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ABSTRACT 

Retrieving learning material from the internet is a tedious process that has begged for a solution to filter out 
of the cluster of data and irrelevant material on the internet and deliver material that is relevant to a specific 
user. The Hybrid Search and Delivery of Learning Objects (HSDLO) system, put forward in this study, 
facilitates the personalized search and delivery of such learning material from the internet. The system 
combines a number of mechanisms to perform this: Keyword‐based search, concept‐based search and 
personalization. The keyword-and concept-based search methods are responsible for establishing the 
relevance of each learning material retrieved from the web. The system presented in this study builds upon 
work done in the previous iteration by additional functionality; further decoupling the subsystems to 
improve modularity; perfection of the personalization subsystem; and a redesign of the user interface to a 
simpler form with Web2.0 sensibilities. Additionally, the personalization subsystem is substantially 
extended, allowing for a learner to have a profile active within the system during a session in which he or 
she is logged in and following a search, for the profile to be adapted and stored in memory for subsequent 
sessions. This functionality has been tested and successfully evaluated. 
 
Keywords: Retrieving Learning, Hybrid Search, Delivery of Learning Objects 

 
1. INTRODUCTION 

The system presented in this study builds upon work 
done in the previous iteration of HSDLO (Biletskiy et al., 
2012) by additional functionality; further decoupling the 
subsystems to improve modularity; perfection of the 
personalization subsystem; and a redesign of the user 
interface to a simpler form with Web2.0 sensibilities 

The need for a mechanism to deliver learning material 
from the internet-material that matches the personal 
attributes and preferences of a learner-has led to the 
development of a software system that makes this feasible. 

1.1. Overview 

The HSDLO system allows a learner (user) to create 
a profile detailing their personal interests and run a 
personalized search to find Learning Objects (LO) by 
comparing values of corresponding attributes in the 
learner profile and Learning Object Metadata (LOM), 
taking into consideration the degree of relevance 
assigned to each attribute in the learner profile. 

1.2. Scope of the System 

A user (learner) can create a personal profile 
containing his/her attributes and the weights and values 
assigned to them. 

This profile resides within the Personalization 
subsystem and stored as an XML file in the “users” 
directory. Whenever a registered user logs into the 
system, their respective user profile data is loaded into 
memory where it remains as subsequent actions are 
performed on the system during the session. 

The system contains a set of rules for comparing 
profile attributes to LOM attributes. The user must enter 
desired search keyword (s) triggering the system to 
search for corresponding learning objects.  

After running the search, the system processes the 
learning objects and returns the most relevant ones to the 
user. The system must provide access to the learning 
objects selected by the user and based on which learning 
objects are selected, make necessary adjustments to the 
learner profile to reflect the choices, allowing the profile 
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to be updated every time a user runs a search. This is 
achieved by altering the XML file that corresponds to the 
profile of the user who is currently logged in. 

There should be a simple graphical interface-
consisting of a text fields, text areas and button-through 
which the user can interact with the system. 

1.3. Objectives 

The objectives of this project are to fully implement 
the personalization subsystem; allowing for the user to 
create a profile that is saved in memory; enabling the user 
profile to be active while the user is logged in; and 
enabling the user profile to be written to memory after it 
has been adapted following a search. The user interface 
will also be designed to maximize simplicity and ease of 
use. 

1.4. Definitions, Acronyms and Abbreviations 

LO = Learning object  
LOM = Learning object metadata  
LOR = Learning object repository  
HSDLO = Hybrid search and delivery of learning objects 

2. DESCRIPTION OF PRE‐‐‐‐EXISTING 
SYSTEM 

The pre-existing HSDLO system (Biletskiy et al., 
2012) combines keyword-based and concept-based 
search to establish the relevance of each learning object 
to the query triggered by the user. The personalization 
subsystem incorporates a set of rules that govern the 
comparison of the user profile attributes to LOM 

attributes. The relevance of each search result is 
calculated based on a comparison of the learner (user) 
profile and LO descriptions. This comparison is based on 
the values assigned to parameters of the learner profile, 
attributes of the LO descriptions and the priority of these 
characteristics and attributes assigned by the learner. 

