
Journal of Computer Science 10 (6): 906-924, 2014
ISSN: 1549-3636
© 2014 Science Publications
doi:10.3844/jcssp.2014.906.924 Published Online 10 (6) 2014 (http://www.thescipub.com/jcs.toc)

Corresponding Author: Yevgen Biletsky, University of New Brunswick, Fredericton, Canada

906 Science Publications

JCS

HYBRID SEARCH AND DELIVERY
OF LEARNING OBJECTS SYSTEM

Anthony N. Ilukwe and Yevgen Biletsky

University of New Brunswick, Fredericton, Canada

Received 2013-09-15; Revised 2013-09-22; Accepted 2014-01-25

ABSTRACT

Retrieving learning material from the internet is a tedious process that has begged for a solution to filter out
of the cluster of data and irrelevant material on the internet and deliver material that is relevant to a specific
user. The Hybrid Search and Delivery of Learning Objects (HSDLO) system, put forward in this study,
facilitates the personalized search and delivery of such learning material from the internet. The system
combines a number of mechanisms to perform this: Keyword‐based search, concept‐based search and
personalization. The keyword-and concept-based search methods are responsible for establishing the
relevance of each learning material retrieved from the web. The system presented in this study builds upon
work done in the previous iteration by additional functionality; further decoupling the subsystems to
improve modularity; perfection of the personalization subsystem; and a redesign of the user interface to a
simpler form with Web2.0 sensibilities. Additionally, the personalization subsystem is substantially
extended, allowing for a learner to have a profile active within the system during a session in which he or
she is logged in and following a search, for the profile to be adapted and stored in memory for subsequent
sessions. This functionality has been tested and successfully evaluated.

Keywords: Retrieving Learning, Hybrid Search, Delivery of Learning Objects

1. INTRODUCTION

The system presented in this study builds upon work
done in the previous iteration of HSDLO (Biletskiy et al.,
2012) by additional functionality; further decoupling the
subsystems to improve modularity; perfection of the
personalization subsystem; and a redesign of the user
interface to a simpler form with Web2.0 sensibilities

The need for a mechanism to deliver learning material
from the internet-material that matches the personal
attributes and preferences of a learner-has led to the
development of a software system that makes this feasible.

1.1. Overview

The HSDLO system allows a learner (user) to create
a profile detailing their personal interests and run a
personalized search to find Learning Objects (LO) by
comparing values of corresponding attributes in the
learner profile and Learning Object Metadata (LOM),
taking into consideration the degree of relevance
assigned to each attribute in the learner profile.

1.2. Scope of the System

A user (learner) can create a personal profile
containing his/her attributes and the weights and values
assigned to them.

This profile resides within the Personalization
subsystem and stored as an XML file in the “users”
directory. Whenever a registered user logs into the
system, their respective user profile data is loaded into
memory where it remains as subsequent actions are
performed on the system during the session.

The system contains a set of rules for comparing
profile attributes to LOM attributes. The user must enter
desired search keyword (s) triggering the system to
search for corresponding learning objects.

After running the search, the system processes the
learning objects and returns the most relevant ones to the
user. The system must provide access to the learning
objects selected by the user and based on which learning
objects are selected, make necessary adjustments to the
learner profile to reflect the choices, allowing the profile

Anthony N. Ilukwe and Yevgen Biletsky / Journal of Computer Science 10 (6): 906-924, 2014

907 Science Publications

JCS

to be updated every time a user runs a search. This is
achieved by altering the XML file that corresponds to the
profile of the user who is currently logged in.

There should be a simple graphical interface-
consisting of a text fields, text areas and button-through
which the user can interact with the system.

1.3. Objectives

The objectives of this project are to fully implement
the personalization subsystem; allowing for the user to
create a profile that is saved in memory; enabling the user
profile to be active while the user is logged in; and
enabling the user profile to be written to memory after it
has been adapted following a search. The user interface
will also be designed to maximize simplicity and ease of
use.

