
Journal of Computer Science 10 (2): 190-197, 2014
ISSN: 1549-3636
© 2014 Science Publications
doi:10.3844/jcssp.2014.190.197 Published Online 10 (2) 2014 (http://www.thescipub.com/jcs.toc)

Corresponding Author: Prabhu Jayagopal, Department of Computer Science and Engineering, Sathyabama University, Chennai, India

190 Science Publications

JCS

A NOVEL PRIORITIZATION ALGORITHM MODEL BASED
TEST-SUITE GENERATION USING REGRESSION TESTING

1Prabhu Jayagopal and 2Dr. Malmurugan Nagarajan

1Research Scholar, Department of Computer Science and Engineering, Sathyabama University, Chennai, India

2Director, Sri Ranganathar Institute of Engineering and Technology, Coimbatore Tamil Nadu, India

Received 2013-09-01; Revised 2013-10-14; Accepted 2013-11-13

ABSTRACT

The fully automatic Graphical User Interface tool for any application using novel model based test suite
generation techniques for a GUI. They are unable to control response time and time intervals are based on
relationship between GUI events handlers and test cases with their responsibilities. We present a novel
prioritization algorithm that enhances event handlers for the automated GUI tool. The proposed tool
generates GUI events, it Captures and Playback event responses to automatic verification point of the
results for the test cases which are written to a log file and corresponding report will be generated. This
novel algorithm was able to detect new test suite and ordering of test cases to reduce a GUI fault integration
defects. The number of faults detected for a single event are found after generating test cases for the
application. The Average Percentage of Fault Detection (APFD) and charts has been used to show the
effectiveness of proposed algorithm to find fault detection rate.

Keywords: Regression Testing, GUI Testing, Test Suite, Novel Prioritization Algorithm, Capture/Playback

1. INTRODUCTION

The Graphical User Interface application are
progressively more in real-world market. GUI are now
seen in mobile Phones, micro oven, cars, iPod. They are
popular because of the portability, flexibility that they
offer for the users. The Software systems have been built
on event-driven software platforms. This enables the user
either use (1) Mouse click (2) Mouse drag (3) Mouse
release (4) Mouse select or short cut key to change the
event state, this may include a change the software state,
which may impact the execution of subsequent events.
Hence, the context established by the sequence of events
executes may have an impact on how it executes.GUI
has been converted into a crucial component of any
electronics devices with the user interact. The
fundamental nature of GUI is of sensitive operation. On
the other hand, as the functional complication of
application increased. The repeated usage of cursor
operations by the user to give suitable comments to the
system. For making comparing with the GUI in order to

get numerous operations such as cursor pointing, drag
and dropping the menu and resizing the windows should
be continual for each display object. For the past ten
years, many software system had been developed on the
basis of event driven software platforms. GUI has been
developed from the event-driven software, which will
used to start-up the user to either mouse release, mouse
drag, mouse click and also key in data as input to change
the event state. The generic prioritization criteria that are
applicable to both GUI and Web application. It is to
evolve the model and use it to develop unified theory for
all Event Driven Software should be detected (Bryce et al.,
2011). At present circumstance criteria, the GUI
software application in our daily life routine. So these
GUI are now available in mobile phones, micro ovens,
music system, iPod so they permit a programmer to
develop the GUI by coding the software event handlers.

The fully automatic model based GUI testing
resulted, aggravated by work on prioritization algorithm
for test data generation, The Test Case Prioritization is
proposed in recent years, it can improve the fault

Prabhu Jayagopal and Malmurugan Nagarajan / Journal of Computer Science 10 (2): 190-197, 2014

191 Science Publications

JCS

detection during the testing phase. The weighted and
non-weighted GUI test cases based on weight scores.
The weighted scores can be ranked in ascending or
descending order. The result shows that dynamic
adjusted-weight method can obtain a better fault-
detection rate. The efficiency of detected faults is not
always the same (Huang et al., 2010). The tester must
specify the test data coverage criterion to be used, either
branch coverage or mutation analysis. It is integrated
into javascript compiler and test generation by a
command line option (Alshraideh, 2008). The notion of
utilizing a fault-based approach to test case prioritization
is novel and n concrete terms how the approach may
apply to test suites generated to detect faults related to
logical expressions in specifications (Yu and Lau, 2011).
The search effort is then distributed amongst the paths,
with several ‘species’ working in parallel, each dedicated
to finding test data for an individual path (McMinn et al.,
2006). The interaction with it primarily using a mouse,
launches programs by clicking on icons and manipulates
various windows on the screen using graphical controls
(Reimer, 2005). The code modifications made to create a
new version may alter test execution patterns; an issue
impacting the efficiency of test case prioritization
techniques is whether these alterations will significantly
impact the predictive value of past execution data
(Rothermel et al., 2001).

