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ABSTRACT 

The networks of the present day communication systems, be it a public road transportation system or a 
MANET or an Adhoc Network, frequently face a lot of uncertainties in particular regarding traffic jam, flood 
or water logging or PWD maintenance work (in case of public road network), attack or damage from internal 
or external agents, sudden failure of one or few nodes. Consequently, at a real instant of time, the existing 
links/arcs of a given network (graph) are not always in their original/excellent condition physically or 
logically, rather in a weaker condition, or even sometimes disabled or blocked temporarily and waiting for 
maintenance/repair; and hence ultimately causing delay in communication or transportation. We do not take 
any special consideration if few of the links be in a better condition at the real time of communication, we 
consider only such cases where few links are in inferior condition (partially or fully damaged). The classical 
Dijkstra’s algorithm to find the shortest path in graphs is applicable only if we assume that all the links of the 
concerned graph are available at their original (ideal) condition at that real time of communication, but at real 
time scenario it is not the case. Consequently, the mathematically calculated shortest path extracted by using 
Dijkstra’s algorithm may become costlier (even in-feasible in some cases) in terms of time and/or in terms of 
other overhead costs; whereas some other path may be the most efficient or most optimal. Many real life 
situations of communication network or transportation network cannot be modeled into graphs, but can be well 
modeled into multigraphs because of the scope of dealing with multiple links (or arcs) connecting a pair of 
nodes. The classical Dijkstra’s algorithm to find the shortest path in graphs is not applicable to multigraphs. In 
this study the authors make a refinement of the classical Dijkstra’s algorithm to make it applicable to directed 
multigraphs having few links partially or fully damaged. We call such type of multigraphs by GRT-
multigraphs and the modified algorithm is called by Dijkstra’s Algorithm for GRT-Multigraphs (DA-GRTM, 
in short). The DA-GRTM outputs the shortest paths and the corresponding min cost in a GRT-multigraph at 
real time and thus the solution is a real time solution, not an absolute solution. It is claimed that DA-GRTM 
will play a major role in the present day communication systems which are in many cases giant networks, in 
particular in those networks which cannot be modeled into graphs but into multigraphs. 
 
Keywords: RT-Multigraph, GRT-Multigraph, Condition Factor (CF), Link Status, Effective Cost (EC), 

Real Time SPP, EC Multiset, Min-EC Multiset, Real Time Shortest Path Estimate, Real Time 
Relaxation, DA-GRTM 

 
1. INTRODUCTION 

Graph Theory (Balakrishnan, 2005) has wide 
applications in several branches of Engineering, Science, 

Social Science, Statistics, Economics, Medical Science 
to list a few only out of many. Graph is also an 
important non-linear data structure in Computer 
Science. The model ‘multigraph’ (Biswas et al., 2012) 
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is a generalization of ‘graph’ where multiple links 
(edges/arcs) may exist between a pair of nodes. A huge 
and rich volume of literature is available in the area of 
‘Graph Theory’, but unfortunately the ‘Theory of 
Multigraphs’ has not so far developed upto that extent 
to meet the present requirements to deal with real life 
network problems. The classical Dijkstra’s algorithm 
(Dijkstra, 1959; Cormen et al., 2009) to find the 
shortest path from a source node to a destination node 
works well for the kind of network model which is a 
graph, but cannot be used to solve the Shortest Path 
Problem (SPP) in a multigraph. In real life applications, 
such as in Link State routing protocols are based on the 
concepts of Dijkstra’s algorithm. Most of these 
applications were based on the fact that the concerned 
network is a simple directed graph, where there is at 
most one and only one arc between any two nodes in a 
single direction, i.e., in a network or a directed graph, 
between any two of its nodes u and v, there can be 
maximum two arcs, uv and vu. The classical Dijkstra’s 
algorithm for finding single source shortest path in case 
of a directed graph has over the years found many real 
life applications, particularly in network theory, 
optimization, transportation. One of the reasons for 
large acceptance of Dijkstra’s algorithm is its 
simplicity. But one major shortcoming of this algorithm, 
in its present form is that, it is limited to simple graphs 
only and cannot be implemented in case of multigraphs. 
There are many real life networks of communication 
systems or transportation systems which cannot be 
modeled into graphs, but can be well modeled into 
multigraphs because of the reason that there could be 
more than one link between a pair of neighbor nodes. We 
consider in our work here such type of real life networks, 
which are multigraphs without any loops (i.e., not 
pseudographs). Biswas et al. (2013a) modified the 
classical Dijkstra’s algorithm to make it applicable to 
solve SPP in a multigraph and also considered the real 
time situation of a network where few (or even nil or 
all) of its links are not available to the communication 
system for the time being due to sudden damage 
(under repair at this period of time). Such type of 
multigraphs are called by Real Time Multigraphs (or 
RT-multigraphs). In the model of RT-multigraphs, one 
link is either ‘available’ or ‘unavailable’ for 
communication (i.e., link status is either 1 or 0). In 
this study, we consider more real situation of a 
network. For instance, one of the existing connecting 
roads from a city A to a city B which happens to be 
the shortest road between A and B in a public 
transport network is available but with water logging 
condition (flooded with one foot depth of water) at 
this real period of time causing the transportation by 

