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Abstract: In the period of BigData, massive amounts of structured and 

unstructured data are being created every day by a multitude of ever-

present sources. BigData is complicated to work with and needs 

extremely parallel software executing on a huge number of computers. 

MapReduce is a current programming model that makes simpler writing 

distributed applications which manipulate BigData. In order to make 

MapReduce to work, it has to divide the workload between the computers 

in the network. As a result, the performance of MapReduce vigorously 

depends on how consistently it distributes this study load. This can be a 

challenge, particularly in the arrival of data skew. In MapReduce, 

workload allocation depends on the algorithm that partitions the data. 

How consistently the partitioner distributes the data depends on how huge 

and delegate the sample is and on how healthy the samples are examined 

by the partitioning method. This study recommends an enhanced 

partitioning algorithm using modified key partitioning that advances load 

balancing and memory utilization. This is completed via an enhanced 

sampling algorithm and partitioner. To estimate the proposed algorithm, 

its performance was compared against a high-tech partitioning mechanism 

employed by TeraSort. Experimentations demonstrate that the proposed 

algorithm is quicker, more memory efficient and more accurate than the 

existing implementation.  
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Introduction 

Over the past decades, computer technology has 
become increasingly ubiquitous. Computing devices 
have numerous uses and are essential for businesses, 
scientists, governments, engineers and the everyday 
consumer. What all these devices have in general is the 

probable to produce data. In essence, data can arrive 
from everywhere. The majority types of data have a 
propensity to have their own distinctive set of 
characteristics over and above how that data is dispersed. 
Data that is not examined or utilized has small 
significance and can be a waste of space and resources. 

On the contrary, data that is executed on or examined 
can be of immeasurable value. The data itself may be too 
huge to store on a single computer. As a result, in order 
to decrease the time it takes to execute the data and to 
have the storage space to store the data, software 
engineers have to write down programs that can perform 

on 2 or more computers and dispense the workload 
amongst them. While abstractly the computation to 
execute may be straightforward, traditionally the 

implementation has been complicated. In reaction to 
these extremely same matters, engineers at Google built 
up the Google File System (GFS) as stated by 
(Ghemawat et al., 2003), a distributed file system design 
representation for major data processing and formed the 

MapReduce programming model by (Dean and 
Ghemawat, 2008). 

Hadoop is an open source implementation of 

MapReduce, written in Java, initially developed by Yahoo. 

Tan et al. (2009) stated that Hadoop was built in response to 

the need for a MapReduce structure that was unfettered by 

proprietal licenses, in addition to the increasing need for the 

technology in Cloud computing. Hive, Pig, ZooKeeper and 

HBase are all examples of regularly utilized extensions 

to the Hadoop structure. Likewise, this study also 

concentrates on Hadoop and examines the load 

balancing mechanism in Hadoop’s MapReduce 

skeleton for small-sized to medium-sized clusters.  

In summary, this study presents a technique for 

increasing the work load distribution among nodes in the 

MapReduce framework, a technique to decrease the 
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necessary memory footprint and improved execution 

time for MapReduce when these techniques are 

performed on small or medium sized cluster of 

computers. The remaining part of this study is planned as 

follows. Section 2 discusses some basic information on 

MapReduce and its internal workings. Section 3 presents 

the related work and existing methods applied for 

TeraSort in Hadoop. Section 4 contains a proposed idea 

for an improved load balancing methodology and a way 

to better utilize memory. Section 5 introduces 

investigational results and a discussion of this study’s 

findings. Section 6 concludes this study with a brief idea 

to future work. 

Background 

MapReduce 

Dean and Ghemawat (2008) mentioned that 

MapReduce is a programming representation created 

as a method for programs to handle with huge 

amounts of data. It attains this objective by 

distributing the workload among several computers and 

after that working on the data in parallel. Hsu et al. 

(2007) stated that programs that perform on a 

MapReduce structure need to separate the work into 2 

phases known as Map and Reduce. Each phase has 

key-value pairs for both input and output. To put into 

practice these phases, a programmer needs to state 2 

functions: A map function called a Mapper and its 

equivalent reduce function called a Reducer. While a 

MapReduce program is performed on Hadoop, it is 

anticipated to be run on several computers or nodes. 

For that reason, a master node is necessary to run all 

the essential services desired to organize the 

communication between Mappers and Reducers. An 

instance of MapReduce dataflow is shown in Fig. 1. 

Kavulya et al. (2010) reported that in the MapReduce 

structure, the workload has to be balanced in order for 

resources to be utilized powerfully. 