3. HSDLO SYSTEM, POST-
IMPLEMENTATION 

3.1. System Architecture 

The top-level architecture HSDLO system is 
presented in Fig. 1. The system is decomposed into the 
following subsystems: Personalization, Crawler, 
LOSearch, Comparator and Utilities. The Crawler is 
dedicated to the task of automatically downloading Los 
from available LORs, NEEDS.org in this case, in order 
to populate the LOR with data to be used in subsequent 
searches. The LOSearch subsystem facilitates the 
search of Los in the LOR, based on a search query 
transmitted by the user. The user (Learner) delivers a 
search query by specifying the keyword(s) for the Los 
that he or she intends to retrieve. LOSearch uses these 
keywords to perform keyword-based and concept-based 
search of the LOs. After the query has been issued by 
the user, the system retrieves the user profile, which is 
analyzed for the purpose of a comparison with the 
retrieved LOMs. The personalization subsystem 
rearranges the results using the profile of the learner 
and the set of rules encapsulated within the 
personalization subsystem. 

 

 
 

Fig. 1. HSDLO high level architecture 
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Fig. 2. HSDLO subsystem decomposition 
 
3.2. Subsystem Decomposition 

The system is decomposed into the following 
subsystems: Personalization, Crawler, LOSearch, 
Comparator and Utilities (Fig. 2).  

Personalization the personalization adapts a profile to 
reflect the feedback from the results given after a search 
by using the profile adapter. 

Crawler the web crawler stores the data collected 
from NEEDS in XML format. 

LOSearch the search engine sorts the learning objects 
retrieved from a search query into a learning object 
repository. After a keyword search is performed, 
LOsearch uses the WordNet API to find synonyms and 
then searches each learning objects meta-data. 

Comparator the comparator interacts with the Parser 
to produce a Parsed LOM object. It controls the 
comparison of the Parsed Profile with Parsed LOM then 
gives a score defined by the rules in the Rulebase. 

Utilities this subsystem merely houses the LOs, LORs 
and XML parsers. The rationale is to decouple the search 
data from the aforementioned processing subsystems. 

The next subsections describe in more detail the 
LOSearch and Personalization subsystems (Fig. 3). 

3.3. LOSearch: Keyword and Concept-Based 
Search 

Biletskiy et al. (2012) outlined the process of keyword 
and concept-based search in HSDLO as follows: 
 

Many methods of searching text documents are 
based on looking for specific words or different 
forms of these words in the text. This is based on 
the scenario in which the user enters a query that 
contains a number of words. One of the common 
methods is to create an index of words to the 
documents that contain them in order to speed up 
the search (Wirth, 1976). First, all the documents 
are processed and their words are separated. 
Then a list of all words is created. A list of 
documents that contain each word is attached to 
it. When the user enters some keywords to 
search, the list of the documents connected to 
each word is returned.  
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Fig. 3. Personalization subsystem 
 

Boolean operations can be implemented in this 
method. Usually a search algorithm ranks the 
text documents based on their relevance to the 
user query. In this scenario, the document that is 
most similar to the user query, based on some 
criteria, appears first in the list. For comparison 
and defining the criteria, the query and the 
documents should be defined in a model. Most of 
the models consider a document as a set of 
unordered words, namely bag of words 
Chwodhury, 2004. Then each document is 
represented by a vector with length of the 
number of all the words in the document 
collection. Calculating the elements of this 
vector can be done in different ways. 

 
Term Frequency-Inverse Document Frequency 

(TFIDF) is the approach employed for analysis of the 
text documents by the HSDLO system. Biletskiy et al. 
(2012) elucidates on this method as follows: 
 

Term Frequency-Inverse Document Frequency 
(TFIDF) is one of the commonly used methods 

for modeling and comparing text documents. 
Term Frequency is defined as the number of 
times a word occurred in a document. 
Document Frequency is defined as the number 
of documents in which the word occurs at least 
once over all documents. The documents are 
presented as vectors (d

�

 = (d(1), d(|F|))) that 
consist of keywords with their term 
frequencies so that the documents with similar 
content have similar vectors. The new 
document is presented as a vector d

�

 as well. 
The attribute values in the vectors are 
presented as TF(w,d). The keywords are 
distinct words or word parts, which distinguish 
the existing categories, or words that are 
prominent in the new document which could 
be selected from the documents by pruning 
infrequent words to remove most spelling 
errors and pruning high frequency words to 
eliminate non-content words like “the”, “and”, 
or “for”. The inverse document frequency for 
each keyword IDF(w) is calculated based on 
the following formula: 
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| D |
IDF(w) log

DF(w)

 
= =  

 
 

 
where, |D| is the total number of documents. DF(w) 
represents the document frequency of the keyword. 