busses/vehicles very slow. This road/link is under 
repair but to regain its original condition it may take 
10-12 h at least. Consequently, at this real period of 
time, having all these real time information in hand, 
the algorithm for SPP should consider the second 
shortest link between A and B instead of this 
mathematically shortest link. We thus consider the 
real time condition (physical or logical) of each and 
every link of a network quantified as a value in the 
closed interval [0,1] instead of discrete option in {0,1} 
and we call the corresponding multigraph as 
Generalized Real Time multigraph (GRT-multigraph). 
In a GRT-multigraph, all real time information is 
updated at every quantum q of time (pre-chosen by the 
concerned communication system). Then we solve the 
SPP in a GRT-multigraph with the philosophy of 
Classical Dijkstra’s algorithm incorporating the 
necessary modifications, the new algorithm being 
called by Dijkstra’s Algorithm for GRT-Multigraphs 
(DA-GRTM, in short). The notion of GRT-graphs can 
be viewed as a special case of the notion of GRT-
multigraphs. For a quick visit of Dijkstra’s Algorithm, 
one could see the book (Cormen et al., 2009). For a 
recent work on the theory of multigraphs, one could see 
(Biswas et al., 2012). The notion of RT-multigraph is 
introduced by Biswas et al. (2013a). In the next section, 
we introduce the notion of GRT-multigraph. 

1.1. Generalized Real Time Multigraph (GRT-
MultigrapH) 

Consider a classical multigraph corresponding to a 
public transport network where there are four cities A, B, 
C and D connected by alternative links (roads) of various 
costs (here, distance in Km). As shown in the Fig. 1 
below (an hypothetical example). 

Suppose that at some period of time the links AB1 and 
CD2 are ‘Not Available’ (flooded heavily with water due 
to torrential rain), but all other links are ‘Available’. 
However, it is expected that the link AB1 will be available 
for communication within 7 h next and the link CD2 will 
not be available for at least one day. Consequently, this 
multigraph physically reduces to the following directed 
RT-Multigraph G, (Fig. 2) at least for 7 h next. 

In our proposed mathematical model of GRT-
multigraphs (Fig. 3), we consider further amount of 
ground-reality by incorporating more amount of real time 
information from the network regarding the actual 
condition of each and every ‘available’ link to make the 
notion of RT-multigraphs (Biswas et al., 2013b) more 
dynamic, more useful and hence more efficient to the 
users for making an optimal strategy for a successful 
communication from a source node to a destination node.
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Fig. 1. A multigraph of a public transport network 
 

 
 

Fig. 2. The RT-multigraph G having two links unavailable at some period of time 
 

 
 

Fig. 3.  A GRT-multigraph G with various CF at some instant of time 
 

For a given node u the node v will be designated as a 
‘neighbor’ node of u if u has at least one link from u to v, 
irrespective of its status ‘available’ or ‘unavailable’ at 

some period of time. In our work here we consider real 
situations which are actually and frequently faced by the 
present communication systems. For example, consider 
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an Adhoc Network or a MANET in which there may 
exist multiple links between two neighbor nodes, but 
because of some reasons at some real instant of time one 
or more number of links may not be in the ideal 
condition (may be partially damaged or temporarily 
damaged, or even severely damaged, either physically or 
logically). Thus, although they are available for 
transmission of packets by a node u to its neighbor 
node v, but will cause the communication delayed (for 
a fully damaged condition, they are practically 
‘unavailable’ as there cannot be any scope for 
communication via such links). This is a very useful 
information to the communication system if available 
to the sender nodes in advance. In the model of our real 
time multigraphs (RT-multigraphs) (Biswas et al., 
2013b), we considered that a link is either ‘available’ or 
‘unavailable’. In this study, we consider the situation of 
reality with further dimension, considering more real 
time information about the actual condition of the 
available links. For this, first of all we introduce a new 
real time parameter tagged logically with each link 
called by ‘Condition Factor’ which signifies the ‘link 
status’ at the real time of actual communication. 

