
Journal of Computer Science 10 (4): 671-679, 2014
ISSN: 1549-3636
© 2014 Science Publications
doi:10.3844/jcssp.2014.671.679 Published Online 10 (4) 2014 (http://www.thescipub.com/jcs.toc)

Corresponding Author: Mutasem K. Alsmadi, Department of MIS, Collage of Applied Studies and Community Service,
 University of Dammam, Saudi Arabia

671 Science Publications

JCS

SERVER FAILURES ENABLED JAVASPACES SERVICE

1Mutasem K. Alsmadi, 2Usama A. Badawi and 2Hatem M. Moharram

1Department of MIS, Collage of Applied Studies and Community Service, University of Dammam, Saudi Arabia
2Department of Mathematics, Computational Science Division, Faculty of Science, Cairo University, Egypt

Received 2013-10-28; Revised 2013-11-23; Accepted 2013-12-21

ABSTRACT

JavaSpaces service is a Distributed Shared Memory (DSM) implementation. It has been introduced by Sun
Microsystems as a service of the Jini system. Currently, JavaSpaces support client side fault tolerance. It
enables both transaction and mobile coordination mechanisms for such purpose. The application failures
could be detected and recovered. However, server side failures may occur during the application runtime.
Therefore, it is important to supply JavaSpaces with a mechanism that handles such type of failures
dynamically. On the other hand, An example of a system that supports both server and client fault tolerance
over DSM is TRIPS system. TRIPS protocols are suitable to be integrated in JavaSpaces to supply it with
server fault tolerance capabilities. In this study, a server Failures Enabled Javaspaces Service (FTJS) is
introduced. FTJS is based on the dynamic failure detection and recovery mechanisms implemented by
TRIPS. However, FTJS is able to handle both client and server side failures. The analysis, design and
implementation issues of FTJS are introduced.

Keywords: Distributed Application, Dynamic Recovery, Failure, JavaSpaces

1. INTRODUCTION

Machine crashes and network partintions are major
problems while running a distributed application. It is
important to deal with failures that are caused by such
events within runtime. Otherwise, it will be a must to
restart the application from the beginning. A possible
solution to this problem is to introduce a software layer
that is able to detect failures and recover from them
dynamically. Fault tolerance mechanisms, such as
transactions and mobile coordination, are applicable to
deal with client failures. Other mechanisms, such as
dynamic replication, are suitable to the server failures.

Sun Microsystems has introduced the Jini system. It is
a distributed system that enables groups of users and the
resources required by those users to be federated. The
main goal of Jini is to facilitate different resources to be
available for cleints over the network. Moreover,
JavaSpaces is a service introduced by the Jini system. It is
a Distributed Shared Memory (DSM) used for object
storage and communication (SM, 2007; Kanjilal, 2013).
JavaSpaces service has been supplied with transactions

and mobile coordination mechanisms. Therefore, it is able
to deal with the client side failures. It is important to
support JavaSpaces service with server failures handling
mechanisms as well (Kamalam and Bhaskaran, 2012).

On the other hand, TRIPS is a system that enables
dynamic detection and recovery of failures in both the
client and server sides using the dynamic replication over
DSM (Badawi, 2009).

1.1. Problem Statement

The goal of this research work is to construct FTJS,
which is a server failure enabled JavaSpaces service.
This will be accomplished by integrating the dynamic
failure detection and recovery mechanisms introduced by
TRIPS in the JavaSpaces service. This will enable
JavaSpaces to deal with both client and server failures.

1.2. Related Studies

TRIPS enables DSM based applications to tolerate
with both server and client failures. It is based on the
Linda Model and constructs a distributed environment

Mutasem K. Alsmadi et al. / Journal of Computer Science 10 (4): 671-679, 2014

672 Science Publications

JCS

for parallel processing. The Tuple space concept has
been introduced by the Linda Model. Tuple space
could be defined as an associative Shared Memory
(DSM) accessible to all application processes. Its
contents are entries, which are retrieved using a
matching mechanism by their contents rather than by
physical addresses (Badawi, 2009; Alsmadi et al.,
2013). A DMS access set of operations has been
introduced by Tuple Space.

