

© 2015 Mani Arora, Derick Engles and Sandeep Sharma. This open access article is distributed under a Creative Commons

Attribution (CC-BY) 3.0 license.

Journal of Computer Science

Original Research Paper

MDS Algorithm for Encryption

1
Mani Arora,

2
Derick Engles and

3
Sandeep Sharma

1Khalsa College, Amritsar, Punjab, India
2,3Guru Nanak Dev University, Amritsar, Punjab, India

Article history

Received: 3-08-2013

Revised: 6-01-2015

Accepted: 13-03-2015

Corresponding Author:

Mani Arora

Khalsa College, Amritsar,

Punjab, India

Email: mani_mcain@yahoo.com

Abstract: Most of the encryption algorithms used today generates huge

cipher messages as well as long encryption keys. These approaches

require time and are computationally intensive .While sending data

packets through the network a compression technique along with

cryptography can be applied to reduce the data packet size for better

bandwidth utilization and hence faster transmission of data. In this study

we propose a new encryption technique which will encrypt data into

reduced size cipher text while keeping the check on size of key. The

algorithm was first introduced in an earlier paper. In this study we

modified algorithm to preprocess text as well as numeric data.

Keywords: Encryption, Privacy, Cipher, Size, Text, Security

Introduction

In the digital world with the widespread use of

information technologies and the rise of digital computer

networks in many areas of the world, securing the

exchange of information has become a crucial task

(McConnell, 2002). Cryptography is the methods that

allow information to be sent in a secure form in such a

way that the only receiver able to retrieve this

information. The era of modern cryptology is generally

agreed to have started in 1949, when Shannon

transformed cryptography from an art to a science with

the publication of a paper entitled “Communication

theory of secrecy systems” (Diffie and Hellman, 1976;

1979). However, while cryptology took a new

fundamental direction from that point on, most of the

major innovations in the field date from the last 30 years.

Modern cryptography involves the use of keys for data

signing, encoding and decoding. Some keys are

distributed privately and some publicly. Level of

protection is varied for every situation and depends on the

encryption technique used for coding. One way to

estimate techniques on this level is to estimate how much

CPU time would be required on a machine of a given

processing speed to iterate through all possible keys to the

encoded data based upon the permutation and second is

how much secure the data is while transmitting. The basic

goal of our work is along with these two measures

cryptography algorithm must also be efficient in reducing

the size of encrypted text referred as cipher text. In our

earlier paper (Mani and Derick, 2010) we have used the

term reduced size cipher text to convert plain text to

cipher text. In this study we are modifying the

cryptographic technique to provide better results.

Proposed Technique

The proposed technique intends to encrypt the plain
text with a prechosen mathematical function along with
the objective of reduced size cipher text. During
encryption and decryption process, two dictionaries are
referred primary dictionary as shown in Table 1 and
secondary dictionary as shown in Table 2. Dictionary
technique is used as it provide compression efficiency as
well as fast decompression mechanism. The basic idea is
to take the advantage of commonly occurring instruction
sequences by using a dictionary. The repeating
occurrences are replaced by a codeword. Primary
dictionary will be static in nature while secondary
dictionary will be dynamic. It depends on the nature of
text being encoded. The online building of the secondary
dictionary in the primary memory ensures the single pass
over the data and the dictionary need to be transmitted
over the network. In this previous technique we not
focused on frequent occurrence of alphanumeric and
numeric data. Since any digit took 2 bytes i.e., 16 bits in
memory but if we provide code of 12 bits to every digit, it
will reduce the size of cipher text as well. So the modified
primary dictionary will contain codes for words, numeric
data and alphanumeric data. We have still focused on
English language only while creating dictionaries.

Primary Dictionary

The dictionary contains words and numeric data which
are probably most frequently used along with the codes*
(which will be explained later). The dictionary will be
fixed in size and the codes too. Even if someone cracks
the dictionary and codes, still our technique is going
to work because it is based on both primary and
secondary dictionary and secondary dictionary is not fixed.

