

© 2015 Gothai Ekambaram and Balasubramanie Palanisamy. This open access article is distributed under a Creative

Commons Attribution (CC-BY) 3.0 license.

Journal of Computer Science

Original Research Paper

A Modified Key Partitioning for BigData Using MapReduce

in Hadoop

Gothai Ekambaram and Balasubramanie Palanisamy

Department of CSE, Kongu Engineering College, Erode-638052, Tamilnadu, India

Article history

Received: 07-03-2014

Revised: 23-03-2014

Accepted: 21-03-2015

Corresponding Author:

Gothai Ekambaram

Department of CSE, Kongu

Engineering College, Erode-

638052, Tamilnadu, India

Email: kothaie@yahoo.co.in

Abstract: In the period of BigData, massive amounts of structured and

unstructured data are being created every day by a multitude of ever-

present sources. BigData is complicated to work with and needs

extremely parallel software executing on a huge number of computers.

MapReduce is a current programming model that makes simpler writing

distributed applications which manipulate BigData. In order to make

MapReduce to work, it has to divide the workload between the computers

in the network. As a result, the performance of MapReduce vigorously

depends on how consistently it distributes this study load. This can be a

challenge, particularly in the arrival of data skew. In MapReduce,

workload allocation depends on the algorithm that partitions the data.

How consistently the partitioner distributes the data depends on how huge

and delegate the sample is and on how healthy the samples are examined

by the partitioning method. This study recommends an enhanced

partitioning algorithm using modified key partitioning that advances load

balancing and memory utilization. This is completed via an enhanced

sampling algorithm and partitioner. To estimate the proposed algorithm,

its performance was compared against a high-tech partitioning mechanism

employed by TeraSort. Experimentations demonstrate that the proposed

algorithm is quicker, more memory efficient and more accurate than the

existing implementation.

Keywords: Hadoop, Hash Code, Partitioning, MapReduce

Introduction

Over the past decades, computer technology has
become increasingly ubiquitous. Computing devices
have numerous uses and are essential for businesses,
scientists, governments, engineers and the everyday
consumer. What all these devices have in general is the

probable to produce data. In essence, data can arrive
from everywhere. The majority types of data have a
propensity to have their own distinctive set of
characteristics over and above how that data is dispersed.
Data that is not examined or utilized has small
significance and can be a waste of space and resources.

On the contrary, data that is executed on or examined
can be of immeasurable value. The data itself may be too
huge to store on a single computer. As a result, in order
to decrease the time it takes to execute the data and to
have the storage space to store the data, software
engineers have to write down programs that can perform

on 2 or more computers and dispense the workload
amongst them. While abstractly the computation to
execute may be straightforward, traditionally the

implementation has been complicated. In reaction to
these extremely same matters, engineers at Google built
up the Google File System (GFS) as stated by
(Ghemawat et al., 2003), a distributed file system design
representation for major data processing and formed the

MapReduce programming model by (Dean and
Ghemawat, 2008).

Hadoop is an open source implementation of

MapReduce, written in Java, initially developed by Yahoo.

Tan et al. (2009) stated that Hadoop was built in response to

the need for a MapReduce structure that was unfettered by

proprietal licenses, in addition to the increasing need for the

technology in Cloud computing. Hive, Pig, ZooKeeper and

HBase are all examples of regularly utilized extensions

to the Hadoop structure. Likewise, this study also

concentrates on Hadoop and examines the load

balancing mechanism in Hadoop’s MapReduce

skeleton for small-sized to medium-sized clusters.

In summary, this study presents a technique for

increasing the work load distribution among nodes in the

MapReduce framework, a technique to decrease the

Gothai Ekambaram and Balasubramanie Palanisamy / Journal of Computer Science 2015, 11 (3): 490.497

DOI: 10.3844/jcssp.2015.490.497

491

necessary memory footprint and improved execution

time for MapReduce when these techniques are

performed on small or medium sized cluster of

computers. The remaining part of this study is planned as

follows. Section 2 discusses some basic information on

MapReduce and its internal workings. Section 3 presents

the related work and existing methods applied for

TeraSort in Hadoop. Section 4 contains a proposed idea

for an improved load balancing methodology and a way

to better utilize memory. Section 5 introduces

investigational results and a discussion of this study’s

findings. Section 6 concludes this study with a brief idea

to future work.