1.4. Definitions, Acronyms and Abbreviations

LO = Learning object
LOM = Learning object metadata
LOR = Learning object repository
HSDLO = Hybrid search and delivery of learning objects

2. DESCRIPTION OF PRE‐‐‐‐EXISTING
SYSTEM

The pre-existing HSDLO system (Biletskiy et al.,
2012) combines keyword-based and concept-based
search to establish the relevance of each learning object
to the query triggered by the user. The personalization
subsystem incorporates a set of rules that govern the
comparison of the user profile attributes to LOM

attributes. The relevance of each search result is
calculated based on a comparison of the learner (user)
profile and LO descriptions. This comparison is based on
the values assigned to parameters of the learner profile,
attributes of the LO descriptions and the priority of these
characteristics and attributes assigned by the learner.

3. HSDLO SYSTEM, POST-
IMPLEMENTATION

3.1. System Architecture

The top-level architecture HSDLO system is
presented in Fig. 1. The system is decomposed into the
following subsystems: Personalization, Crawler,
LOSearch, Comparator and Utilities. The Crawler is
dedicated to the task of automatically downloading Los
from available LORs, NEEDS.org in this case, in order
to populate the LOR with data to be used in subsequent
searches. The LOSearch subsystem facilitates the
search of Los in the LOR, based on a search query
transmitted by the user. The user (Learner) delivers a
search query by specifying the keyword(s) for the Los
that he or she intends to retrieve. LOSearch uses these
keywords to perform keyword-based and concept-based
search of the LOs. After the query has been issued by
the user, the system retrieves the user profile, which is
analyzed for the purpose of a comparison with the
retrieved LOMs. The personalization subsystem
rearranges the results using the profile of the learner
and the set of rules encapsulated within the
personalization subsystem.

Fig. 1. HSDLO high level architecture

Anthony N. Ilukwe and Yevgen Biletsky / Journal of Computer Science 10 (6): 906-924, 2014

908 Science Publications

JCS

Fig. 2. HSDLO subsystem decomposition

3.2. Subsystem Decomposition

The system is decomposed into the following
subsystems: Personalization, Crawler, LOSearch,
Comparator and Utilities (Fig. 2).

Personalization the personalization adapts a profile to
reflect the feedback from the results given after a search
by using the profile adapter.

Crawler the web crawler stores the data collected
from NEEDS in XML format.

LOSearch the search engine sorts the learning objects
retrieved from a search query into a learning object
repository. After a keyword search is performed,
LOsearch uses the WordNet API to find synonyms and
then searches each learning objects meta-data.

Comparator the comparator interacts with the Parser
to produce a Parsed LOM object. It controls the
comparison of the Parsed Profile with Parsed LOM then
gives a score defined by the rules in the Rulebase.

Utilities this subsystem merely houses the LOs, LORs
and XML parsers. The rationale is to decouple the search
data from the aforementioned processing subsystems.

The next subsections describe in more detail the
LOSearch and Personalization subsystems (Fig. 3).

3.3. LOSearch: Keyword and Concept-Based
Search

Biletskiy et al. (2012) outlined the process of keyword
and concept-based search in HSDLO as follows:

Many methods of searching text documents are
based on looking for specific words or different
forms of these words in the text. This is based on
the scenario in which the user enters a query that
contains a number of words. One of the common
methods is to create an index of words to the
documents that contain them in order to speed up
the search (Wirth, 1976). First, all the documents
are processed and their words are separated.
Then a list of all words is created. A list of
documents that contain each word is attached to
it. When the user enters some keywords to
search, the list of the documents connected to
each word is returned.

Anthony N. Ilukwe and Yevgen Biletsky / Journal of Computer Science 10 (6): 906-924, 2014

909 Science Publications

JCS

Fig. 3. Personalization subsystem

Boolean operations can be implemented in this
method. Usually a search algorithm ranks the
text documents based on their relevance to the
user query. In this scenario, the document that is
most similar to the user query, based on some
criteria, appears first in the list. For comparison
and defining the criteria, the query and the
documents should be defined in a model. Most of
the models consider a document as a set of
unordered words, namely bag of words
Chwodhury, 2004. Then each document is
represented by a vector with length of the
number of all the words in the document
collection. Calculating the elements of this
vector can be done in different ways.