Mani Arora et al. / Journal of Computer Science 2015, 11 (3): 479.483

DOI: 10.3844/jcssp.2015.479.483

480

Table 1. Primary dictionary

Code String

0000 0000 0001 0

0000 0000 0010 1

0000 0000 0011 2

0000 0000 0100 3

0000 0000 0101 4

0000 0000 0110 5

0000 0000 0111 6

0000 0000 1000 7

0000 0000 1001 8

0000 0000 1010 9

0000 0000 1011 after

0000 0000 1100 off

0000 0000 1101 I

0000 0000 1110 or

0000 0000 1111 an

0000 0001 0000 a

0000 0001 0001 as

0000 0001 0010 in

0000 0001 0011 ok

0000 0001 0100 It

0000 0001 0101 is

0000 0001 0110 on

0000 0001 0111 at

0000 0001 1000 of

0000 0001 1001 If

0000 0001 1010 we

0000 0001 1011 my

0000 0001 1100 do

0000 0001 1101 am

0000 0001 1110 pm

0000 0001 1111 be

0000 0001 0000 to

0000 0010 0001 by

0000 0001 0010 can

0000 0001 0011 the

0000 0001 0100 was

0000 0001 0101 sat

0000 0001 0110 for

0000 0001 0111 not

0000 0001 1000 has

0000 0001 1001 had

0000 0001 1010 him

0000 0001 1011 her

0000 0001 1100 other

0000 0001 1101 which

0000 0001 1110 where

0000 0001 1111 you

0000 0011 0000 your

0000 0011 0001 some

0000 0011 0010 too

0000 0011 0011 who

0000 0011 0100 Its

0000 0011 0101 and

0000 0011 0110 whatever

0000 0011 0111 herself

0000 0011 1000 bar

0000 0011 1001 can’t

0000 0011 1010 don’t

0000 0011 1011 there

0000 0011 1100 does

0000 0011 1101 into

Table 1. Continue

0000 0011 1110 this

0000 0011 1111 back

0000 0100 0000 were

0000 0100 0001 four

0000 0100 0010 that

0000 0100 0011 back

0000 0100 0100 from

0000 0100 0101 form

0000 0100 0110 most

0000 0100 0111 word

0000 0100 1000 whom

0000 0100 1001 able

0000 0100 1010 here

0000 0100 1011 must

0000 0100 1100 did

0000 0100 1101 didn’t

0000 0100 1110 like

0000 0100 1111 national

0000 0101 0000 .

0000 0101 0001 ,

0000 0101 0010 ‘

0000 0101 0011 “

0000 0101 0100 ;

0000 0101 0101 :

0000 0101 0110)

0000 0101 0111 (

0000 0101 1000 ?

0000 0101 1001 /

0000 0101 1010 \

0000 0101 1011 |

0000 0101 1100 !

0000 0101 1101 @

0000 0101 1110 %

0000 0101 1111 &

Table 2. Secondary dictionary

0001 0000 0000 confidentiality

0001 0000 0001 Information

0001 0000 0010 cannot

0001 0000 0011 understood

0001 0000 0100 anyone

0001 0000 0101 unintended

0001 0000 0110 protection

0001 0000 0111 transmitted

0001 0000 1000 data

0001 0000 1001 passive

0001 0000 1010 attacks

0001 0000 1011 aspect

0001 0000 1100 traffic

0001 0000 1101 flow

0001 0000 1110 analysis

0001 0000 1111 requires

0001 0001 0000 attacker

0001 0001 0001 observe

0001 0001 0010 source

0001 0001 0011 destination

0001 0001 0100 frequency

0001 0001 0101 length

0001 0001 0110 characteristics

0001 0001 0111 communication

0001 0001 1000 facility

Mani Arora et al. / Journal of Computer Science 2015, 11 (3): 479.483

DOI: 10.3844/jcssp.2015.479.483

481

Table 3. Contents of key file

1111 0000 1111 Key

To maintain this dictionary plain text file is used and for
processing we read the file into memory as associative
arrays. Associative arrays maps arbitrarily typed objects to
arbitrarily typed objects. Data structures used to represent
associative array when initialized in memory will be
linked list. For searching a word in the dictionary, simple
linear search is used. We are using 12 bit codes so total
4096 words can be stored in this dictionary.

Secondary Dictionary

The dictionary is not fixed. This dictionary will be
empty when initialized. Every time the algorithm come
across the string in pass2, it will add it to dictionary and
assign a code to it. Starting code for first string in
secondary dictionary will be fixed. The next codes can
be obtained by doing increment of one step. As this
dictionary will be created during runtime so it’s difficult
to crack the encryption. This dictionary will also be
stored in same file that for primary dictionary is used.