1.2. ‘Condition Factor’ (CF) of a Link at Some 
Instant 

Consider a node u and its neighbor node v. Suppose 
that there are n (≥1) number of links from u to v outward 
which are uv1, uv2, ……, uvn. Let us designate them as 
1st, 2nd, 3rd,….., nth. For each such link uvr, we define the 
condition factor (CF) or link status at this instant of time 
in the following way: 
 
• The ideal (i.e., best) ‘condition factor’ for each 

link uvr is 1, if it is available at its original 
condition without any damage or attack 
internally/externally at this moment of time and 
the node v is functional at the real time under 
consideration. We write CF(uvr) = 1 

• The worst ‘condition factor’ for each link uvr is 0, if 
either it is not available, i.e., at a condition of fully 
damaged/blocked at this moment of time and thus 
having no  feasibility for communication or the 
node v itself is non-functional at the real time under 
consideration. We write CF(uvr) = 0 

• Otherwise, the ‘condition factor’ for each link uvr is in 
between 0 and 1, which  means that the link is 
available but not in its original/ideal condition and the 
node v is functional at the real time under 
consideration. The link uvr could be partially damaged 
or in a traffic-jam or in a similar one out of many other 

real time circumstances (could be a temporary problem 
and expected to become ok soon after repair) which 
may cause the communication to be at slower pace 

 
Thus, for the pair of nodes u and v here: 

 
( )r0  CF uv    r≤ ≤ ∀  

 
If at some real period of time CF(uvr) is close to 1, then 

it signifies that the available link uvr is in its good condition 
for communication almost like its original condition. If 
CF(uvr) is close to 0, the available link uvr is in a very bad 
condition for communication. If CF(uvr) is 0, then either the 
link uvr is ‘not available’ or the node v itself is non-
functional at the period of time under consideration. 
Clearly, if the node v is non-functional then CF(uvr) = 0 ∀r, 
but the converse is not necessarily true. 

The above network is a case of real life situation, 
where because of natural phenomenon (viz. flood, 
earthquake, thunderstorm, solar storm) or because of 
some external attack or technical failure, the following 
are some information at this real period of time: 
 
• The links AB1 and CD2 are completely damaged and 

hence ‘unavailable’ 
• The links AC1, BC1 and CB1 are damaged, but 

available (communication will be very slow if these 
roads are followed) 

• The links AB2 and CD1 are available in good or almost 
good condition (communication will be almost at per 
expected pace if these roads are followed) 

• The link BD1 is available but not in so good 
condition (communication will be delayed if this 
road is followed) 

 
In our proposed model of GRT-multigraphs, these are 

very precious information and is available with the 
concerned sender nodes in advance. 

1.3. Link Status Vector (LSV) 

Corresponding to every neighbour node v of u in a 
GRT-multigraph and corresponding to a given period of 
real time, there exist a Link Status Vector (LSV) Iuv = 
<i1, i2, i3, ….., in> of u where ir = CF(uvr) which happens 
to be some value from the closed interval [0,1], where r 
= 1, 2, 3,…., n. 

1.4. Temporarily Blocked Link (TBL) 

If at a given time ir happens to be 0, i.e., if the link uvr 
is completely non-functional then we say that the link uvr 
is a Temporarily Blocked Link (TBL) from u. 
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1.5. Link Status Class (LSC) 

If a node u has k (≥0) number of neighbour nodes v1, 
v2, v3,…,vk, then u carries k number of LSV: Iuv1, Iuv2 , 
Iuv3 ,……,Iuvk. For a given node u, the collection of all 
LSV is called ‘Link Status Class’ (LSC) of u denoted by 
Iu. Thus Iu = { Iuv1, Iuv2 , Iuv3 ,……,Iuvk }. 