Term Frequency-Inverse Document Frequency

(TFIDF) is the approach employed for analysis of the
text documents by the HSDLO system. Biletskiy et al.
(2012) elucidates on this method as follows:

Term Frequency-Inverse Document Frequency
(TFIDF) is one of the commonly used methods

for modeling and comparing text documents.
Term Frequency is defined as the number of
times a word occurred in a document.
Document Frequency is defined as the number
of documents in which the word occurs at least
once over all documents. The documents are
presented as vectors (d

�

 = (d(1), d(|F|))) that
consist of keywords with their term
frequencies so that the documents with similar
content have similar vectors. The new
document is presented as a vector d

�

 as well.
The attribute values in the vectors are
presented as TF(w,d). The keywords are
distinct words or word parts, which distinguish
the existing categories, or words that are
prominent in the new document which could
be selected from the documents by pruning
infrequent words to remove most spelling
errors and pruning high frequency words to
eliminate non-content words like “the”, “and”,
or “for”. The inverse document frequency for
each keyword IDF(w) is calculated based on
the following formula:

Anthony N. Ilukwe and Yevgen Biletsky / Journal of Computer Science 10 (6): 906-924, 2014

910 Science Publications

JCS

| D |
IDF(w) log

DF(w)

= =

where, |D| is the total number of documents. DF(w)
represents the document frequency of the keyword.

The inverse document frequency of a keyword is high
if it occurs in only one document, which makes it more
significant for distinguishing that particular document.
The weight value d(i) in a document d for each keyword
is calculated by multiplying its term frequency in the
document and its inverse document frequency:

() ()(i)
i id TF w ,d IDF w= ×

The similarity between documents can be calculated

by computing the cosine value between their
representative vectors. The query can also be modeled by
a vector in the same way and be compared with each
document to find the most similar document to it. The
cosine value of two vectors is calculated based on the
following formula:

() i
i

i

d q
cos d ,q

|| d || || q ||
=
�
�

�
� i

�
�

i

The documents are sorted based on their cosine
value in decreasing order. There are other ways to
create vectors for documents. For example, only
term frequency can be considered as the attribute
value. In the simplest model the vectors can be
binary, which shows whether a particular
document contains the keyword or not.

Biletskiy et al. (2012) further expantiates on the need

for semantic expansion of search queries:

The use of keywords for comparing documents
and searching in documents gives good results,
but it does not consider the semantics of the text.
If a user wants to search for something which she
has in mind, she must know the exact keywords.
This is helpful in many situations, but in many
other scenarios the user does not know exactly
which keywords she should use. There may be
many different keywords to express a single
concept and there may be words that can represent
different concepts. To be more effective, search
engines may include the semantic relations
between the words and document. In other words,
concept-based information retrieval is search for
documents based on their meaning rather than on
the presence of keywords in the document.

The relevance of LOs, alluded to earlier, to a
learner’s (user’s) query can be described with the
following expression:

D k k c cR w R w R= +

where, Rk and Rc are relevancy measures for keyword-
based and concept-based search, respectively and wk and
wc are their corresponding weights.

The discussed search subsystem is itself composed of
two major subsystems: Keyword-and concept-based
document search subsystems. The proposed system uses
an ontology to represent the hierarchy of concepts-
WordNet an open access lexical database of the English
language, developed by researchers at Princeton
University. WordNet groups nouns, verbs, adjectives and
adverbs into sets of cognitive synonyms, known as
synsets, with each of these synsets representing a precise
concept. These Synsets are interlinked by means of
conceptual-semantic and lexical relations that are defined
in the WordNet database.

Biletskiy et al. (2012) describes the comparison of
the term and concept vectors, following a new query, as
follows:

When the learner issues a query, the query
engine creates a term vector and a concept vector
based on the query. Then, these two vectors are
compared for similarity to the term and concept
vectors of each document. This gives two
measures for sorting the document based on
relevance: Keyword-based similarity and
concept-based similarity.

