): 645.661

DOI: 10.3844/jcssp.2015.645.661

660

Fig. 20. Facebook forum notify code snippet

Fig. 21. Facebook forum notification screen capture

Conclusion

The seMeja API succeeds in some ways and fails

in others. The API is versatile and flexible. It uses

principles and concepts most programmers readily know

and hides the intricate details of server-side university

services for easy of use. The prototypes work, proving

that the concepts behind the seMeja API are useable. It

contains some interesting ideas and outlines a way of

organising the modules. As an illustration of a design,

the seMeja API succeeds. However, at this point, the

seMeja API is incomplete. Although the Bowlonga

ontology is a good starting point, the documentation and

code examples needed by programmers to efficiently

write code are incomplete. As a working API that can be

used immediately for development, the seMeja API fails.

Future work on the seMeja API can use the work in this

research to develop low-fidelity prototypes to create a

complete, useful API for the seMeja Desktop Environment.

Funding Information

This work is based on project supported by Universiti

Kebangsaan Malaysia under grant UKM-AP-ICT-15-2009.

Author’s Contributions

Marini Abu Bakar: Contribute in drafting the

article based on Surya’s Masters dissertation.

Proposed the initial design of the work together with

Zarina and Sufian. Supervised Surya’s work together

with Sufian to ensure it is done correctly according to

the objective.

Surya Ismail: Was a Masters student at Universiti

Kebangsaan Malaysia. Proposed the detailed design as well

as doing the implementation and testing. Written the

dissertation on the work. Reviewing the article critically.

Sufian Idris: Proposed the initial design of the

work together with Zarina and Marini. Supervised

Surya’s work together with Marini to ensure it is done

correctly according to the objective. Reviewing the

article critically.

Zarina Shukur: Contribute in drafting the article based

on Surya’s Masters dissertation. Proposed the initial design

of the work together with Marini and Sufian. Head of the

project supported by Universiti Kebangsaan Malaysia under

grant UKM-AP-ICT-15-2009.

Marini Abu Bakar et al. / Journal of Computer Sciences 2015, 11 (4): 645.661

DOI: 10.3844/jcssp.2015.645.661

661

Ethics

This article is original and contains unpublished

material. The corresponding author confirms that all of the

other authors have read and approved the manuscript and

no ethical issues involved.

References

Amelung, M., P. Forbrig and D. Rösner, 2008. Towards

generic and flexible web services for e-assessment.

Proceedings of the Annual Conference on

Innovation and Technology in Computer Science

Education, (CSE’ 08), ACM New York, NY, USA,

13: 219-224. DOI: 10.1145/1384271.1384330

BBS, 2010. About the bologna process. Benelux

Bologna Secretariat.

BI, 2012. About blackboard. Blackboard International.

Bloch, J., 2006. How to design a good API and why it

matters. Proceeding of the Companion to the 21st

ACM SIGPLAN Symposium on Object-Oriented

Programming Systems, Languages and

Applications, (SLA '06), ACM New York, NY,

USA, pp: 506-507. DOI: 10.1145/1176617.1176622

Dee, M.I. and V. Bryan, 2011. First year undergraduate

students’ perception of the effectiveness and transfer

of multimedia training. Proceedings of the World

Conference on E-Learning in Corporate,

Government, Healthcare and Higher Education,

(Oct, 18), Association for the Advancement of

Computing in Education, Honolulu, Hawaii, USA,

pp: 1884-1889.

Demartini, G., 2011. The Bowlogna Ontology.

Bowlogna.

Grabe, M. and E. Sigle, 2002. Studying online:

Evaluation of an online study environment. Comput.

Education, 38: 375-383.

 DOI: 10.1016/S0360-1315(02)00020-9

Henning, M., 2007. API: Design Matters. ACM Queue,

5: 24-36. DOI: 10.1145/1255421.1255422

Idris, S., M.A. Bakar and Z. Shukur, 2010. Architecture

of seMeja desktop system. Proceedings of the

International Symposium in Information

Technology, Jun, 15-17, IEEE Xplore Press, Kuala

Lumpur, pp: 1073-1075.

 DOI: 10.1109/ITSIM.2010.5561654

Joy, M., N. Griffiths and R. Boyatt, 2005. The boss

online submission and assessment system. J.

Educational Resources Comput., 5: 2-2.

 DOI: 10.1145/1163405.1163407

Kramer, D., 1999. API documentation from source code

comments: A case study of Javadoc. Proceedings of

the 17th Annual International Conference on

Computer Documentation, Sep. 12-14, New

Orleans, Louisiana, USA, pp: 147-153.

 DOI: 10.1145/318372.318577

Li, L., P. Li, Q. Liu, J. Zhang and Z. Wang et al., 2007.

WebUPMS: A web-based undergraduate project

management system. Proceedings of the First IEEE

International Symposium on Information Technologies

and Applications in Education, Nov. 23-25, IEEE

Xplore Press, Kunming, pp: 360-364.

 DOI: 10.1109/ISITAE.2007.4409304

Martin, J., 1983. Managing the Data-base Environment.

1st Edn., Sung Kang, pp: 766.

McNaught, C., J. Kenny, P. Kennedy and R. Lord, 1999.

Developing and evaluating a university-wide online

distributed learning system: The experience at RMIT

university. Educational Technol. Society, 2: 70-91.

Meinel, C., Sack H. and V. Schillings, 2002. Course

management in the twinkle of an eye-LCMS: A

professional course management system.

Proceedings of the 30th Annual ACM SIGUCCS

Conference on User Services, (CCS '02), ACM New

York, NY, USA, pp: 281-283.

 DOI: 10.1145/588646.588722

Mindswap, C., 2006. Swoop-a hypermedia-based

featherweight OWL ontology editor.

MC, 2012. Modular object-oriented dynamic learning

environment. Moodle Community.

NWG, 1999. Hypertext transfer protocol--HTTP/1.1.

Network Working Group.

OLPCF, 2012. One Laptop per Child (OLPC), a low-

cost, connected laptop for the world's childrens'

education. OLPC Foundation.

Pollock, N. 2003. The 'self-service' student: Building

enterprise-wide systems into universities. Prometheus

Critical Studies Innovation, 21: 101-119.

Robillard, M.P., 2009. What makes apis hard to learn?

Answers from developers. Proceedings of the IEEE

Software, Nov.-Dec. 2009, IEEE Xplore Press,

 pp: 27-34. DOI: 10.1109/MS.2009.193

Rovai, A.P., 2000. Online and traditional assessments: what

is the difference? The Internet Higher Education, 3:

141-151. DOI: 10.1016/S1096-7516(01)00028-8

Sherman, J.C., 2000. An experiment in web-based

registration for new students in the college of

engineering and applied science. Proceedings of the

Annual American Society for Engineering

Education Conference, 1353: 232-240.

Soong, M.H.B., H.C. Chan, B.C. Chua and K.F. Loh,

2001. Critical success factors for on-line course

resources. Comput. Education, 36: 101-120.

 DOI: 10.1016/S0360-1315(00)00044-0

SL, 2012. Sugar learning platform. Sugar Labs.

Xue-hua, L., Z. Zhou-sen, W. Zhen-dong and Y. Xiao,

2012. Research and realization of distributed digital

registration system for universities. Proceedings of

the International Conference on Computer Science

and Electronics Engineering, Mar, 23-25, IEEE

Xplore Press, Hangzhou, pp: 490-493.

 DOI: 10.1109/ICCSEE.2012.56