In this study, we propose:

• GUI testing can test any application provided the
appropriate packages and interfaces are written for
that language

• The state based logging type, the start and end time
of each event that uniquely define a state are stored
in the log file. This file type contains a set of
interval records each one of them is characterized as
‘begin interval’, ‘end interval’, ‘continuation
interval’ and ‘complete interval’. Since each
occurrence of event is time stamped, we can
measure the responsiveness of the GUI

• We can use GUI capture and playback event at the
background, unlike in the automated testing. The
application has to designed what to test

• We focused on an novel prioritization algorithm to
generate test suite for above the same

1.1. GUI Testing

The GUI existing testing techniques have been focus
on implementing the automated GUI testing tools and
adopted by practioners (Marchetto et al., 2008; Memon,
2008). The most popular GUI testing approach used my

previous work, compared various testing tools like Junit,
Abbot, Marathon, Pounder, Robot, QTP.

In the automated testing process, testers have to ensure
the validation of software using testing techniques. Before
capture a testing process, we must decide to criteria for
expressive the capability of testing software (Jatain and
Sharma, 2013).

A graphical user interface for a.net may be
implemented using new components, GUI events, which
must be handled by the program. Thus, GUI events are an
important class of inputs to.net Codes, which capture and
replay correctly and efficiently, should be done in the
interactive applications. Capture of GUI events is
significantly different from the capture of other kinds of
inputs, playing back of events in the application and the
corresponding test case will be generated.It is Based on
data captured and the data which is stored in the
database, A report showing the type of event, unique id
for the event, the time of the event and the screenshot of
the application when the event took place is generated.
Based on the type of event, the corresponding test cases
are generated.

The existing methods used for modeling and testing a
GUI also affect its reliability. Consequently, the quality
of the reliability assessment process and ultimately, the
reliability of the GUI depend on the approaches used for
modeling and testing (Belli et al., 2012).

The present actual data on the experiences and to
discuss if advantages can be gained using model-based
testing when compared with traditional graphical user
interface testing. Another contribution of this paper is a
description of a keyword-based test automation tool that
was implemented for the Android emulator. All the
models and the tools created are available as open source
(Takala et al., 2011). The Fig. 4 shows an important
limitation is that contain state based relationships.
Relationship between E1 and E5. The desirable coverage
requires large number of test suites.

In earlier work, we found a feedback-based
techniques to enhance a two ways of covering test cases
are as follows (1) is able to significantly improve
existing techniques and helps identify serious problems
in the software and (2) the ESI relationships captured via
GUI state yield test suites that most often detect more
faults than their code, event and event-interaction-
coverage equivalent counterparts (Yuan and Memon,
2010). The GUI events interact in difficult ways an GUI
reply to an event wary depending on the preceding event
and their running orders. The capture and replay
event have been developed as a techniques for testing the
verification of interactive GUI applications. Using

Prabhu Jayagopal and Malmurugan Nagarajan / Journal of Computer Science 10 (2): 190-197, 2014

192 Science Publications

JCS

capture the entire event occurred in the application can
be recorded. The replay event is used to repeat the
application process, An quality-assurance group can run
an application and record the entire interactive session.
The tool records all the user’s events, such mouse clicks,
mouse release, mouse drag and the keys press from the
keyboard. All these events will be recorded to see fault
detected during implementation and it is stored in log file
using JASON object. This tool can then automatically
replay the exact same interactive session any number of
times without requiring a user. The capture and replay
events are usually not used for recording entire
interactive sessions. their main aim is to record complex
interaction sequences, such as the user clicking on the
screen like mouse click on the file and then open to
verify that this click will response by the software
system or not We studied whether existing GUI capture
and replay tools can be used to record entire interactive
sessions with complex real-world applications and
whether the tools allow or preclude the accurate
measurement of perceptible performance given the
overhead they impose on the application.
A verification point enables during capturing the GUI
application, the object information stores it in a log file.
This file becomes the base of the expected state of the
object during subsequent builds. When you play back the
GUI Interactive events it retrieves from the log file.

Our automation tools retrieve the information from
the log file for each verification point and compare it to
the state of the object in the new build. After playback,
the results of each verification point appear in the tester

Log file. If a verification point fails you can select
the verification point in the log. The Reports will be
generated after correcting the bugs in the application.