Encryption Algorithm

The algorithm will start with initializing a primary
dictionary and variable S, which will be initially empty. We
read the file containing dictionary into memory in linked list
structure. The variable S will read plain text data file word
by word and comparisons in dictionary will be made with
help of this variable. In the algorithm each word of plain
text will be first searched in primary dictionary, this is done
using linear search. If the word is present in primary
dictionary then it will be replaced by corresponding code
assigned to it and stored in encoded output file. Codes are in
binary as binary take less memory space than any other data
type. Codes are fixed for each data word so it can’t be
changed later on. Size of code allocated to each string will
be 12 bits that is any dictionary can contain maximum 4096
entries. In this modified version of the previous algorithm
we are considering first 10 entries of the numeric data in
primary dictionary. As we know otherwise numeric digit
took 2 byte (16 bits) space in memory but here we are
allocating 12 bits fixed code for every numeric digit which
will also compress the data and finally the cipher text. Also
some codes will be allocated to common alphanumeric data
so that data can be compressed.

If the word is not found in primary dictionary then it is
searched in secondary dictionary. If the word is present in
secondary dictionary its corresponding code will be
substituted to encoded output file, if not present then that
word is substituted in secondary dictionary and the new
code is generated to it by incrementing the code by 1 of last
entry in secondary dictionary. The code for first entry in
secondary dictionary will be fixed and rest codes will be
obtained by incrementing each code by 1.Secondary
dictionary will be of variable size.

After these pass we will get encoded output file.
Further in the algorithm we use a predetermined

mathematical function XOR to further encrypt the
encoded output. As code assigned to each word is of 12
bits, so in pass3 each 12 bit block will be XOR with a
secret key to get final output which will be a cipher text
in reduced size then plain text.

The above procedure is also explained with the help
of flowchart i.e., Fig. 1.

The Algorithm for Proposed Technique is:

1. Initialize S as an empty string
2. Read primary dictionary in memory
3. Do while NOT EOF
 Read the next word from the file
 If this word is in primary dictionary get corresponding

code from primary dictionary
 Write the code in the output file
 else
 Read secondary dictionary in file
 If this word is in secondary dictionary see the

corresponding code from secondary dictionary
 Write the code in the output file
 else
 add this word to secondary dictionary

assign the next code obtained by
incrementing previous code by 1 used to
substitute the new code in the output file

4. Read the output file
5. Do while NOT EOF
 Read key from file in memory
 Read next 12 -bit block from file
 Perform XOR operation between key and 12-bit block
 Write the code in final output file
6. End

Primary Dictionary

Primary dictionary is fixed so sender and receiver
both before transmission of cipher text will know it.

Algorithm to Create Primary Dictionary

1. Start with prechosen code and assign first word to it
2. Add new word to dictionary
3. Assign code to new word by incrementing previous

code by 1

Secondary Dictionary

Secondary dictionary is dynamic in nature. It will be
created at runtime.

Algorithm to Create Secondary Dictionary

1. Initialize A as an empty string
2. Do till EOF
 Read the file till any string is
 encountered
 Assign string to A
 Add this string to dictionary
3. Start with prechosen code and assign first string to it
4. Assign code to new word by incrementing previous

code by 1

Mani Arora et al. / Journal of Computer Science 2015, 11 (3): 479.483

DOI: 10.3844/jcssp.2015.479.483

482

Fig.1. Flowchart

Flowchart for the Algorithm is as Follows

Example

For Example the plain text given below is encrypted

after pass1 and pass2 as shown below.

Plain Text that is to be Encrypted is:

Confidentiality

The information cannot be understood by anyone

for whom it was unintended. Confidentially is the

protection of transmitted data from passive attacks. The

other aspect of confidentiality is the protection of

traffic flow from analysis. This requires that an attacker

not be able to observe the source and destination

frequency length or other characteristics of the traffic

on a communication facility.