Background

MapReduce

Dean and Ghemawat (2008) mentioned that

MapReduce is a programming representation created

as a method for programs to handle with huge

amounts of data. It attains this objective by

distributing the workload among several computers and

after that working on the data in parallel. Hsu et al.

(2007) stated that programs that perform on a

MapReduce structure need to separate the work into 2

phases known as Map and Reduce. Each phase has

key-value pairs for both input and output. To put into

practice these phases, a programmer needs to state 2

functions: A map function called a Mapper and its

equivalent reduce function called a Reducer. While a

MapReduce program is performed on Hadoop, it is

anticipated to be run on several computers or nodes.

For that reason, a master node is necessary to run all

the essential services desired to organize the

communication between Mappers and Reducers. An

instance of MapReduce dataflow is shown in Fig. 1.

Kavulya et al. (2010) reported that in the MapReduce

structure, the workload has to be balanced in order for

resources to be utilized powerfully.

HashCode

Hadoop utilizes a hash code as its standard method to

partition key-value pairs. The hash code itself can be

depicted mathematically and is represented by (Kenn et al.,

2013) as the subsequent equation:

1 2 0

1 1

1

1

*31 *31 *31

 *31

n n

n n

TotalWord
n

n

n

HashCode W W W

W

− −

−

−

=

= + + +

= ∑
 (1)

The hash code given in Equation 1 is the default hash

code utilized by a string object in Java, the programming

language on which Hadoop is based. A partition function

normally utilizes the hash code of the key and modulo of

reducers to decide which reducer to send the key-value

pair to. It is essential then that the partition function

uniformly distributes key-value pairs among reducers for

appropriate workload distribution.

TeraSort

O’Malley (2008) stated that Hadoop ruined the world

record in sorting a Terabyte of data by using its TeraSort

technique. Winning first place it managed to sort 1 TB of

data in 209 sec (3.48 min). This was the first occasion

either a Java program or an open source program had

won the contest. TeraSort was able to step up the sorting

process by distributing the workload uniformly within

the MapReduce framework. This was done via data

sampling and the use of a Trie as stated by (Panda et al.,

2010). Even though the main goal of TeraSort was to

sort 1 TB of data as speedily as possible, it has since

been incorporated into Hadoop as a standard.

Fig. 1. MapReduce dataflow

Gothai Ekambaram and Balasubramanie Palanisamy / Journal of Computer Science 2015, 11 (3): 490.497

DOI: 10.3844/jcssp.2015.490.497

492

On the whole, the TeraSort algorithm is extremely alike
to the standard MapReduce sort. Its efficiencies rely on
how it distributes its data between the Mappers and
Reducers. To attain an excellent load balance, TeraSort

uses a custom partitioner. Since the original goal of
TeraSort was to sort data as speedily as possible, its
implementation adopted a space for time approach. For
this reason, TeraSort utilizes a 2-level trie to partition the
data. Kenn et al. (2013) has shown that a trie which
confines strings stored in it to 2 characters is known as 2-

level Trie. This 2-level Trie is built using cut points
extracted from the sampled data. Once the trie is
constructed using the cut points, the partitioner can initiate
its job of partition strings based on where in the trie that
string would go if it were to be included in the trie.

Related Works

Sorting is a primary concept and is mandatory step in

countless algorithms. Heinz et al. (2002) stated that

Burst Sort is a sorting algorithm developed for sorting

strings in huge data collections. The TeraSort algorithm

also utilizes these burst trie techniques as a method to

sort data but does so under the perspective of the Hadoop

architecture and the MapReduce framework. An

essential problem for the MapReduce framework is the

idea of load balancing. Over the period, several

researches have been done on the area of load balancing.