1.3. TRIPS System Structure

TRIPS is structured in three main layers as shown in
Fig. 1, namely, the transis layer, LiPS Layer and Trips
message handling layer. The Transis event layer is a group
communication layer inherited from the Transis group
communication system. It is focused towards high
throughput local communication. It supports group
communication service. Transaction based delivery
semantics are guaranteed. Message ordering is supported
and network failures are transparentfrom the user. If
membership changes occure, the system reports them. The
idea behind its mechanism is to create a singlton group for
each newly arriving process. The new group receives a
‘mailbox’ to which messages arrive (Dolev and Malki,
1996; Liefke, 1998). The Transis Event Layer is
composed of two sub-layers, namely, the network layer
and the group communication layer. The former layer is
responsible for handling socket connection and physical
data routing. The group communication Layer facilitates
the membership mechanisms that enable group members
to identify the group communication and configuration
mechanisms that enable the member to communicate and
broadcast messages to the other members (Badawi, 2009).

The second TRIPS layer is the LiPS-layer. This layer
controls and manage the distributed applications. This is
accomplished through control processes called lipsds.
Lipsds are responsible for managing the DSM and
application message log. They start and control the
application processes. Moreover, they replicate the
application processes data to other equivalent processes.
Server level failures are handled using replication. This
layer is composed of two sub-layers, namely, Trips
middle layer and local tuple space layer. The former
includes the interface operations enabling the application
to interact with the DSM. Examples are Mid_in(), to
extract entries, Mid_out(), to write entries and Mid_rd(),
to read entries. LiPS system (Library of Parallel
Systems) implementation of Linda premitives is used in
constructing these operations. The local tuple-space layer
includes the DSM structures. This layer is used as the
system repository and is inherited from the LiPS tuple
space structure (Setz, 1997).

Fig. 1. TRIPS system internal layers

TRIPS message handling layer is responsible for dealing
with different message types. The fault tolerant mechanism
that handles different message types is integrated in this
layer. The main component in this layer is the “State
Change Protocol”, that handles both regular distributed
shared memory messages and configuration change ones.
This protocol is activated as soon as a message is received
either from a member to access the DSM, or from the
membership layer indicating view change.

1.4. The JavaSpaces Service

JavaSpaces has an associative set of operations to
access the contents of the space. This set of operations
has inherited its behavior from the Linda tuple space
model. For example, to insert an entry to the JavaSpaces
the write() operation is used. To extract an entry fro the
JavaSpaces the take() operation is used. The write() and
take() operations are equivalent to the Linda operations
out() and in() respectively (Busi et al., 2010).

JavaSpaces service supports transactions and mobile
co-ordination to enable client side failures handling.
Transaction methodology enables all operations to be
performed under it. For example, if a take() operation is
done under a transaction, the entry is added to a set of
entries that are taken by the transaction. If the transaction
is aborted, the taken entries are returned to the space.
The taken entries are removed from the space after the
transaction is committed (SM, 2007). On the other hand,
mobile co-ordination is more associated with the DSM
concepts. In this method the coordination primitives
(JavaSpaces operations) are moved to the server side,
which contains the space that the client wishes to access.

Mutasem K. Alsmadi et al. / Journal of Computer Science 10 (4): 671-679, 2014

673 Science Publications

JCS

JavaSpaces operations that are executed under mobile
co-ordination must be encapsulated into a coordination
method. This method is executed by the JavaSpaces
server (Rowstron, 1999; Lazr, 2001; Tanha et al., 2012).