Pass1: In this pass primary dictionary given as Table 1

and secondary dictionary given as Table 2 is referred for

substituting codes in place of text:

0000 0000 0010 0000 0101 0110 0001 0000 0000 0000

0101 0101 0000 0001 0011 0001 0000 0001 0000 0001

0010 0000 0001 1111 0000 0001 0011 0000 0010 0001

0000 0100 0000 0001 0110 0000 0100 1000 0000 0001

0100 0000 0001 0100 0001 0000 0101 0000 0101 0000

0001 0000 0000 0000 0001 0101 0000 0001 0011 0001

0000 0110 0000 0001 1000 0001 0000 0111 0001 0000

1000 0000 0100 0100 0001 0000 1001 0001 0000 1010

0000 0101 0000 0000 0001 0011 0000 0001 1100 0001

0000 1011 0000 0001 1000 0001 0000 0000 0000 0001

0101 0000 0001 0011 0001 0000 0110 0000 0001 1000

0001 0000 1100 0001 0000 1101 0000 0100 0100 0001

0000 1110 0000 0101 0000 0000 0011 1110 0001 0000

1111 0000 0100 0010 0000 0000 1111 0001 0001 0000

Mani Arora et al. / Journal of Computer Science 2015, 11 (3): 479.483

DOI: 10.3844/jcssp.2015.479.483

483

0000 0001 0111 0000 0001 1111 0000 0100 1001 0000

0001 0000 0001 0001 0001 0000 0001 0011 0001 0001

0010 0000 0101 1111 0001 0001 0011 0001 0001 0100

0001 0001 0101 0000 0000 1110 0000 0001 1100 0001

0001 0110 0000 0001 1000 0000 0001 0011 0001 0000

1100 0000 0001 0110 0001 0001 0111 0001 0001 1000

0000 0101 0000

Pass2: In this pass each 12-bit block will be XOR

with key, which is given in Table 3:

1111 0000 1101 1111 0101 1001 1110 0000 1111 1111

0101 1010 1111 0001 1100 1110 0000 1110 1111 0001

1101 1111 0001 0000 1111 0001 1100 1111 0010 1110

1111 0100 1111 1110 0110 1111 1011 1000 1111 1110

0100 1111 1110 0100 1110 1111 0101 1111 1010 0000

1110 1111 0000 1111 1110 0101 1111 1110 0011 1110

1111 0110 1111 1110 1000 1110 1111 0111 1110 1111

1000 1111 1011 0100 1110 1111 1001 1110 1111 1010

1111 1010 0000 1111 1110 0011 1111 1110 1100 1110

1111 1011 1111 1110 1000 1110 1111 0000 1111 1110

0101 1111 1110 0011 1110 1111 0110 1111 1110 1000

1110 1111 1100 1110 1111 1101 1111 1011 0100 1110

1111 1110 1111 1010 0000 1111 1100 1110 1110 1111

0000 1111 1011 0010 1111 1111 1111 1110 0001 1111

1111 0001 1000 1111 0001 0000 1111 1111 0001 1000

1111 0001 0000 1111 0100 0110 1111 0001 1111 1110

0001 1110 1111 0001 1100 1110 0001 1101 1111 0101

0000 1110 0001 1100 1110 0001 1011 1110 0001 1010

1111 0000 0001 1111 0001 0011 1110 0001 1001 1111

0001 0111 1111 0001 1100 1110 0000 0011 1111 0001

1001 1110 0001 1000 1110 0001 0111 1111 0101 1111

Conclusion

A new algorithm has been proposed that focused both

on the security as well as length of cipher text. The

proposed algorithm produced smaller cipher text in

comparison to existing methods. In this algorithm

dictionaries are acting as keys and both the encoding and

decoding is not possible until key is not available. The

code generation is simpler in comparison to existing

algorithms which are mostly based on mixed operators

or values and other mathematical operations. The

transmission time of cipher text has been also reduced.

Also it reduces the redundancy in data representation to

decrease the storage required for that data. We extending

this algorithm to our future work, we will try to provide

a mechanism so that there should be no need to send

secondary dictionary to receiver end.

Funding Information

The authors have no support or funding to report.

Author’s Contributions

All authors equally contributed in this work.

Ethics

This article is original and contains unpublished

material. The corresponding author confirms that all of

the other authors have read and approved the manuscript

and no ethical issues involved.

References

Diffie, W. and M. Hellman, 1976. New directions in

cryptography. IEEE Trans. Inform. Theory, 22:

644-654. DOI: 10.1109/TIT.1976.1055638

Diffie, W. and M.E. Hellman, 1979. Privacy and

authentication: An introduction to cryptography. Proc.

IEEE, 67: 397-427. DOI: 10.1109/PROC.1979.11256

Mani, A. and A. Derick, 2010. An algorithm to reduce

the size of cipher text. Global J. Comput. Sci.

Technol., 10: 50-54.

McConnell, M., 2002. Information Assurance in the

twenty-first century. IEEE Comput., 35: 16-19.

DOI: 10.1109/MC.2002.1012425