3.4. Personalization

The Personalization subsystem is an extension of
the main HSDLO system that allows users to create
profiles describing their personal attributes and to run
a personalized search in the LOR. It then ranks the
retrieved Los after performing a comparison of the
values of learner profile attributes and LOM, taking
into consideration the level of significance assigned to
each learner profile attribute. This comparison is
implemented as a set of rules written in JavaScript and
stored in XML. The Personalization subsystem finally
adjusts the learner's profile based on implicit feedback
from the learner on the Los retrieved from the
personalized search.

Biletskiy et al. (2012) articulates the context in
which the personalization subsystem interlocks the
HSDLO system:

Anthony N. Ilukwe and Yevgen Biletsky / Journal of Computer Science 10 (6): 906-924, 2014

911 Science Publications

JCS

The HSDLO system allows a learner to create a
profile, which consists of a set of attributes with
their values and importance. The learner can
access the profile through the system at any
time to make and save changes. Once a learner
has a profile, she is able to run searches of
learning objects in learning object repositories.
Before running the search, the learners must
select which repository they wish to search
from the list of available repositories
maintained by the system. The default
repository is the most recent one searched.
When the search is run, the personalization
subsystem scans through the designated
learning object repository, parsing the metadata
of the learning objects and comparing it to the
learner’s profile, assigning a score to each
learning object in the repository. Once the search
is complete, the subsystem returns the top ranked
learning objects to the learner. The learner can
then select which learning objects to download
and the system acquires them and saves the
learner’s selections. Using the aggregate set of
selections made by the learner, the subsystem
makes modifications to the learner profile to
better represent his or her preferences.

The following are the aforementioned attributes that

make up the learner profile of the HSDLO system:

Qualifications
keywords_of_interests
proficiency_writing
proficiency_reading
proficiency_speaking
input_output_technology
priority_of_goal
goal
proficiency_listening
skill_level
physical_preferences
age
activity_status
role
language
activity_type
cognitive_preferences

HSDLO system data is stored in XML format due to
its efficacy and simplicity in the storage and access of
data. It is also platform independent.

• User profile

The user profile data is be stored as an XML file
allowing for quick access as well as make it easy to edit.
An example is provided below:

<!--Profile information goes here-->
<Attribute>
 <Name>xxxxxxxxxxxxxxxx</Name>
 <Value>xxxxxxxxxxxxxxxx</Value>
 <Weight>xxxxxxxxxxxxxxxx</Weight>
</Attribute>

• Learning Objects IDs

Learning objects Ids will be stored in an XML file
which provides easy access and is more usable. An
example is provided below:

<!--LO information goes here-->
<List>
 <Name>xxxxxxxxxxxxxxxx</Name>
 <URL>xxxxxxxxxxxxxxxx</URL>
 <ID>xxxxxxxxxxxxxxxx</ID>
</List>

• Learning objects files

Learning objects will be stored in an XML file which
provides easy access and is more usable. One file will
contain information about a particular web site. An
example is provided below:

<List>
<Name>xxxxxxxxxxxxxxxx</Name>
 <URL>xxxxxxxxxxxxxxxx</URL>
 <LOMURL>xxxxxxxxxxxxxxxx</LOMURL>
</List>

• Rule base

The rules that are used by the comparator to calculate
the score of Los is stored as a file in XML format. An
example is provided below:

<!-- Rule Base information goes here-->
<Rule>
 <ProfileAttribute>xxxxxxxxxxxxxxxx</ProfileAttri

bute>
 <MetaAttribute>xxxxxxxxxxxxxxxx</MetaAttribute>
</Rule>

Appendix 1 and 2 contains more examples of all the
currently used attributes of LOM and learner profile. The
full set of comparison rules is presented in Appendix 3.