JavaSpaces has been introduced as one of the Jini
system powerful services. Jini system is introduced by Sun
Microsystems. JavaSpaces enables the Java environment to
deal with a network of virtual machines. It helps in
constructing variant sized distributed applications. The
central element in Jini is the service, which is an interface of
hardware device, application, database, or anything that can
be connected to the network. To enable a device with Jini
technology, it must have a processing power and memory.
Jini enables devices without memory or processing power
to be connected to the vertual system and controlled by
other hardware and/or software, proxies. Such proxies task
is to present the device to the system with processing power
and memory (Heiningen et al., 2006a; 2006b).

JavaSpaces is a DSM implementation. It stores data
items, called entries, to be accessed by clients. The entry
objects are expressed in classes that implement the
interface Jini.core.entry.Entry. Entry behavior and
characteristics are inherited from the Linda tuple space
model. Different entries are said to be of the same type if
they are members in the same class. The entry can have
methods that define its behavior (SM, 2007; Batheja and
Parashar, 2010; Marghny and Refaat, 2012). In this
section, the Jini system structure is viewed as well as the
current JavaSpaces fault tolerance protocols.

2. MATERIALS AND METHODS

The methodology in this research work is based on
the idea of integrating the TRIPS systems, that enables
server failures in the JavaSpaces service that enables
applications failures within runtime. In this section, the
TRIPS fault tolerance methodology and the Jini system
structure are introduced.

2.1. Fault Tolerance in TRIPS

Dynamic replication is the mechanism used by TRIPS
to enforce fault-tolerance. The core of the TRIPS message
handling layer is the scheduler that is responsible for
receiving and recognizing the type of the state change
message. Then it is responsible for directing the message to
the suitable handling routine (Badawi, 2009). The scheduler
structure and vehavior is whown in Fig. 2. In case of
configuration change during handling a regular DSM
message, an interrupt request is sent to the DSM handler.
The DSM operation is intruppted and the control is returned
to the scheduler without performing the DSM operation.
The configuration changes are handled first. The Canceled
operation is inserted in a local queue to be accessed later.

TRIPS uses the “State Change Protocol” to ensure the
availability of the distributed application processes. This
protocol is responsible for handling the possible state
changes, such as new member join or existing member
exit, that could occure to the distributed application. The
protocol guarantees the survival of data in the DSM in
spite of failures. Moreover, it makes sure that the regular
operations are applied to all members in the configuration.
In case of starting a new member, the global queue that
contains all application members is activated and the DSM
data structures are initialized. Then, control is passed to
the configuration change handler that controls the
membership changes (Badawi, 2009).

2.2. The Jini System Structure

To accomplish the service communication, Jini uses
Remote Method Invocation (RMI) as shown in Fig. 3.
RMI enables full objects (code and date) to be passes
around the network. This gives Jini the simplicity of
moving encapsulated objects around network. From the
figure, one can notice that Jini layers are located on top
of the Java platform. This enables the processes and
services, that run under Jini control to inherit the
powerful behavior of java processes. Jini network
federation consist of two main layers. The Lookup layer
includes a protocol that enables clients to search for the
Jini services they need to utilize. The Discovery/Join
layer includes discovery and join protocols that enable
the clients to join the services they need to utilize.

3. TRIPS JAVASPACES SERVICE (FTJS)

Both of the JavaSpaces fault tolerance methods are
dealing with client side failures. The proposed service
(FTJS) deals with both server and client side failures.
For this purpose, a warm backup replication protocol is
presented. In this section, the proposed protocol,
SpacesManager, is introduced as well as the analysis
and design of FTJS.

3.1. The SpacesManager Layer

The idea behind FTJS is to construct the
SpacesManager layer that increases the system availability.
Normally, there exist many running JavaSpaces services per
application. Some of these spaces are active and others are
passive. One of the active spaces is the original space,
which is called the replica and the others are identical
copies of the original space. The SpacesManager layer is
responsible for spreading the effect of the client operations
in all active spaces. If the client writes an entry in the
system, the SpacesManager replicates this entry in all active
spaces and ensures that all spaces are identical.