The inverse document frequency of a keyword is high 
if it occurs in only one document, which makes it more 
significant for distinguishing that particular document. 
The weight value d(i) in a document d for each keyword 
is calculated by multiplying its term frequency in the 
document and its inverse document frequency: 
 

( ) ( )(i)
i id TF w ,d IDF w= ×  

 
The similarity between documents can be calculated 

by computing the cosine value between their 
representative vectors. The query can also be modeled by 
a vector in the same way and be compared with each 
document to find the most similar document to it. The 
cosine value of two vectors is calculated based on the 
following formula: 

 

( ) i
i

i

d q
cos d ,q

|| d || || q ||
=
�
�

�
� i

�
�

i

 

 
The documents are sorted based on their cosine 
value in decreasing order. There are other ways to 
create vectors for documents. For example, only 
term frequency can be considered as the attribute 
value. In the simplest model the vectors can be 
binary, which shows whether a particular 
document contains the keyword or not. 

 
Biletskiy et al. (2012) further expantiates on the need 

for semantic expansion of search queries: 
 
The use of keywords for comparing documents 
and searching in documents gives good results, 
but it does not consider the semantics of the text. 
If a user wants to search for something which she 
has in mind, she must know the exact keywords. 
This is helpful in many situations, but in many 
other scenarios the user does not know exactly 
which keywords she should use. There may be 
many different keywords to express a single 
concept and there may be words that can represent 
different concepts. To be more effective, search 
engines may include the semantic relations 
between the words and document. In other words, 
concept-based information retrieval is search for 
documents based on their meaning rather than on 
the presence of keywords in the document. 

The relevance of LOs, alluded to earlier, to a 
learner’s (user’s) query can be described with the 
following expression: 
 

D k k c cR w R w R= +  

 
where, Rk and Rc are relevancy measures for keyword-
based and concept-based search, respectively and wk and 
wc are their corresponding weights. 

The discussed search subsystem is itself composed of 
two major subsystems: Keyword-and concept-based 
document search subsystems. The proposed system uses 
an ontology to represent the hierarchy of concepts-
WordNet an open access lexical database of the English 
language, developed by researchers at Princeton 
University. WordNet groups nouns, verbs, adjectives and 
adverbs into sets of cognitive synonyms, known as 
synsets, with each of these synsets representing a precise 
concept. These Synsets are interlinked by means of 
conceptual-semantic and lexical relations that are defined 
in the WordNet database. 

Biletskiy et al. (2012) describes the comparison of 
the term and concept vectors, following a new query, as 
follows: 
 

When the learner issues a query, the query 
engine creates a term vector and a concept vector 
based on the query. Then, these two vectors are 
compared for similarity to the term and concept 
vectors of each document. This gives two 
measures for sorting the document based on 
relevance: Keyword-based similarity and 
concept-based similarity. 

3.4. Personalization 

The Personalization subsystem is an extension of 
the main HSDLO system that allows users to create 
profiles describing their personal attributes and to run 
a personalized search in the LOR. It then ranks the 
retrieved Los after performing a comparison of the 
values of learner profile attributes and LOM, taking 
into consideration the level of significance assigned to 
each learner profile attribute. This comparison is 
implemented as a set of rules written in JavaScript and 
stored in XML. The Personalization subsystem finally 
adjusts the learner's profile based on implicit feedback 
from the learner on the Los retrieved from the 
personalized search. 

Biletskiy et al. (2012) articulates the context in 
which the personalization subsystem interlocks the 
HSDLO system: 
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The HSDLO system allows a learner to create a 
profile, which consists of a set of attributes with 
their values and importance. The learner can 
access the profile through the system at any 
time to make and save changes. Once a learner 
has a profile, she is able to run searches of 
learning objects in learning object repositories. 
Before running the search, the learners must 
select which repository they wish to search 
from the list of available repositories 
maintained by the system. The default 
repository is the most recent one searched. 
When the search is run, the personalization 
subsystem scans through the designated 
learning object repository, parsing the metadata 
of the learning objects and comparing it to the 
learner’s profile, assigning a score to each 
learning object in the repository. Once the search 
is complete, the subsystem returns the top ranked 
learning objects to the learner. The learner can 
then select which learning objects to download 
and the system acquires them and saves the 
learner’s selections. Using the aggregate set of 
selections made by the learner, the subsystem 
makes modifications to the learner profile to 
better represent his or her preferences. 