HashCode 

Hadoop utilizes a hash code as its standard method to 

partition key-value pairs. The hash code itself can be 

depicted mathematically and is represented by (Kenn et al., 

2013) as the subsequent equation: 
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The hash code given in Equation 1 is the default hash 

code utilized by a string object in Java, the programming 

language on which Hadoop is based. A partition function 

normally utilizes the hash code of the key and modulo of 

reducers to decide which reducer to send the key-value 

pair to. It is essential then that the partition function 

uniformly distributes key-value pairs among reducers for 

appropriate workload distribution. 

TeraSort 

O’Malley (2008) stated that Hadoop ruined the world 

record in sorting a Terabyte of data by using its TeraSort 

technique. Winning first place it managed to sort 1 TB of 

data in 209 sec (3.48 min). This was the first occasion 

either a Java program or an open source program had 

won the contest. TeraSort was able to step up the sorting 

process by distributing the workload uniformly within 

the MapReduce framework. This was done via data 

sampling and the use of a Trie as stated by (Panda et al., 

2010). Even though the main goal of TeraSort was to 

sort 1 TB of data as speedily as possible, it has since 

been incorporated into Hadoop as a standard.

 

 
 

Fig. 1. MapReduce dataflow
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On the whole, the TeraSort algorithm is extremely alike 
to the standard MapReduce sort. Its efficiencies rely on 
how it distributes its data between the Mappers and 
Reducers. To attain an excellent load balance, TeraSort 

uses a custom partitioner. Since the original goal of 
TeraSort was to sort data as speedily as possible, its 
implementation adopted a space for time approach. For 
this reason, TeraSort utilizes a 2-level trie to partition the 
data. Kenn et al. (2013) has shown that a trie which 
confines strings stored in it to 2 characters is known as 2-

level Trie. This 2-level Trie is built using cut points 
extracted from the sampled data. Once the trie is 
constructed using the cut points, the partitioner can initiate 
its job of partition strings based on where in the trie that 
string would go if it were to be included in the trie. 

Related Works 

Sorting is a primary concept and is mandatory step in 

countless algorithms. Heinz et al. (2002) stated that 

Burst Sort is a sorting algorithm developed for sorting 

strings in huge data collections. The TeraSort algorithm 

also utilizes these burst trie techniques as a method to 

sort data but does so under the perspective of the Hadoop 

architecture and the MapReduce framework. An 

essential problem for the MapReduce framework is the 

idea of load balancing. Over the period, several 

researches have been done on the area of load balancing. 

Where data is situated by (Hsu and Chen, 2012), how it 

is communicated by (Hsu and Chen, 2010), what 

background it is being located on by (Hsu and Tsai, 

2009; Hsu et al., 2008; Zaharia et al., 2008) and the 

statistical allotment of the data can all have an outcome 

on a systems efficiency. Most of these algorithms can be 

found universal in a variety of papers and have been 

utilized by structures and systems earlier to the 

subsistence of the MapReduce structure stated by 

(Krishnan, 2005; Stockinger et al., 2006). As stated by 

(Candan et al., 2010), RanKloud make use of its 

personal uSplit method for partitioning huge media data 

sets. The uSplit method is required to decrease data 

duplication costs and exhausted resources that are 

particular to its media based algorithms. So as to work 

just about perceived boundaries of the MapReduce 

model, various extend or changes in the MapReduce 

models have been offered. BigTable was launched by 

Google to handle structured data as reported by 

(Chang et al., 2008). BigTable looks like a database, 

but does not support a complete relational database 

model. It utilizes rows with successive keys grouped 

into tables that form the entity of allocation and load 

balancing. And experiences from the similar load and 

memory balancing troubles faced by shared nothing 

databases. HBase of Hadoop is the open source version 

of BigTable, which imitates the similar functionality of 

BigTable. Because of its simplicity of use, the 

MapReduce model is pretty popular and has numerous 

implementations as reported by (Liu and Orban, 2011; 

Miceli et al., 2009). For that reason, there has been a 

diversity of research on MapReduce so as to get better 

performance of the structure or the performance of 

particular applications similar to graph mining as mentioned 

by (Jiang and Agrawal, 2011), data mining reported by 

(Papadimitriou and Sun, 2008; Xu et al., 2009), genetic 

algorithms by (Jin et al., 2008; Verma et al., 2009), or text 

analysis by (Vashishtha et al., 2010) that execute on the 

framework. 

Occasionally, researchers discover the MapReduce 

structure to be too strict or rigid in its existing 

implementation. Fadika and Govindaraju (2011) stated 

that DELMA is one of such a framework which imitates 

the MapReduce model, identical to Hadoop MapReduce. 