Mutasem K. Alsmadi et al. / Journal of Computer Science 10 (4): 671-679, 2014

674 Science Publications

JCS

Fig. 2. TRIPS System Main Function (The Scheduler)

Fig. 3. The jini system structure

Moreover, it is responsible for managing the spaces
failures. It performs the client operations in the active
spaces. If any active space is failed, the client will never
notice system changes. The SpacesManager failure
recovery algorithm is shown in Fig. 4.

The SpacesManager layer handles different failure
types depending on the type of failed machine. If the
failed machine contains an active space, the response
depends on whether the failed active space is the replica or
not. If the failed machine is the replica, one of still alive
active spaces is chosen to be the original space. To survive
an active space from perishing, one of the passive spaces
is initiated and inserted in the list of active machines. The
new active space receives a copy of all entries. If any of
the active spaces other than the replica is failed, one of
passive spaces is chosen to be the new active space and it
receives a copy of all entries. In case of machine failure,
the SpacesManager blocks this machine. In other words,
the system will delete this machine from the active spaces
list. If the failed/disjoined machine comes back to the
system, the SpacesManager deletes all entries in its
JavaSpaces and rejoins it as a passive machine.

Fig. 4. SpacesManager recovery algorithm

Mutasem K. Alsmadi et al. / Journal of Computer Science 10 (4): 671-679, 2014

675 Science Publications

JCS

Fig. 5. FTJS Main Components (Class diagram)

3.2. FTJS Service Design

FTJS service consists of three main parts. Figure 5
shows the FTJS class diagram. The first part is the
SpacesManager. It is based on defining a DSM control
service in the Java RMI. The SpacesManager interface
contains the basic DSM operations (write(), take() and
read()). This interface extends the Java API Remote
interface. SpacesManagerImp is a class that implements
the SpacesManager interface and extends the java API
interface Unicast-Remote-Object. This class calls the
GetSpacesThread thread in its constructor. The
GetSpacesThread is a thread that contains an infinite
loop to check the still alive JavaSpaces. The
GetSpacesThread class contains a public variable of type
vector called SpacesObject. It contains objects of all
JavaSpaces services in the system and other metadata
like the type of space (active or passive), block...

The second component of FTJS is the
SetSpacesThread that is responsible for managing the

failures. It uses the checkSpaces() method to check the
existence of the system machines. This method accesses,
in turn, the JSServiceLocator class objects to check the
existence of the JavaSpaces service. It uses the
convertSpace() method to convert the passive spaces to
active spaces and the copySpace() method to copy all
entries from one of still alive active spaces to the new
active space. The SetSpacesThread uses the flushSpace()
method to delete all entries from the rejoining machine.
Figure 6 shows the FTJS structure.

The third component of FTJS service is the
SpacesManagerClient, which is a client program that is
used to test the service using the resizable entry
MyEntry. The client program fetches the dynamic replica
service using the ServiceLocator class. The client code
uses this service using its proxy class called
SpacesManagerInfProx. This proxy allows the user of
add some code in the service operations. Figure 6 gives
an overview to the flow control in the dynamic replica
protocol used in the FTJS service.

Mutasem K. Alsmadi et al. / Journal of Computer Science 10 (4): 671-679, 2014

676 Science Publications

JCS

Fig. 6. FTJS internal structure

4. RESULTS

In this section, practical tests are introduced to evaluate
the FTJS service. First, the test environment and technique
are introduced. Then the tests and their results are presented.

4.1. Test Environment and Technique

The measurements are performed by using six PC’s
each with a CPU of type Intel Pentium 2.4 G.H and 512
RAM. The inter-communication among the machines is
done by 100 Mbps Ethernet. The software environment
includes Windows XP professional as an operating system,
Java JDK 1.4.2 04, Jini(TM) Technology Starter Kit v2.0.2
and a free visual platform for Jini 2.0 that is called Inca
X(TM).