Where data is situated by (Hsu and Chen, 2012), how it

is communicated by (Hsu and Chen, 2010), what

background it is being located on by (Hsu and Tsai,

2009; Hsu et al., 2008; Zaharia et al., 2008) and the

statistical allotment of the data can all have an outcome

on a systems efficiency. Most of these algorithms can be

found universal in a variety of papers and have been

utilized by structures and systems earlier to the

subsistence of the MapReduce structure stated by

(Krishnan, 2005; Stockinger et al., 2006). As stated by

(Candan et al., 2010), RanKloud make use of its

personal uSplit method for partitioning huge media data

sets. The uSplit method is required to decrease data

duplication costs and exhausted resources that are

particular to its media based algorithms. So as to work

just about perceived boundaries of the MapReduce

model, various extend or changes in the MapReduce

models have been offered. BigTable was launched by

Google to handle structured data as reported by

(Chang et al., 2008). BigTable looks like a database,

but does not support a complete relational database

model. It utilizes rows with successive keys grouped

into tables that form the entity of allocation and load

balancing. And experiences from the similar load and

memory balancing troubles faced by shared nothing

databases. HBase of Hadoop is the open source version

of BigTable, which imitates the similar functionality of

BigTable. Because of its simplicity of use, the

MapReduce model is pretty popular and has numerous

implementations as reported by (Liu and Orban, 2011;

Miceli et al., 2009). For that reason, there has been a

diversity of research on MapReduce so as to get better

performance of the structure or the performance of

particular applications similar to graph mining as mentioned

by (Jiang and Agrawal, 2011), data mining reported by

(Papadimitriou and Sun, 2008; Xu et al., 2009), genetic

algorithms by (Jin et al., 2008; Verma et al., 2009), or text

analysis by (Vashishtha et al., 2010) that execute on the

framework.

Occasionally, researchers discover the MapReduce

structure to be too strict or rigid in its existing

implementation. Fadika and Govindaraju (2011) stated

that DELMA is one of such a framework which imitates

the MapReduce model, identical to Hadoop MapReduce.

Such a system is likely to have attractive load balancing

problems, which is afar the scope of our paper. One

more different framework to MapReduce is Jumbo as

reported by (Groot and Kitsuregawa, 2010). The

Jumbo framework may be a helpful tool to research

load balancing, but it is not well-matched with

existing MapReduce technologies. To work around

load balancing problems resulting from joining tables

in Hadoop, (Lynden et al., 2011) introduced an

adaptive MapReduce algorithm for several joins using

Hadoop that works without changing its setting. This

study also attempts to do workload balancing in

Hadoop without changing the original structure, but

concentrates on sorting text.

Kenn et al. (2013) stated that the XTrie algorithm

presented a method to advance the cut point algorithm

derived from TeraSort. The important issue of the

TeraSort algorithm is that to deal with the cut points it

utilizes the Quick Sort algorithm. By using quicksort,

TeraSort wants to store all the keys it samples in

memory and that decreases the probable sample size,

which decreases the correctness of the preferred cut

points and this affects load balancing mentioned by

(O’Malley, 2008). One more difficulty TeraSort has is

that it only thinks the first 2 characters of a string during

partitioning. This also decreases the efficiency of the

TeraSort load balancing algorithm:

1 2 0

1 1

1

1

* 256 * 256 . .. * 256

 * 256

n n

n n

TotalWord
n

n

n

HashCode W W W

W

− −

−

−

=

= + + … +

= ∑
 (2)

The main issue derived by TeraSort and XTrie is that

they utilize an array to represent the trie. The major

concern with this method is that it tends to hold a lot of

exhausted space. Kenn et al. (2013) also stated that an

Algorithm, the ReMap algorithm, which decreases the

memory requirements of the original trie by decreasing

the number of elements it believes. The ReMap chart

Gothai Ekambaram and Balasubramanie Palanisamy / Journal of Computer Science 2015, 11 (3): 490.497

DOI: 10.3844/jcssp.2015.490.497

493

maps each one of the 256 characters on an ASCII chart

to the reduced set of elements anticipated by the ETrie.

Since the reason of ETrie is to imitate words found in

English text ReMap relocates the ASCII characters to the

64 elements. By dropping the number of elements to

think from 256 to 64 elements per level, the total

memory necessary is reduced to 1/16
th

 of its original

footprint for a 2-level Trie. So as to use the ETrie, the

TrieCode offered in Equation 2 has to be customized.