 
The following are the aforementioned attributes that 

make up the learner profile of the HSDLO system: 
 
Qualifications 
keywords_of_interests 
proficiency_writing 
proficiency_reading 
proficiency_speaking 
input_output_technology 
priority_of_goal 
goal 
proficiency_listening 
skill_level 
physical_preferences 
age 
activity_status 
role 
language 
activity_type 
cognitive_preferences 
 

HSDLO system data is stored in XML format due to 
its efficacy and simplicity in the storage and access of 
data. It is also platform independent. 

• User profile 

The user profile data is be stored as an XML file 
allowing for quick access as well as make it easy to edit. 
An example is provided below: 
 
<!--Profile information goes here--> 
<Attribute> 
 <Name>xxxxxxxxxxxxxxxx</Name> 
 <Value>xxxxxxxxxxxxxxxx</Value> 
 <Weight>xxxxxxxxxxxxxxxx</Weight> 
</Attribute> 

• Learning Objects IDs 

Learning objects Ids will be stored in an XML file 
which provides easy access and is more usable. An 
example is provided below: 
 
<!--LO information goes here--> 
<List> 
 <Name>xxxxxxxxxxxxxxxx</Name> 
 <URL>xxxxxxxxxxxxxxxx</URL> 
 <ID>xxxxxxxxxxxxxxxx</ID> 
</List> 

• Learning objects files 

Learning objects will be stored in an XML file which 
provides easy access and is more usable. One file will 
contain information about a particular web site. An 
example is provided below: 
 
<List> 
<Name>xxxxxxxxxxxxxxxx</Name> 
 <URL>xxxxxxxxxxxxxxxx</URL> 
 <LOMURL>xxxxxxxxxxxxxxxx</LOMURL> 
</List> 

• Rule base 

The rules that are used by the comparator to calculate 
the score of Los is stored as a file in XML format. An 
example is provided below: 
 
<!-- Rule Base information goes here--> 
<Rule> 
 <ProfileAttribute>xxxxxxxxxxxxxxxx</ProfileAttri

bute> 
 <MetaAttribute>xxxxxxxxxxxxxxxx</MetaAttribute> 
</Rule> 
 

Appendix 1 and 2 contains more examples of all the 
currently used attributes of LOM and learner profile. The 
full set of comparison rules is presented in Appendix 3.
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Appendix 1: Usage  
Instructions 1. Open the project in NetBeans as follows: File >> Open Project. Browse to the project directory and 
select.  
When the project is open, click run project to start the system. 
 

 
 
2. After the system launches, a window like one below appears. If a learner profile already exists, login with the 
appropriate user name and password, otherwise, click on the “create new user” tab. 
 

 
 
3. Fill in the new user form and register a user name and password that you will remember. This data is stored in the 
HSDLO/src/users directory. Use the slider to adjust the weight of the attributes as appropriate. 
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4. After logging in, the main application window seen below is shown on the screen. Enter keywords into the text area 
and click “start process” to begin the search. 
The system will take a few seconds to run the search and the personalization process and a list of retrieved learning 
objects will appear in the larger text areas. The weights assigned to the learner profile attributes can be observed to have 
changed due to the profile adaptation that takes place during the personalization process. 
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Table 1 shows the rules that the HSDLO system uses 
to perform comparison and the calculation of LO scores. 

The comparison and calculation of the scores of Los 
is governed by a set of criteria. Biletskiy et al. (2012) 
states the following: 
 

To facilitate the personalized search and delivery 
of learning objects to learners the scoring criterion 
LOScorej which estimates the suitability of the j-
th learning object to the learner’s personal profile, 
is defined as a function of the learner's preference 
to select interesting materials from learning 
objects delivered to the learner: 

n

j i ij
i 1

LOScore w RR
=

= ×∑  

 
Where: 
RRjj  = Respond of the i-th comparison rule (Table 1) on 

the comparison of the j-th learning object with 
the learner profile 

wi = Coefficient of importance, which defines a level 
of influence of the i-th attribute of the learner 
profile (corresponding to the i-th comparison 
rule) on the selection of learning objects; the 
range of values of this coefficient is [0,1] 
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n =  Total number of selection criteria (same as the 
number of attributes of learner profile or the 
number of comparison rules) 