1.2. Average Percentage of Faults Detected
(APFD)

To measure the target of rising a separation of the test
case of fault detection. APFD founded (Ashraf et al.,
2012).

The Fig. 1 shows an Novel GUI tool with
capure/playback, opening the application, Report
generation, Reset database, set verification point and
assignining the values periodic table holds the multiple
colors of tables with their description.

The Fig. 2 shows an report generation of each and
every event occurred in the application with their unique
Id, action type and view. The Fig. 3 shows the interface
between the events occurred and their response to their
other events. In earlier study of a test case Prioritization
consists of input and output value and expected result
before testing. Although test-case execution should be
successful, if some errors occur during execution, the
output value cannot be obtained or compared with the
expected result (Huang et al., 2010).

 An Event Flow Graph (EFG) consists of all events
and all possible interactions. Interactions are a set of
directed edges between events and events are the vertex
in the graph. This graph also records which events will
be invoked continuously (Huang et al., 2010).

Fig. 1. A Simple GUI tool with an application

Prabhu Jayagopal and Malmurugan Nagarajan / Journal of Computer Science 10 (2): 190-197, 2014

193 Science Publications

JCS

Fig. 2. Report generation for the events

Fig. 3. Events for GUI application

 Automated GUI Testing is a solution to all the issues
raised with Manual GUI Testing. An Automated GUI
Testing tool can playback all the recorded set of tasks,
compare the results of execution with the expected
behavior and report success or failure to the test
engineers. Once the GUI tests are created they can easily
be repeated for multiple number of times with different
data sets and can be extended to cover additional features
at a later time. Most of the software organizations
consider GUI Testing as critical to their functional
testing process and there are many things which should
be considered before selecting an Automated GUI
Testing tool. A company can make great strides using
functional test automation. The important benefits
include, higher test coverage levels, greater reliability,
shorted test cycles, ability to do multi user testing at no

extra cost, all resulting in increased levels of confidence
in the software (Prabhu and Malmurugan, 2010).
 The Table 1 shows the events with the
corresponding action occurred in the GUI application.
 It measures the average rate of fault detection of test
suite execution. The APFD is calculated by taking
weighted average of the number of faults detected during
the run of the test suites. APFD is defined as:

APFD = (1-TF1 + TF2 +.... + TFm/nm) + (1/2n)

T→test suite under evaluation
m→number of faults
n→ total no. of test cases
TFm→position of test

Prabhu Jayagopal and Malmurugan Nagarajan / Journal of Computer Science 10 (2): 190-197, 2014

194 Science Publications

JCS

Fig. 4. Software architecture experimental procedure

Table 1. Events and actions in the GUI application
Events Actions
E1 Changes in color
E2 Display the description box
E3 It glows on the button
E4 Disables the button
E5 Drag and copy the description

Table 2. The number of faults detected for an event E1 to

generate test suite
 TEST SUITE
--
E1 TC1 TC2 TC3 TC4 TC5 TC6 TC7 TC8 TC9
FD1 x x x
FD2 x x
FD3 x x
FD4 x x
FD5 x x
FD6 x
FD7 x x
FD8 x x x x
FD9 x
No. 2 2 2 3 1 2 3 2 2
of Faults
Time 4 8 3 2 11 6 7 8 9

1.3. Novel Prioritization Technique

In earlier work, it makes take long time depending
the size of test cases. How long each test case takes to

run. On the other hand through the use of an effective
prioritization technique. Software testers can be in
random order test cases to attain an increased rate of
fault detection. Novel technique presented in this
study implemented a new regression test suite using
prioritization algorithm that prioritized the test cased
with the target of faults can be found during the
execution of test suite. The below pseudo code for
ordering test cases from lowest PFD value to highest
PFD value. the variable means the current minimal
PFD value in all test cases. Initially the value of FD
will make null, Uot the test cases will be in unordered
list. All test cases are sorted in order to make a
effective test suite.