The EtrieCode showing in Equation 3 is alike to the

TrieCode in Equation 2, but has been changed to

replicate the smaller memory footprint. Even if it is

superior to XTrie, the difficulty with this method is that

it tends to have a lot of exhausted space. The EtrieCode

equation is as follows:

1 2 0

1 1

1

1

* 64 * 64 . .. * 64

 *64

n n

n n

TotalWord
n

n

n

HashCode W W W

W

− −

−

−

=

= + + … +

= ∑
 (3)

The Proposed Method

This section describes the key partitioning as an
alternative of hash code partitioning using Horner’s Rule
which will be incorporated in TeraSort of Hadoop.
Besides, this section discusses how memory can be

saved by means of a ReMap technique. In accordance
with investigational outcome of XTrie and ETrie, the
irregular rate is lower, lower being improved, while a trie
has more levels. This is since the deeper a trie is the
longer the prefix each key symbolizes. So, in this study,
full length key is considered as prefix instead of 2 or 3

and the hash value also calculated for the full key.

A trie has 2 advantages when compared with the

quick sort algorithm. First, the time complexity for insert

and search using the trie algorithm is O (k) where k is

the length of the key. In the meantime, the quick sort

algorithm best and average case is O (n log n) and in the

worst case O (n
2
) where n is the number of keys in its

sample. Next, a trie has a predetermined memory

footprint. This means the number of samples moved into

the trie can be enormous if so preferred. In the proposed

HTrie algorithm, the HTrie is an array accessed via a

HTrie code. A HTrie code is alike to a hashcode, but the

codes it generates occur in chronological ASCII order

using Horner’s Hash Key Rule. The equation for the

HTrie code is also a hash code which will use the next

prime number as specified by Horner’s Rule since the

whole key is considered instead of a trie structure.

Equation 2 and 3 used 256 and 64 respectively to get the

hash code and also provided best value since only 2 or 3

prefixes were considered. So, to get the different as well

as good result, the next prime number 37 instead of 31 is

used. The equation is as follows:

1 2 0

1 1

1

1

*37 *37 . .. *37

 *37

n n

n n

TotalWord
n

n

n

HashCode W W W

W

− −

−

−

=

= + + … +

= ∑
 (4)

Figure 2 illustrates how the hash code works for a

usual partitioner. In this illustration, there are 3 reducers

and 3 strings. Each string comes from a key in a (key,

value) pair. The first string ‘ate’ consists of 3 characters

‘a’, ‘t’ and ‘e’ and have the equivalent ASCII values.

The specific ASCII values are then supplied to Equation

4 to obtain the hash value 137186. Because of 3

reducers, a modulo 3 is used which provides a value 2.

Then the value is increased by one in the illustration

since there is no reducer 0, which modifies the value to

3. This moved the key-value pair to reducer 3. Using the

similar technique, the 2 other strings ‘bad’ and ‘can’ are

allocated to reducers 2 and 1, correspondingly.

Fig. 2. Proposed Hashcode Partitioner

Gothai Ekambaram and Balasubramanie Palanisamy / Journal of Computer Science 2015, 11 (3): 490.497

DOI: 10.3844/jcssp.2015.490.497

494

Results

To estimate the performance of the proposed

method, this study examines how fine the algorithms

dispense the workload and looks at how fine the

memory is used. Tests performed in this study were

completed using LastFm Dataset, with each record

containing the user profile with fields like country,

gender, age and date. Using these records as our input,

we simulated computer networks using VMware for

Hadoop file system. The tests are carried out with a

range of size of dataset such as 1 Lakh, 3 Lakhs, 5

Lakhs, 10 Lakhs, 50 Lakhs and 1 Crore records.

During the first experiment, an input file containing 1

lakh records is considered. As mentioned in the

MapReduce Framework, the input set is divided into

various splits and forwarded to Map Phase. Here for

this input file, only one mapper is considered since the

number of mappers is depends on the size of the input

file. After mapping, partition algorithm is used to

reduce the number of output records by grouping

records based on Htrie value on the country attribute

which is assumed as a key here. After grouping, 4

partitions are created using the procedure Gender-

Group-by-Country. All the corresponding log files

and counters are analyzed to view the performance. In

the other 5 experiments, input files with 3 Lakhs, 5

Lakhs, 10 Lakhs, 50 Lakhs and 1 Crore records are

considered. As per the above said method, all the

input files are partitioned into 4 partitions.