A fault-tolerance test that is more associated to the
dynamic replica is introduced. This test is based on
testing the system fault-tolerance and the recovery time.
Other types of tests have performed to measure the
performance of the proposed service by testing the DSM
access operations for insertion and retrieval.

4.2. The Fault Tolerance Test

In this section, it is proved that the proposed service
tolerates with failures. The following scenario has been

applied for this purpose. A counter is intiated by one
client. It is an entry that contains an integer. The client
procedure writes the entry, takes that entry, increases the
counter by 1 and then rewrites the entry with the new
value. The above steps are repeated in a large number of
iterations. One of the active spaces is enforced to fail
during the process. If the client process survives in spite
of the failure and the counter increases correctly, then it
is proved that the service is fault tolerant.

Figure 7 shows a skeleton code for the test steps. In this
test, the loop is infinite. The written entry is taken to be
increased and is rewritten again with the new value.

Figure 8 shows the output of the pervious test.
Part (A) shows output messages of the entry counter
value while writing and taking entry. The second part
of the list (B) shows the setSpacesThread output
messages. The output messages indicate the still alive
active or passive spaces. While writing the entry that
contains counter value equals 47, the first active
JavaSpaces is enforced to fail. The FTJS service
chooses passive spaces1 to be the new active spaces.
Then the dynamic replica service copies entries from
one of the still alive space (active space 2) to the
passive spaces1. Finally, FTJS service converts the
passive spaces1 to active spaces1 and blocks the
object of passive spaces1 (not exist).

Mutasem K. Alsmadi et al. / Journal of Computer Science 10 (4): 671-679, 2014

677 Science Publications

JCS

Fig. 7. Fault tolerance skeleton code test

Fig. 8. Fault tolerance test results

Fig. 9. Recovery time in FTJS

Mutasem K. Alsmadi et al. / Journal of Computer Science 10 (4): 671-679, 2014

678 Science Publications

JCS

Fig. 10. System performance comparison for 2, 3 and 4 active spaces (Write operation)

Fig. 11. System Performance Comparison for 2, 3 and 4 active Spaces (Write-take operation)

4.3. Measuring the Recovery Time

FTJS recovery time has been measured. The time
taken to recover a failure in one of the active spaces
equals the time required to copy the system entries from
one of the still alive active spaces to one of the passive
spaces plus the time required to convert the passive
space to an active space. The most effective parameter in
the recovery time is the number of entries in the DSM. In
this test, different number of entries have been used with
entry sizes 1 and 2 kbytes. Figure 9 illustrates the
recovery time in FTJS. From the figure, it is clear that
increasing the number of entries in the space leads to
increasing the recovery time. This is due to the time
taken to copy the entries to the new active space.

4.4. Performance Tests

This section evaluates the effect of the number of
active FTJS spaces on performance. This is done by
testing the DSM access operations.

Figure 10 shows the write() operation performance
in the cases of two, three and four active spaces. The

figure shows that the performance of the write()
operation decreases by increasing the number of active
spaces in the system. This is because the write()
operation is applied in all active spaces. The difference
among the three curves (two, three and four active
spaces) is minimal at the small entry array size.

Figure 11 shows the write()-take() operation
performance comparison for two, three and four active
spaces. From this figure, the four-active-spaces curve is
the noisiest curve. This noise is due to the fact that
increasing number of machines (active spaces) leads to
extra communication time. Moreover, the difference
between two and three-active-space curves is smaller than
the difference between three and four active space curves.

5. CONCLUSION

In this research work, the FTJS service is introduced.
It is a server failures enabled JavaSpaces service. A high
availability layer called SpacesManager layer has been
added to the JavaSpaces service. If a failure occurs, the
application data survives without any interruptions.

Mutasem K. Alsmadi et al. / Journal of Computer Science 10 (4): 671-679, 2014

679 Science Publications

JCS

Moreover, the detection and recovery process is
transparent to the user service.