Such a system is likely to have attractive load balancing 

problems, which is afar the scope of our paper. One 

more different framework to MapReduce is Jumbo as 

reported by (Groot and Kitsuregawa, 2010). The 

Jumbo framework may be a helpful tool to research 

load balancing, but it is not well-matched with 

existing MapReduce technologies. To work around 

load balancing problems resulting from joining tables 

in Hadoop, (Lynden et al., 2011) introduced an 

adaptive MapReduce algorithm for several joins using 

Hadoop that works without changing its setting. This 

study also attempts to do workload balancing in 

Hadoop without changing the original structure, but 

concentrates on sorting text. 

Kenn et al. (2013) stated that the XTrie algorithm 

presented a method to advance the cut point algorithm 

derived from TeraSort. The important issue of the 

TeraSort algorithm is that to deal with the cut points it 

utilizes the Quick Sort algorithm. By using quicksort, 

TeraSort wants to store all the keys it samples in 

memory and that decreases the probable sample size, 

which decreases the correctness of the preferred cut 

points and this affects load balancing mentioned by 

(O’Malley, 2008). One more difficulty TeraSort has is 

that it only thinks the first 2 characters of a string during 

partitioning. This also decreases the efficiency of the 

TeraSort load balancing algorithm: 
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The main issue derived by TeraSort and XTrie is that 

they utilize an array to represent the trie. The major 

concern with this method is that it tends to hold a lot of 

exhausted space. Kenn et al. (2013) also stated that an 

Algorithm, the ReMap algorithm, which decreases the 

memory requirements of the original trie by decreasing 

the number of elements it believes. The ReMap chart 
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maps each one of the 256 characters on an ASCII chart 

to the reduced set of elements anticipated by the ETrie. 

Since the reason of ETrie is to imitate words found in 

English text ReMap relocates the ASCII characters to the 

64 elements. By dropping the number of elements to 

think from 256 to 64 elements per level, the total 

memory necessary is reduced to 1/16
th

 of its original 

footprint for a 2-level Trie. So as to use the ETrie, the 

TrieCode offered in Equation 2 has to be customized. 

The EtrieCode showing in Equation 3 is alike to the 

TrieCode in Equation 2, but has been changed to 

replicate the smaller memory footprint. Even if it is 

superior to XTrie, the difficulty with this method is that 

it tends to have a lot of exhausted space. The EtrieCode 

equation is as follows: 
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The Proposed Method 

This section describes the key partitioning as an 
alternative of hash code partitioning using Horner’s Rule 
which will be incorporated in TeraSort of Hadoop. 
Besides, this section discusses how memory can be 

saved by means of a ReMap technique. In accordance 
with investigational outcome of XTrie and ETrie, the 
irregular rate is lower, lower being improved, while a trie 
has more levels. This is since the deeper a trie is the 
longer the prefix each key symbolizes. So, in this study, 
full length key is considered as prefix instead of 2 or 3 

and the hash value also calculated for the full key. 

A trie has 2 advantages when compared with the 

quick sort algorithm. First, the time complexity for insert 

and search using the trie algorithm is O (k) where k is 

the length of the key. In the meantime, the quick sort 

algorithm best and average case is O (n log n) and in the 

worst case O (n
2
) where n is the number of keys in its 

sample. Next, a trie has a predetermined memory 

footprint. This means the number of samples moved into 

the trie can be enormous if so preferred. In the proposed 

HTrie algorithm, the HTrie is an array accessed via a 

HTrie code. A HTrie code is alike to a hashcode, but the 

codes it generates occur in chronological ASCII order 

using Horner’s Hash Key Rule. The equation for the 

HTrie code is also a hash code which will use the next 

prime number as specified by Horner’s Rule since the 

whole key is considered instead of a trie structure. 

Equation 2 and 3 used 256 and 64 respectively to get the 

hash code and also provided best value since only 2 or 3 

prefixes were considered. So, to get the different as well 

as good result, the next prime number 37 instead of 31 is 

used. The equation is as follows: 
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Figure 2 illustrates how the hash code works for a 

usual partitioner. In this illustration, there are 3 reducers 

and 3 strings. Each string comes from a key in a (key, 

value) pair. The first string ‘ate’ consists of 3 characters 

‘a’, ‘t’ and ‘e’ and have the equivalent ASCII values. 

The specific ASCII values are then supplied to Equation 

4 to obtain the hash value 137186. Because of 3 

reducers, a modulo 3 is used which provides a value 2. 

Then the value is increased by one in the illustration 

since there is no reducer 0, which modifies the value to 

3. This moved the key-value pair to reducer 3. Using the 

similar technique, the 2 other strings ‘bad’ and ‘can’ are 

allocated to reducers 2 and 1, correspondingly. 