Anthony N. Ilukwe and Yevgen Biletsky / Journal of Computer Science 10 (6): 906-924, 2014

912 Science Publications

JCS

Appendix 1: Usage
Instructions 1. Open the project in NetBeans as follows: File >> Open Project. Browse to the project directory and
select.
When the project is open, click run project to start the system.

2. After the system launches, a window like one below appears. If a learner profile already exists, login with the
appropriate user name and password, otherwise, click on the “create new user” tab.

3. Fill in the new user form and register a user name and password that you will remember. This data is stored in the
HSDLO/src/users directory. Use the slider to adjust the weight of the attributes as appropriate.

Anthony N. Ilukwe and Yevgen Biletsky / Journal of Computer Science 10 (6): 906-924, 2014

913 Science Publications

JCS

4. After logging in, the main application window seen below is shown on the screen. Enter keywords into the text area
and click “start process” to begin the search.
The system will take a few seconds to run the search and the personalization process and a list of retrieved learning
objects will appear in the larger text areas. The weights assigned to the learner profile attributes can be observed to have
changed due to the profile adaptation that takes place during the personalization process.

Anthony N. Ilukwe and Yevgen Biletsky / Journal of Computer Science 10 (6): 906-924, 2014

914 Science Publications

JCS

Anthony N. Ilukwe and Yevgen Biletsky / Journal of Computer Science 10 (6): 906-924, 2014

915 Science Publications

JCS

Anthony N. Ilukwe and Yevgen Biletsky / Journal of Computer Science 10 (6): 906-924, 2014

916 Science Publications

JCS

Anthony N. Ilukwe and Yevgen Biletsky / Journal of Computer Science 10 (6): 906-924, 2014

917 Science Publications

JCS

Anthony N. Ilukwe and Yevgen Biletsky / Journal of Computer Science 10 (6): 906-924, 2014

918 Science Publications

JCS

Anthony N. Ilukwe and Yevgen Biletsky / Journal of Computer Science 10 (6): 906-924, 2014

919 Science Publications

JCS

Anthony N. Ilukwe and Yevgen Biletsky / Journal of Computer Science 10 (6): 906-924, 2014

920 Science Publications

JCS

Anthony N. Ilukwe and Yevgen Biletsky / Journal of Computer Science 10 (6): 906-924, 2014

921 Science Publications

JCS

Anthony N. Ilukwe and Yevgen Biletsky / Journal of Computer Science 10 (6): 906-924, 2014

922 Science Publications

JCS

Table 1 shows the rules that the HSDLO system uses
to perform comparison and the calculation of LO scores.

The comparison and calculation of the scores of Los
is governed by a set of criteria. Biletskiy et al. (2012)
states the following:

To facilitate the personalized search and delivery
of learning objects to learners the scoring criterion
LOScorej which estimates the suitability of the j-
th learning object to the learner’s personal profile,
is defined as a function of the learner's preference
to select interesting materials from learning
objects delivered to the learner:

n

j i ij
i 1

LOScore w RR
=

= ×∑

Where:
RRjj = Respond of the i-th comparison rule (Table 1) on

the comparison of the j-th learning object with
the learner profile

wi = Coefficient of importance, which defines a level
of influence of the i-th attribute of the learner
profile (corresponding to the i-th comparison
rule) on the selection of learning objects; the
range of values of this coefficient is [0,1]

Anthony N. Ilukwe and Yevgen Biletsky / Journal of Computer Science 10 (6): 906-924, 2014

923 Science Publications

JCS

n = Total number of selection criteria (same as the
number of attributes of learner profile or the
number of comparison rules)

After estimating the suitability of the learning

objects, they are sorted in order of decreasing values
of LOScorej and the top scored learning objects are
delivered to the learner. The learner explores the
delivered documents’ LOM and content. After the
learning object is explored, the learner defines a
degree of utility (usefulness) of the learning object
LOUj = (1: Useful, 0.5: Auxiliary, 0: Not useful). In
reality, the learner’s preference may change, or the
learner may explicitly declare her preferences
incorrectly. Therefore, the dynamic adjustment of the
coefficients of importance will be necessary. The
degree of utility serves as a criterion for adjustment as
follows. If the learner has defined a learning object as
useful or auxiliary, then a comparative analysis of the
corresponding learner's profile and LOM attributes is

conducted. This analysis is conducted for all the
learning objects delivered to the learner and is based
on the principle that if the learning object is useful or
auxiliary for the learner and the learner's profile and
LOM attributes match (RRi = 1) then the weight wi is
increased, but if RRi = 1 then wi is decreased.