1.6. Temporarily Blocked Neighbour (TBN) and 
Reachable Neighbour (RN) 

If v is a neighbour node of a given node u and if Iuv 

is a null vector at a given instant of time then v is 
called a Temporarily Blocked Neighbour (TBN) of u 
for that instant.  

However, since it is a temporary phenomenon and 
if any of the links be repaired in due time, then 
obviously a ‘blocked neighbour’ may regain its un-
blocked status at some later stage. If a neighbour v is 
not a tbn, then it is called a Reachable Neighbour 
(RN) of u. Thus v is a reachable node from u if there 
is at least one link having non-zero CF (Fig. 4a,b 
above). 

1.7. Communicable Node 

For a given node u, if Iu ≠ φ and at least one member 
of Iu is a non-null vector at a given time, then the node u 
is called a communicable node for that instant of time. If 
u does not have any neighbor node then Iu = φ and in that 
case it is trivial that further communication is never 
possible. However, if Iu ≠ φ and all the members of Iu are 
null vectors at a point of time, then it signifies that 
further communication is not possible temporarily. 

1.8. Effective Cost (EC) of a Link 

Consider a node u and its neighbor node v having n 
(≥1) number of links (arcs) from u to v outward which 
are uv1, uv2,……, uvn. Corresponding to each link uvr of 
the multigraph, there is a cost (weight) of the link which 
is cr. If this link uvr is not available at its original 
condition, then a fraction of its original condition is 
available to the system for communication. 
Consequently, if this link uvr is choosen for 
communication of a packet from node u to node v, the 
effective cost of this link will not be in reality equal to cr 
but a little higher side, depending upon the condition of 
the link uvr at that real instant of time. 

 

 
 

Fig. 4. (a) A tbn v of the node u, (b) A rn v from the node u 
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The Effective Cost (EC) of the link uvr is defined by 
EC (uvr) = cr/CF(uvr), where CF(uvr) ≠ 0. However, if 
CF(uvr) = 0 then we say that EC(uvr) = ∞. 

1.9. Periodical Update of Information 

In our mathematical model of GRT-multigraph, we 
propose that there is a system S which updates all the 
real time information of all the nodes after every 
quantum time τ. This quantum τ is fixed (can be reset) 
for the system S in a multigraph but different for 
different communication systems even if the same 
network be followed. 

A multigraphs having these above properties is called 
a ‘Generalized Real Time Multigraph’ or ‘GRT-
multigraph’ as it contain all real time information of the 
network with respect to time. Consequently, for a given 
network the GRT-multigraph is not a static multigraph 
but changes with time, i.e., becomes weaker sometime, 
regain ideal or original condition back, again becomes 
weaker, so on. As a special case, if a network can be 
modelled into a graph (need not be a multigraph) then we 
call our proposed model as ‘Generalized Real Time 
Graph’ or ‘GRT-graph’. 

1.10. Modification of Classical Dijkstra’s 
Algorithm for GRT-Multigraphs 

The main objective of the work in this study is to 
modify the classical Dijkstra’s algorithm (which is 
used for solving SPP in graphs) so as to make it 
applicable to solve SPP in GRT-multigraphs. For this, 
first of all we need to define the terms: EC multiset, 
Min-EC multiset, Real time shortest path estimate 
(d[v]) of a node, Real time relaxing a link all in the 
context of the GRT-multigraphs. 

1.11. EC Multiset of <u, v> and Min-EC Multiset 
of a Directed GRT-Multigraph 

Consider a node u in a directed GRT-multigraph G 
and its neighbor node v. Suppose that there are n number 
of arcs from the node u to the neighbor node v in G, 
where n is a non-negative integer. Let Wuv be the 
multiset of n weights (costs) of the n arcs from the node 
u to the node v and Cuv be the multiset of n number of 
corresponding CFs. Consider the multiset Euv of the 
collection of all EC(uvr) for r = 1, 2, 3, …., n given by: 

EC(uvr) = cr / CF(uvr). 
The multiset Euv is called the EC multiset of the 

ordered pair of nodes <u,v>. 
Let euv be the min value of the EC multiset Euv. 

The collection of all euv for all pair of neighbor nodes 
in the GRT-multigraph forms a multiset which is 

denoted by E and is called by ‘Min-EC Multiset’ of 
the GRT-multigraph G. 