 

 
 

Fig. 2. Proposed Hashcode Partitioner 
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Results 

To estimate the performance of the proposed 

method, this study examines how fine the algorithms 

dispense the workload and looks at how fine the 

memory is used. Tests performed in this study were 

completed using LastFm Dataset, with each record 

containing the user profile with fields like country, 

gender, age and date. Using these records as our input, 

we simulated computer networks using VMware for 

Hadoop file system. The tests are carried out with a 

range of size of dataset such as 1 Lakh, 3 Lakhs, 5 

Lakhs, 10 Lakhs, 50 Lakhs and 1 Crore records. 

During the first experiment, an input file containing 1 

lakh records is considered. As mentioned in the 

MapReduce Framework, the input set is divided into 

various splits and forwarded to Map Phase. Here for 

this input file, only one mapper is considered since the 

number of mappers is depends on the size of the input 

file. After mapping, partition algorithm is used to 

reduce the number of output records by grouping 

records based on Htrie value on the country attribute 

which is assumed as a key here. After grouping, 4 

partitions are created using the procedure Gender-

Group-by-Country. All the corresponding log files 

and counters are analyzed to view the performance. In 

the other 5 experiments, input files with 3 Lakhs, 5 

Lakhs, 10 Lakhs, 50 Lakhs and 1 Crore records are 

considered. As per the above said method, all the 

input files are partitioned into 4 partitions. 

In order to compare the different methodologies 

presented in this study and determine how balanced 

the workload distributions are, this study uses various 

metrics such as Effective CPU, Rate and Skew among 

various metrics like clock time, CPU, Bytes, Memory, 

Effective CPU, Rate and Skew since only the said 3 

parameters shows the significant difference in 

outcomes. Rate displays the number of bytes from the 

Bytes column divided by the number of seconds 

elapsed since the previous report, rounded to the 

nearest kilobyte. No number appears for values less 

than one KB per second. Effective CPU displays the 

CPU-seconds consumed by the job between reports, 

divided by the number of seconds elapsed since the 

previous report. The result is expressed in units of 

CPU-seconds per second-a measure of how process or 

intensive the job is from each report to the next. The 

skew of a data or flow partition is the amount by 

which its size deviates from the average partition size: 

 

   
     *100

   

partition size average partition size
skewof a data

sizeof largest partition

−
=  

 

Discussion 

The Tables 1-3 shows the results when using 

various sized input files for the comparison of the 

performance of ETrie, XTrie and HTrie with the 

parameters Skew, Effective CPU and Rate respectively. 

Similarly, the Fig. 3-5 shows comparison chart of the 

results of the above. From the tables and figures for 

results, it is shown that the proposed method (HTrie) is 

performing better than XTrie and ETrie based on all the 

3 parameters said above. 

 

 
 

Fig. 3. Comparison chart of skew 
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Fig. 4. Comparison chart of effective CPU 

 

 

 

Fig. 5. Comparison chart of rate 

 

Table 1. Comparison of skew 

No. of records XTrie (%) ETrie (%) HTrie (%) 

100000 14.24 15.27 12.96 

300000 13.79 12.34 11.63 

500000 12.18 14.44 12.50 

1000000 12.43 12.11 11.93 

5000000 13.48 14.29 11.96 

10000000 14.52 14.78 11.96 

 
Table 2. Comparison of effective CPU 

No. of records XTrie ETrie HTrie 

100000 0.054 0.061 0.047 

300000 0.068 0.076 0.061 

500000 0.078 0.087 0.070 

1000000 0.079 0.088 0.073 

5000000 0.075 0.084 0.071 

10000000 0.077 0.086 0.074 

Table 3. Comparison of rate 

No. of records XTrie ETrie HTrie 

100000 9653 8995 8218 

300000 13032 11694 11147 

500000 16551 14033 13099 

1000000 18206 15436 14127 

5000000 18388 15899 14439 

10000000 18204 15422 14200 

 

Conclusion 

This study presented HTrie, comprehensive 

partitioning technique, to improve load balancing for 

distributed applications. By means of improving load 

balancing, MapReduce programs can turn out to be more 

proficient at managing tasks by reducing the overall 

computation time spent processing data on each node. The 
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TeraSort was developed based on arbitrarily generated input 

data on an extremely huge cluster of 910 nodes. In that 

specific computing setting and for that data configuration, 

every partition created by MapReduce became visible on 

simply one or 2 nodes. But in contrast, our work 

concentrates at small-sized to medium-sized clusters. This 

study changes their model and boosts it for a smaller 

environment. A sequence of experimentations have exposed 

that given a skewed data sample, the HTrie architecture was 

capable to safeguard more memory, was capable to 

distribute more computing resources on average and do so 

with a lesser amount of time complexity. 

After this, additional research can be made to introduce 
new partitioning mechanisms so that it can be incorporated 
with Hadoop for applications using different input samples 
since Hadoop file system is not having any partitioning 

mechanism except key partitioning. 
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