In order to compare the different methodologies

presented in this study and determine how balanced

the workload distributions are, this study uses various

metrics such as Effective CPU, Rate and Skew among

various metrics like clock time, CPU, Bytes, Memory,

Effective CPU, Rate and Skew since only the said 3

parameters shows the significant difference in

outcomes. Rate displays the number of bytes from the

Bytes column divided by the number of seconds

elapsed since the previous report, rounded to the

nearest kilobyte. No number appears for values less

than one KB per second. Effective CPU displays the

CPU-seconds consumed by the job between reports,

divided by the number of seconds elapsed since the

previous report. The result is expressed in units of

CPU-seconds per second-a measure of how process or

intensive the job is from each report to the next. The

skew of a data or flow partition is the amount by

which its size deviates from the average partition size:

 *100

partition size average partition size
skewof a data

sizeof largest partition

−
=

Discussion

The Tables 1-3 shows the results when using

various sized input files for the comparison of the

performance of ETrie, XTrie and HTrie with the

parameters Skew, Effective CPU and Rate respectively.

Similarly, the Fig. 3-5 shows comparison chart of the

results of the above. From the tables and figures for

results, it is shown that the proposed method (HTrie) is

performing better than XTrie and ETrie based on all the

3 parameters said above.

Fig. 3. Comparison chart of skew

Gothai Ekambaram and Balasubramanie Palanisamy / Journal of Computer Science 2015, 11 (3): 490.497

DOI: 10.3844/jcssp.2015.490.497

495

Fig. 4. Comparison chart of effective CPU

Fig. 5. Comparison chart of rate

Table 1. Comparison of skew

No. of records XTrie (%) ETrie (%) HTrie (%)

100000 14.24 15.27 12.96

300000 13.79 12.34 11.63

500000 12.18 14.44 12.50

1000000 12.43 12.11 11.93

5000000 13.48 14.29 11.96

10000000 14.52 14.78 11.96

Table 2. Comparison of effective CPU

No. of records XTrie ETrie HTrie

100000 0.054 0.061 0.047

300000 0.068 0.076 0.061

500000 0.078 0.087 0.070

1000000 0.079 0.088 0.073

5000000 0.075 0.084 0.071

10000000 0.077 0.086 0.074

Table 3. Comparison of rate

No. of records XTrie ETrie HTrie

100000 9653 8995 8218

300000 13032 11694 11147

500000 16551 14033 13099

1000000 18206 15436 14127

5000000 18388 15899 14439

10000000 18204 15422 14200

Conclusion

This study presented HTrie, comprehensive

partitioning technique, to improve load balancing for

distributed applications. By means of improving load

balancing, MapReduce programs can turn out to be more

proficient at managing tasks by reducing the overall

computation time spent processing data on each node. The

Gothai Ekambaram and Balasubramanie Palanisamy / Journal of Computer Science 2015, 11 (3): 490.497

DOI: 10.3844/jcssp.2015.490.497

496

TeraSort was developed based on arbitrarily generated input

data on an extremely huge cluster of 910 nodes. In that

specific computing setting and for that data configuration,

every partition created by MapReduce became visible on

simply one or 2 nodes. But in contrast, our work

concentrates at small-sized to medium-sized clusters. This

study changes their model and boosts it for a smaller

environment. A sequence of experimentations have exposed

that given a skewed data sample, the HTrie architecture was

capable to safeguard more memory, was capable to

distribute more computing resources on average and do so

with a lesser amount of time complexity.

After this, additional research can be made to introduce
new partitioning mechanisms so that it can be incorporated
with Hadoop for applications using different input samples
since Hadoop file system is not having any partitioning

mechanism except key partitioning.

Acknowledgement

The authors acknowledged Last.fm for providing the

access to this data via their web services.

Funding Information

The authors have not approached any funding

agencies for funding this work though there various
funding agencies were ready to fund this work.

Author’s Contributions

Gothai Ekambaram: Planned and designed all the

experiments, collected all the necessary data sets,

organized the study, implemented all the experiments

and contributed in writing this manuscript.

Balasubramanie Palanisamy: Planned and designed

all the experiments, collected all the necessary data sets,

organized the study, implemented all the experiments

and contributed in writing this manuscript along with

Gothai Ekambaram as research supervisor.

Ethics

The authors have confirmed that there will not be any

ethical issues after publication of this work.

References

Candan, K.S., J.W. Kim, P. Nagarkar, M. Nagendra and

R. Yu, 2010. RanKloud: Scalable multimedia data

processing in server clusters. IEEE MultiMed, 18:

64-77. DOI: 10.1109/MMUL.2010.70

Chang, F., J. Dean, S. Ghemawat, W.C. Hsieh and D.A.