1.12. Real Time Shortest Path Estimate (d[v]) of 
a Node in a Directed GRT-Multigraph 

The SPP is an important problem in Graph Theory. In 
(Biswas et al., 2012) we have solved SPP in a crisp 
multigraph. In this study, we point out that the 
mathematically calculated shortest path may not be 
always the optimal path in real life situation of a 
communication network in terms of the total 
communication costs involved (viz. time, financial 
implication, overhead cost, man-hour, manpower). The 
real time shortest path could be different from the 
mathematically computed shortest path (calculated using 
any good existing algorithm) and the most important point 
we consider here is that the mathematically computed 
shortest path (calculated using any good existing 
algorithm) may not be even a feasible path for 
communication/transportation at the real time of business. 

To modify the classical Dijkstra’s algorithm for 
solving real time SPP in a directed GRT-multigraph, we 
must upgrade its RELAX sub-algorithm so as to enable it 
to choose the real time minimum value out of all the 
effective costs (not the actual costs as considered in 
classical Dijkstra’s algorithm) for each of the arcs/links 
between node u and the node v. Using the value of euv 

from the min-EC multiset E of the directed GRT-
multigraph, we can now find the real time shortest path 
estimate i.e., d[v] of any node v (Fig. 5 below) using the 
following equation: 
 
• (real time shortest path estimate of node v) =  
• (real time shortest path estimate of node u) +  
• (min EC of the arcs from the node u to the node v) 
• or, d[v] = d[u] + euv  
 
1.13. Relaxing an ARC in a Directed GRT-

Multigraph 

With the revised notion of the real time shortest 
distance estimate d[v], we now upgrade the classical 
RELAX algorithm below to make it applicable in GRT-
multigraphs (Fig. 6). Call this modified algorithm by 
‘GRT-RELAX’ algorithm. 

GRT-RELAX (u, v, W, C, E): 

1. COMPUTE the multiset E  
2. IF d[v] > d[u] + euv 
3.    THEN d[v] ← d[u] + euv 
4.       v.π ← u 
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Fig. 5.  Real time shortest path estimate  d[v] 

 

 
 

Fig. 6. Diagram showing how GRT-RELAX algorithm works 
 
1.14. Dijkstra’s Algorithm for GRT-

Multigraphs (DA-GRTM) 

In this section we generalize the classical Dijkstra’s 
algorithm so that it can be used to find single source 
shortest path in case of GRT-multigraphs also. We name 
the new algorithm as ‘Dijkstra’s Algorithm for GRT-
multigraphs’ (DA-GRTM, in short). 

DA-GRTM (G, W, C, E, s) 

1. INITIALIZE-SINGLE-SOURCE(G, s) 
2. Compute E 
3. S ← ∅ 
4. Q ← V[G] 
5. WHILE Q ≠ ∅ 
6.    DO u ← EXTRACT-MIN(Q) 
7.      S ← S ∪ {u} 
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8.      FOR each node v ∈ Adj[u] 
9.     DO GRT-RELAX (u, v, W, C, E) 
 
1.15. Conversion of a GRT-Multigraph into an 

Equivalent RT-Multigraph 

A GRT-multigraph cannot be converted physically 
into an equivalent RT-multigraph (Biswas et al., 
2013b). But for the purpose of solving various 
problems (say, SPP), for implementing very effective 
communication system via a GRT-multigraph, one can 
mathematically convert it into an equivalent RT-
multigraph and apply all the algorithms/theories of 
RT-multigraph (Biswas et al., 2013a) to find the final 
solutions for the GRT-multigraph. Consider the GRT-
multigraph Ggrt at some instant of time (Fig. 7). 

Now, for each link of this Ggrt if we replace the 
existing cost by a new value equal to the corresponding 
EC value of it, we get a new multigraph Grt with common 
V and E (Fig. 8). This new multigraph Grt can be viewed 
as an equivalent RT-multigraph of the GRT-multigraph 
Ggrt. In the multigraph Grt the condition factor is either 0 or 
1 for each link, none in the open interval (0,1). 

It may be noted that in Grt, if LSV of u at some real 
time is Iuv = (i1, i2, i3, ….., in), then ir ∈ {0,1} for r = 1, 2, 
3,….,n with the following significance: 
 
• ir = 0, if either the link uvr or the node v is non-

functional 
• r = 1, if the link uvr and v both are functional 
 

The following example compares the theoretical 
result with the real time computing results in case of 
transportation via a public transport network. 