Defining the operations of increase and decrease of
wi as operations with saturation, some coefficients of
importance converge to 1 (meaning that the attribute
is important), some converge to 0.1 (meaning that the
attribute is not important) and some remain in
between 0.1 and 1 (meaning that importance cannot be
definite). The minimum coefficient is selected as to
keep a chance to increase it if it again becomes
important. In addition, the presented approach
assumes that learning objects are searched within the
same topic or theme that is interesting for the learner,
because otherwise a learning object can be evaluated
by the learner as not useful based on the theme, rather
than on personal preferences.

Table 1. HSDLO system rules Reprinted from A rule-based system for hybrid search and delivery of learning objects to learners, by

(Biletskiy et al., 2012) Reprinted with permission
Rule# LIP attribute involved LOM attributes involved Rule respond (0: Otherwise)
1 Birth date Typical age range 1: if age fits in the typical age range
2 Language Content language 1: if language = content language
3 Proficiency of Interactivity type 1: if proficiency satisfies the interactivity
 writing of the language Interactivity level level and interactivity type is “active”
4 Proficiency of reading of the Interactivity type 1: if proficiency satisfies the interactivity level
 Language Interactivity level and interactivity type is “active” or “exposive”
5 Proficiency of listening of the Format interactivity 1: if proficiency satisfies the interactivity level,
 language type interactivity level interactivity type is “active” or “exposive”
 and format is “audio” or “video”
6 Proficiency speaking of the Format interactivity 1: if proficiency satisfies the interactivity level,
 language type interactivity level interactivity type is “active” and
 format is “audio” or “video”
7 Priority of goal Duration typical learning time 1: if priority of goal is high; or, if low, the
 duration and learning time must be short
8 Qualification description Taxon path type 1: if qualification corresponds to the
 Taxon path value classification of the learning object
9 Activity type Context 1: if learner’s activity corresponds to the
 context of learning
10 Cognitive preferences Difficulty 1: if the level of cognitive preferences of the
 learner is sufficient for the
 difficulty level of the learning object
11 Skill level Taxon path type 1: if skill level is sufficient for the learning object
 Taxon path value
12 Role Intended end user role 1: if the learner’s role is desirable
13 Interests Title description 1: if the learner’s interests correspond to the
 topic of learning object
14 I/O technology Requirement other 1: if the learner has sufficient access to
 platform requirements technology, e.g., multimedia

Anthony N. Ilukwe and Yevgen Biletsky / Journal of Computer Science 10 (6): 906-924, 2014

924 Science Publications

JCS

Fig. 4. HSDLO conceptual model

4. CONCLUSION

The conceptual model of the HSDLO systems is
shown in Fig. 4. It illustrates the extraction of LOs,
which are stored in the LOR, by the crawler. It also
shows the extraction of LOM attributes and its
conversion to a format that can be used by the
personalization subsystem. This subsystem performs the
appropriate adjustment to the user profile, following the
processing of Los and user feedback. The adapted profile
of each unique learner is saved in memory and used for
subsequent searches by each unique learner.

5. REFERENCES

Biletskiy, Y., H. Baghi, J. Steele and R. Vovk, 2012. A
rule-based system for hybrid search and delivery of
learning objects to learners. Interact. Techn. Smart
Edu., 9: 263-279. DOI:
10.1108/17415651211284048

Wirth, N., 1976. Algorithms + Data Structures. 1st Edn.,
Pearson Education Canada, Englewood Cliffs,
ISBN-10: 0130224189, pp: 366.