Algorithm

Input:
 Uot: Unordered test cases
 FD: Summation of fault detections
 E: Event handling
Output:
 TS: New prioritized Test Suite
 1. Begin
 2. Set TS empty
 3. Set E empty
 4. For each event E→TS do
 5. Calculate average faults found in a minute PFD =
FD×2/time

Prabhu Jayagopal and Malmurugan Nagarajan / Journal of Computer Science 10 (2): 190-197, 2014

195 Science Publications

JCS

 6. End for
 7. Sort TS in ascending order based on the value of
each test suite
 8. APFD value generated
 9. End
PFDn = fault * 2 / time
PFD1 = 1
PFD2 = 0.75
PFD3 = 1.33
PFD4 = 3
PFD5 = 0.18
PFD6 = 0.66
PFD7 = 0.85
PFD8 = 0.5
PFD9 = 0.33

Prioritization order as follows:

PFD5 + PFD9 + PFD8 + PFD6 + PFD2 + PFD7 + PFD1 +
PFD3 + PFD4

APFD=(1-1+0.75+1.33
+3+0.18+0.66+0.85+0.5+0.33/9*9) +(½*9)
 =(1-8.6/81)+(1/2*9)
 =(1-0.1061)+(1/2*9)
 =(0.8939)+(1/2*9)
 =0.8939+0.055
 =1.4494

The Average percentage of fault detection metrics has

been used to measure the efficiency of proposed and
random prioritization and it shows that the proposed
value based algorithm is more efficient than random
prioritization to generate sequence of test cases for early
rate of fault detection (Ashraf et al., 2012).

Definition: A test case consists of input value, output
value and expected output before starting testing. The
function takes as input a set of test cases to be ordered
and returns a sequence that is ordered by the
prioritization criterion. Because we have developed a
unified model of GUI and Web applications, we need the
function to be extremely general so that it may be
instantiated for either application class and is able to use
any of our criteria as a parameter. The function (called
OrderSuite) selects a test case that covers the maximum
number of criteria elements (e.g., windows and
parameters) not yet covered by already-selected test
cases. The function iterates until all test cases have been
ordered (Sampath et al., 2013).

1.4. Source Code for Creating Test Casses

public void createtestcasebutton(string Val)

 {
 ob5[i] = new Button();
 this.ob5 [i].Text = "Test Case";
 testypos += 50;
 this.ob5 [i].Location = new
System.Drawing.Point (testxpos, testypos);
 this.ob5 [i].Size = new
System.Drawing.Size(100, 25);
 this.Controls.Add(ob5[i]);
 this.ob5[i].Click += delegate(object sender1,
EventArgs ee)
 {
 createtestcases(sender1, ee, val);
 };
 i++;
 }
 public void createtestcases(object sender,
EventArgs e, string val)
 {
 if (val == "mouse")
 {
 Mousetestcases ob = new mousetestcases();
 ob.Show();
 }
 else if (Val == "key")
 {
 Keytestcases ob1 = new keytestcases ();
 ob1.Show ();
 }
}

Fig. 5. The cummulative of test cases before the fault detection

rate

Prabhu Jayagopal and Malmurugan Nagarajan / Journal of Computer Science 10 (2): 190-197, 2014

196 Science Publications

JCS

Fig. 6. The cummulative of test cases after the fault detection

rate

It is used for playing back the events which were
recorded during the capture phase. Based on each tick of
system clock and the data stored in the structure, all
mouse and keyboard events get replicated and if a
verification point is set, then during playback, at the
corresponding event, The data gets tested whether the
test passed or failed.

2. RESULTS

From Table 2 which is also represented in Fig. 5
and 6, shows the fault detection is very effective after
ordering the test cases compared to unordered test
cases. It is identified that the fault detection rate is
sequence and computational cost and transmission
cost of the proposed method are improved than the
existing model.

3. DISCUSSION

 The novel Prioritization algorithm for model based
test suite generation presented in this study documents
certain aspects of GUI testing. In this section we
present an objective summary of trends in GUI testing.
From the data collected, it can be seen that model-based
GUI testing techniques have attracted the most
attention in the Research community. However,
industrial tools such as Pounder, Marathon, Jacareto,
JFC Unit, QTP are model based on improving the
response time, capture/Replay, ordering of test cases
with prioritization with comparing the GUI testing
techniques, methods and practices in the research
community. There has also been a general lack of
collaboration between practitioners and researchers
(Fig. 4), although with exceptions in recent years.

These techniques are typically not usable by other
researchers because they are not widely applicable. It
provides guidance about possible future development
and research directions.

4. CONCLUSION

In this study we presented a new automated tool for
any GUI applications. The proposed Prioritizatation
algorithm is used to Ordered of test cases using regression
testing, implemented proof-of-concept tool support for the
approach and combined the implemented GUI tool with
an model-based approach aims to reduce the amount of
fault detection rate in the test suite generation, it is
required to model based GUI applications to enable quick
response time and time interval in GUI events in
automated testing. In our previous work, the strengths of
our approach in comparison to the automated testing tools
include automatically generating human readable
graphical models while requiring none or only a little
manual effort. In future, we plan to improve the GUI Tool
so that the generated Feedback would inform about the
detected usability issues and include information about the
changes that happened in the GUI after a specific
interaction. The GUI Tool should indicate more clearly the
states that should be manually elaborated in the model and
support iterative modeling containing manual and
automated phases. Also, we plan to extend the approach to
be also usable on other kinds of GUI applications.