Example 3.1 
Consider the directed crisp multigraph G (as shown 

below in Fig. 9) in which we want to solve the single-
source SPP taking the source node as the node A and the 
destination node as the node D in a public transport 
network. The Dijkstra’s algorithm for crisp multigraph 
proposed in (Biswas et al., 2012) will produce the 
following result if applied in the multigraph G. 

S = {A, C, B, D}, i.e., the shortest path from the 
source node A is: 
 

A  C  B D→ → →  
 

d-values i.e., shortest distance values of each node 
from the starting node A is: 
 

[ ] [ ] [ ] [ ]d A   0 ,  d C   18 ,  d B   34 ,  d D   59= = = =  

 
The above result is mathematically correct, but may 

not be appropriate or useful during the actual period of 
transportation (communication) because of the reason that 
many of its links are partially/fully damaged and hence not 
in their original condition for facilitating the transportation 
(assuming that all the nodes are fully functional). 

Suppose that at this period of time the corresponding 
GRT-multigraph of the multigraph G is Ggrt as shown in 
Fig. 10 below. 

Thus, instead of solving the SPP in the crisp 
multigraph G we in fact need to solve now the SPP in the 
GRT-multigraph Ggrt taking the source node as the node 
A and the destination node as the node D. Since most of 
the links are not in their original physical condition, we 
replace their actual theoretical costs by the 
corresponding effective costs as shown in the following 
RT-multigraph (Fig. 11). 

 

 
 

Fig. 7.  A GRT-multigraph ggrt 
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Fig. 8. GRT-multigraph Ggrt converted into an equivalent RT- multigraph Grt 
 

 
 

Fig. 9. A directed crisp multigraph G 
 

 
 

Fig.10. The GRT-multigraph Ggrt of the multigraph G at some period of time 
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Fig.11. The GRT-multigraph Ggrt converted into an equivalent RT- multigraph GRT 
 
 

The DA-GRTM algorithm yields the following result: 
S = {A, B, D}, i.e., the real time shortest path 

fromthe source node A is: 
 

A   B D→ →  

 
d – values i.e., real time shortest distance values of 

each node from the starting node A is: 
 

[ ] [ ] [ ]  d A   0 , d B   30 ,  d D   80= = =  

 
Thus, at this period of time the shortest distance is 

not 59 but 80. The corresponding real time shortest 
path is not A→C→B→D, but A→B→D. It may 
happen that after few hours the real time shortest 
distance is some value other than 80, although the Fig. 
5 and 9 remains always same. This real time 
information and results will surely make the 
communication system more efficient and faster 
(although, apparently not looking so at the outset, if 
viewed mathematically). 

2. CONCLUSION 

In this study we have introduced a new notion of 
Graph Theory called by “GRT-multigraphs” which is 
a generalization of the notion of RT-multigraphs 
(Biswas et al., 2013b). In a RT-multigraph, at a given 
instance of time, a link is either ‘available’ (i.e., status 
= 1) or ‘not available’ (i.e., status = 0) for facilitating 
the communication, there is no other possibility. In a 

GRT-multigraph, the link-status or CF of a link can be 
any value from the closed interval [0,1], depending 
upon its physical/logical condition for facilitating 
communication at that real instant of time. We 
propose that there is a system S for the GRT-
multigraph which updates all the real time information 
of all the nodes after every quantum time τ. For a 
solution of the real time SPP in a GRT-multigraph, we 
have proposed a modified version of the classical 
Dijkstra’s algorithm called by ‘Dijkstra’s Algorithm for 
GRT-multigraphs’ (DA-GRTM, in short). It is claimed 
that because of rich potential to deal with the real time 
condition of a network, the notion of GRT-multigraph 
and the corresponding DA-GRTM algorithm will 
incorporate a major dimension to the present day 
communication systems (transportation systems). A 
GRT-multigraph can be mathematically converted into a 
RT-multigraph. As a special case a GRT-multigraph 
could be a GRT-graph. Our future research work will be 
to implement fuzzy CF in GRT-multigraphs instead of 
crisp CF values because of the reason that condition 
factor of an available link may not be always a precise 
quantity but an ill-defined quantity. 
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