Many types of practical tests have been applied to
show the proposed service performance. A fault
tolerance test has been performed as well as a
recovery time test, performance tests have been
appled on different read-write premitives. All the tests
have proved that the service performance is
reasonable. It is also shown that the proposed service
is practically applicable. The proposed JavaSpaces
service has been applied To Local Area Network
(LAN). It is possible to apply it in the Wide Area
Network (WAN) in later versions. On the other hand,
the current version of the service cannot deal with the
case of merging spaces with entries inside. The non-
original space must be empty in case of merge. A
possible future work is to enhance the protocol to deal
with non-empty spaces merge. This requires a lot of
work to deal with the famous merging conflicts.

6. REFERENCES

Alsmadi, M., B.A. Usama and S. Reffat, 2013. A high
performance protocol for fault tolerant distributed
shared memory (FaTP). J. Applied Sci., 13: 790-
799.

Badawi, U., 2009. TS-PVM: A fault tolerant PVM
extension for real time applications. Int. Arab J.
Inform. Technol.

Batheja, J. and M. Parashar, 2010. A framework for
opportunistic cluster computing using javaspaces.
Proceedings of the 9th International Conference on
High-Performance Computing and Networking, Jun.
25-27, Springer-Verlag, London, pp: 647-656.

Busi, N., R. Gorrieri and G. Zavattaro, 2010. Process
calculi for coordination: From linda to javaspaces.
Proceedings of the 8th International Conference,
Algebraic Methodology and Software Technology,
May 20-27, Springer-Verlag London, pp: 198-212.
DOI: 10.1007/3-540-45499-3_16

Dolev, D. and D. Malki, 1996. The Transis approach to
high availability cluster communication. Commun.
ACM, 39: 64-70. DOI: 10.1145/227210.227227

Heiningen, V.W., T. Brecht and S. MacDonald, 2006a.
Babylon v2.0: Middleware for distributed, parallel
and mobile Java applications. Proceedings of the
20th International Parallel and Distributed
Processing Symposium, Apr. 25-29, IEEE Xplore
Press, Rhodes Island. DOI:
10.1109/IPDPS.2006.1639498

Heiningen, V.W., T. Brecht and S. MacDonald, 2006b.
Exploiting dynamic proxies in middleware for
distributed, parallel and mobile java applications.
Proceedings of the 20th International Parallel and
Distributed Processing Symposium, Apr. 25-29,
IEEE Xplore Press, Rhodes Island. DOI:
10.1109/IPDPS.2006.1639504

Kamalam, G.K. and V.M. Bhaskaran, 2012. Novel
adaptive job scheduling algorithm on heterogeneous
grid resources. Am. J. Applied Sci., 9: 1294-1299.
DOI: 10.3844/ajassp.2012.1294.1299

Kanjilal, J., 2013. Understanding the JINI Networking
Technology. ASPAlliance.

Lazr, I., 2001. Designing a fault-tolerant JINI compute
server. Pennsylvania State University.

Liefke, T., 1998. Extension of the trips prototype.
Technical Report: Darmstadt University,
Department of Theoretical Computer Science.

Marghny, M.H. and H.E. Refaat, 2012. A new parallel
association rule mining algorithm on distributed
shared memory system. Int. J. Bus. Intell.
Datamin.

Rowstron, A.I.T., 1999. Mobile co-ordination:
Providing fault tolerance in tuple space based co-
ordination language. Proceedings of the 3rd
International Conference on Coordination
Languages and Models, (LM ‘99), Springer-
Verlag London, pp: 196-210.

Setz, T., 1997. Software Fault-Tolerant Distributed
Applications in Lips. 1st Edn., Univeristat des
Saarlandes, Saarbru�cken, pp: 20.

SM, 2007. JavaSpaces Specification. Sun Microsystems
Found.

Tanha, M., S.D.S. Torshizi and S. Shamala, 2012. A
discrete event simulator for extensive defense
mechanism for denial of service attacks analysis.
Am. J. Applied Sci., 9: 909-916. DOI:
10.3844/ajassp.2012.909.916