Wallach et al., 2008. BigTable: A distributed

storage system for structured data. ACM Trans.

Comput. Syst., DOI: 10.1145/1365815.1365816

Dean, J. and S. Ghemawat, 2008. MapReduce: Simplified

data processing on large clusters. ACM Commun., 51:

107-113. DOI: 10.1145/1327452.1327492

Fadika, Z. and M. Govindaraju, 2011. DELMA:

Dynamically ELastic MapReduce framework for

CPU-intensive applications. Proceedings of the 11th

IEEE/ACM International Symposium on Cluster,

Cloud and Grid Computing, May 23-26, IEEE

Xplore press, Newport Beach, CA., pp: 454-463.

DOI: 10.1109/CCGrid.2011.71

Ghemawat, S., H. Gobioff and S.T. Leung, 2003. The

Google file system. Proceedings of the 19th ACM

Symposium on Operating Systems Principles,

(OSP’ 03), New York, USA, pp: 29-43.

DOI: 10.1145/945445.945450

Groot, S. and M. Kitsuregawa, 2010. Jumbo: Beyond

mapReduce for workload balancing. Proceedings of

the VLDB PhD Workshop, (PPW’ 10), Singapore,

pp: 7-12.

Heinz, S., J. Zobel and H.E. Williams, 2002. Burst tries:

A fast, efficient data structure for string keys. ACM

Trans. Inform. Syst., 20: 192-223.

DOI: 10.1145/506309.506312

Hsu, C.H. and B.R. Tsai, 2009. Scheduling for atomic

broadcast operation in heterogeneous networks with

one port model. J. Supercomput, 50: 269-288.

DOI: 10.1007/s11227-008-0261-6

Hsu, C.H. and S.C. Chen, 2010. A two-level scheduling

strategy for optimising communications of data

parallel programs in clusters. Int. J. Ad Hoc Ubiq.

Comput., 6: 263-269.

DOI: 10.1504/IJAHUC.2010.035537

Hsu, C.H. and S.C. Chen, 2012. Efficient selection

strategies towards processor reordering techniques

for improving data locality in heterogeneous

clusters. J. Supercomput., 60: 284-300.

DOI: 10.1007/s11227-010-0463-6

Hsu, C.H., S.C. Chen and C.Y. Lan, 2007. Scheduling

contention-free irregular redistributions in

parallelizing compilers. J. Supercomputing, 40:

229-247. DOI: 10.1007/s11227-006-0024-1

Hsu, C.H., T.L. Chen and J.H. Park, 2008. On improving

resource utilization and system throughput of master

slave job scheduling in heterogeneous systems. J.

Supercomput., 45: 129-150.

DOI: 10.1007/s11227-008-0211-3

Jiang, W. and G. Agrawal, 2011. Ex-MATE: Data

intensive computing with large reduction objects

and its application to graph mining. Proceedings of

the 11th IEEE/ACM International Symposium on

Cluster, Cloud and Grid Computing, May 23-26,

IEEE Xplore Press, Newport Beach, CA., pp:

475-484. DOI: 10.1109/CCGrid.2011.18

Gothai Ekambaram and Balasubramanie Palanisamy / Journal of Computer Science 2015, 11 (3): 490.497

DOI: 10.3844/jcssp.2015.490.497

497

Jin, C., C. Vecchiola and R. Buyya, 2008. MRPGA: An

extension of mapReduce for parallelizing genetic

algorithms. Proceedings of the IEEE 4th

International Conference on e-Science, Dec. 7-12,

IEEE Xplore press, Indianapolis, IN, pp: 214-221.

DOI: 10.1109/eScience.2008.78

Kavulya, S., J. Tan, R. Gandhi and P. Narasimhan, 2010.

An analysis of traces from a production mapreduce

cluster. Proceedings of the 10th IEEE/ACM

International Conference on Cluster, Cloud and Grid

Computing, May 17-20, IEEE Xplore Press,

Melbourne, VIC., pp: 94-103.

DOI: 10.1109/CCGRID.2010.112

Kenn, S., C.H. Hsu, Y.C. Chung and D. Zhang, 2013.

An improved partitioning mechanism for optimizing

massive data analysis using mapReduce. J.