However, in this study we didn’t consider that some
events might give failed test cases events are unrestricted
to the action take place in the application. We might
need to further investigate whether the fault-detection
ability of the other tool is the same as the latter.
Furthermore, we still have to know how to generate
report generation for other application. We plan to study
and present above mentioned issues in the future.

5. REFERENCES

Alshraideh, M., 2008. A complete automation of unit
testing for JavaScript programs. J. Comput. Sci., 4:
1012-1019. DOI: 10.3844/jcssp.2008.1012.1019

Ashraf, E., A. Rauf and K. Mahmood, 2012. Value based
regression test case prioritization. Proceedings of the
World Congress on Engineering and Computer
Science, Oct. 24-26, San Francisco, USA.

Belli, F., M. Beyazit and N. Guler, 2012. Event-
oriented, model-based GUI testing and reliability
assessment-approach and case study. Adv. Comput.,
85: 277-326.

Prabhu Jayagopal and Malmurugan Nagarajan / Journal of Computer Science 10 (2): 190-197, 2014

197 Science Publications

JCS

Bryce, R.C., S. Sampath and A.M. Memon, 2011.
Developing a single model and test prioritization
strategies for event-driven software. IEEE Trans.
Soft. Eng., 37: 48-64. DOI: 10.1109/TSE.2010.12

Huang, C.Y., J.R. Chang and Y.H. Chang, 2010. Design
and analysis of GUI test-case prioritization using
weight-based methods. J. Syst. Software, 83: 646-
659. DOI: 10.1016/j.jss.2009.11.703

Jatain, A. and G. Sharma, 2013. A systematic review of
techniques for test case prioritization. Int. J.
Comput. Applic., 68: 38-42. DOI: 10.5120/11554-
6833

Marchetto, A., P. Tonella and F. Ricca, 2008. State-
based testing of ajax web applications. Proceedings
of the 1st International Conference Software
Testing, Verification and Validation, Apr. 9-11,
IEEE Xplore Press, Lillehammer, pp: 121-130. DOI:
10.1109/ICST.2008.22

McMinn, P., M. Harman, D. Binkley and P. Tonella,
2006. The species per path approach to SearchBased
test data generation. Proceedings of International
Symposium on Software Testing and Analysis, Jul.
17-20, ACM Press, Portland, ME, USA., pp: 13-24.
DOI: 10.1145/1146238.1146241

Memon, A.M., 2008. Automatically repairing event
sequence-based GUI test suites for regression
testing. ACM Trans. Software Eng. Methodol., 18:
pp: 1-36. DOI: 10.1145/1416563.1416564

Prabhu, J. and N. Malmurugan, 2010. A survey on
automated GUI testing procedures. Eur. J. Sci. Res.,
64: 456-462.

Reimer, J., 2005. A History of the GUI. Arc Technical,
LLC.

Rothermel, G., R. Huntch, C. Cu and M.J. Harold, 2001.
Prioritizing test cases for regression testing. IEEE
Trans. Software Eng., 27: 929-948. DOI:
10.1109/32.962562

Sampath, S., R. Bryce and A.M. Memon, 2013. A
uniform representation of hybrid criteria for
regression testing. IEEE Trans. Soft. Eng., 39: 1326-
1344. DOI: 10.1109/TSE.2013.16

Takala, T., M. Katara and J. Harty, 2011. Experiences of
system-level model-based GUI testing of an android
application. Proceedings of the IEEE 4th
International Conference on Software Testing,
Verification and Validation, Mar. 21-25, IEEE
Xplore Press, Berlin, pp: 377-386. DOI:
10.1109/ICST.2011.11

Yu, Y.T. and M.F. Lau, 2011. Fault-based test suite
Prioritization for specification-based testing. Inform.
Software, 54: 179-202. DOI:

10.1016/j.infsof.2011.09.005
Yuan, X. and A.M. Memon, 2007. Using GUI run-time

state as feedback to generate test cases. Proceedings
of the 29th International Conferences on Software
Engineering, May 20-26, IEEE Xplore Press,
Minneapolis, MN., pp: 396-405. DOI:
10.1109/ICSE.2007.94