 
After estimating the suitability of the learning 

objects, they are sorted in order of decreasing values 
of LOScorej and the top scored learning objects are 
delivered to the learner. The learner explores the 
delivered documents’ LOM and content. After the 
learning object is explored, the learner defines a 
degree of utility (usefulness) of the learning object 
LOUj = (1: Useful, 0.5: Auxiliary, 0: Not useful). In 
reality, the learner’s preference may change, or the 
learner may explicitly declare her preferences 
incorrectly. Therefore, the dynamic adjustment of the 
coefficients of importance will be necessary. The 
degree of utility serves as a criterion for adjustment as 
follows. If the learner has defined a learning object as 
useful or auxiliary, then a comparative analysis of the 
corresponding learner's profile and LOM attributes is 

conducted. This analysis is conducted for all the 
learning objects delivered to the learner and is based 
on the principle that if the learning object is useful or 
auxiliary for the learner and the learner's profile and 
LOM attributes match (RRi = 1) then the weight wi is 
increased, but if RRi = 1 then wi is decreased. 

Defining the operations of increase and decrease of 
wi as operations with saturation, some coefficients of 
importance converge to 1 (meaning that the attribute 
is important), some converge to 0.1 (meaning that the 
attribute is not important) and some remain in 
between 0.1 and 1 (meaning that importance cannot be 
definite). The minimum coefficient is selected as to 
keep a chance to increase it if it again becomes 
important. In addition, the presented approach 
assumes that learning objects are searched within the 
same topic or theme that is interesting for the learner, 
because otherwise a learning object can be evaluated 
by the learner as not useful based on the theme, rather 
than on personal preferences. 

 
Table 1. HSDLO system rules Reprinted from A rule-based system for hybrid search and delivery of learning objects to learners, by 

(Biletskiy et al., 2012) Reprinted with permission 
Rule# LIP attribute involved LOM attributes involved Rule respond (0: Otherwise) 
1 Birth date  Typical age range 1: if age fits in the typical age range 
2  Language Content language 1: if language = content language 
3 Proficiency of  Interactivity type 1: if proficiency satisfies the  interactivity 
 writing of the language Interactivity level  level and interactivity type is “active” 
4 Proficiency of reading of the  Interactivity type 1: if proficiency satisfies the interactivity level 
 Language Interactivity level  and interactivity type is “active” or “exposive” 
5 Proficiency of listening of the  Format interactivity 1: if proficiency satisfies the interactivity level, 
 language type interactivity level interactivity type is “active” or “exposive” 
   and format is “audio” or “video” 
6 Proficiency speaking of the  Format interactivity 1: if proficiency satisfies the interactivity level, 
 language  type interactivity level interactivity type is “active” and 
   format is “audio” or “video” 
7 Priority of goal Duration typical learning time 1: if priority of goal is high; or, if low, the 
   duration and learning time must be short 
8 Qualification description Taxon path type  1: if qualification corresponds to the 
  Taxon path value  classification of the learning object 
9 Activity type  Context  1: if learner’s activity corresponds to the  
   context of learning 
10 Cognitive preferences Difficulty 1: if the level of cognitive preferences of the 
   learner is sufficient for the  
   difficulty level of the learning object 
11 Skill level Taxon path type  1: if skill level is sufficient for the learning object 
  Taxon path value 
12 Role Intended end user role 1: if the learner’s role is desirable 
13 Interests Title description 1: if the learner’s interests correspond to the  
   topic of learning object 
14 I/O technology Requirement other  1: if the learner has sufficient access to 
  platform requirements technology, e.g., multimedia  
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Fig. 4. HSDLO conceptual model 
 

4. CONCLUSION 

The conceptual model of the HSDLO systems is 
shown in Fig. 4. It illustrates the extraction of LOs, 
which are stored in the LOR, by the crawler. It also 
shows the extraction of LOM attributes and its 
conversion to a format that can be used by the 
personalization subsystem. This subsystem performs the 
appropriate adjustment to the user profile, following the 
processing of Los and user feedback. The adapted profile 
of each unique learner is saved in memory and used for 
subsequent searches by each unique learner. 
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