Supercomput., 66: 539-555.

DOI: 10.1007/s11227-013-0924-9

Krishnan, A., 2005. GridBLAST: A globus-based high-

throughput implementation of blast in a grid

computing framework. Concurr Comput., 17:

1607-1623. DOI: 10.1002/cpe.906

Liu, H. and D. Orban, 2011. Cloud mapReduce: A

mapreduce implementation on top of a cloud

operating system. Proceedings of the 11th

IEEE/ACM International Symposium on Cluster,

Cloud and Grid Computing, May 23-26, IEEE

Xplore Press, Newport Beach, CA., pp: 464-474.

DOI: 10.1109/CCGrid.2011.25

Lynden, S., Y. Tanimura, I. Kojima and A. Matono,

2011. Dynamic data redistribution for mapReduce

joins. Proceedings of the IEEE 3rd International

Conference on Cloud Computing Technology and

Science, Nov. 29-Dec. 1, IEEE Xplore press, Athens,

pp: 717-723. DOI: 10.1109/CloudCom.2011.111

Miceli, C., M. Miceli, S. Jha, H. Kaiser and A. Merzky,

2009. Programming abstractions for data intensive

computing on clouds and grids. Proceedings of the

9th IEEE/ACM International Symposium on Cluster

Computing and the Grid, May 18-21, IEEE Xplore

Press, Shanghai, pp: 478-483.

DOI: 10.1109/CCGRID.2009.87

O’Malley, O., 2008. TeraByte sort on Apache

Hadoop.

Panda, B., M. Riedewald and D. Fink, 2010. The model-

summary problem and a solution for trees.

Proceedings of the IEEE 26th International

Conference on Data Engineering, Mar. 1-6, IEEE

Xplore Press, Long Beach, CA, pp: 449-460.

DOI: 10.1109/ICDE.2010.5447912

Papadimitriou, S. and J. Sun, 2008. DisCo: Distributed

co-clustering with map-reduce: A case study

towards petabyte-scale end-to-end mining.

Proceedings of the 8th IEEE International

Conference on Data Mining, Dec. 15-19, IEEE

Xplore Press, Pisa, pp: 512-521.

DOI: 10.1109/ICDM.2008.142

Stockinger, H., M. Pagni, L. Cerutti and L. Falquet, 2006.

Grid approach to embarrassingly parallel CPU-

intensive bioinformatics problems. Proceedings of the

2nd IEEE International Conference on e-Science and

Grid Computing, Dec. 4-6, IEEE Xplore Press,

Amsterdam, Netherlands, pp: 58-58.

DOI: 10.1109/E-SCIENCE.2006.261142

Tan, J., X. Pan, S. Kavulya, R. Gandhi and P.

Narasimhan, 2009. Mochi: Visual log-analysis

based tools for debugging hadoop. Proceedings of

the USENIX Workshop on Hot Topics in Cloud

Computing (HotCloud), (TCC’ 09), USENIX, San

Diego, CA. DOI: 10.1.1.149.881

Vashishtha, H., M. Smit and E. Stroulia, 2010. Moving

text analysis tools to the cloud. Proceedings of the

6th World Congress on Services, Jul. 5-10, IEEE

Xplore Press, Miami, FL., pp: 107-144.

DOI: 10.1109/SERVICES.2010.91

Verma, A., X. Llora, D.E. Goldberg and R.H. Campbell,

2009. Scaling genetic algorithms using mapReduce.

Proceedings of the 9th International Conference on

Intelligent Systems Design and Applications, Nov.

30-Dec. 2, IEEE Xplore Press, Pisa, pp: 13-18.

DOI: 10.1109/ISDA.2009.181

Xu, W., L. Huang, A. Fox, D. Patterson and M.I. Jordan,

2009. Detecting large-scale system problems by

mining console logs. Proceedings of the 22nd

Symposium on Operating Systems Principles, Oct.

11-14, New York, pp: 117-132.

DOI: 10.1145/1629575.1629587

Zaharia, M., A. Konwinski, A.D. Joseph, R. Katz and I.

Stoica, 2008. Improving mapReduce performance in

heterogeneous environments. Proceedings of the 8th

USENIX Symposium on Operating Systems Design

and Implementation, USENIX, San Diego,

California, USA, pp: 29-42.

