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ABSTRACT 

Given the need to achieve maximum performance possible, offloading intensive computation workload to 
GPU is a key to achieve this goal. Offloading most of the workload to GPU may not results in desired 
performance, so a middle approach is more suitable such as splitting the workload between the CPU and the 
GPU can be considered as an optimized approach. In this study, we used a popular high performance 
computation workload which can also be implemented using a hybrid approach in which part of the 
workload is offloaded to the CPU. We also present a performance estimation method which is verified to 
estimate performance with in 5% error margin. 
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1. INTRODUCTION 

In general, the CPU was the focus when it comes to 
application with intensive computation requirements. 
Recent development of GPU introduced new features to 
handle intensive parallel computation which makes it 
compete with the CPU. While most of the high 
performance computation algorithm now focuses on 
GPU for data intensive computation, there is still a small 
window for the CPU to perform parallel task with the 
GPU which leads to hybrid implementation. Although 
there are big architecture difference between the CPU 
and GPU, we can still think of both of them sharing the 
same architecture space with different parameters. For 
example, the CPU comes with small number of cores 
compared to GPU, but the CPU core can deliver better 
single thread performance. On the other hand, the GPU 
can hide memory latencies by managing large number of 
threads while the CPU does this through cache. The GPU 
can't handle very well task parallelism, but it is more 
suitable to process data parallelism. The CPU can't 
handle data parallelism, but it can handle very efficiently 
task parallelism due to its efficient branching feature. In 
summary the CPU and GPU trade off one architectural 
feature for another, so it is reasonable to assume that 
some applications are more suitable for one or another. 
CPUs and GPUs are built using different approaches. 

The CPU is designed for different applications and 
can provide fast response times to a single task. 
Architectural features such as branch prediction, out-of-
order execution and super-scalar are directly related to 
this performance improvement. These features come at 
the expense of increased power consumption and 
complexity in addition to increase in die size per core. 

GPUs are built for rendering and other graphics 
applications that have a large amount of data 
parallelism, which means that each pixel to be 
displayed on screen can be processed independently. 
CPUs on the other hand are designed to pack small 
number of processing cores while keeping within a 
given power and thermal limitations. This results in 
GPUs trading off single threads performance for 
increase parallel processing. CPUs can provide a better 
performance for single thread for throughput computing 
workloads. GPUs provide many parallel processing 
units which are ideal for throughput computing. 

The paper is organized as follows; we start in section 
2 with related work section, in which we compare our 
work with different published papers. In section 3, we 
present the Monte Carlo (MC) performance model and 
Hybrid implementation with performance analysis. In 
section 4 we discuss experimental results for the 
estimation model as well as the hybrid performance 
implementation data results. In section 5, we conclude 
and discuss future work.  
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2. RELATED WORK 

In this study, we propose an analytical model to 
estimate performance for MC benchmark with error<5% 
between measured and estimated data. We also present a 
hybrid implementation for MC in which the workload is 
shared between the CPU and GPU. Several researchers 
have worked on estimation processor performance for 
given benchmarks using different estimation methods 
including simulation trace-based methods. Our 
performance estimation models identifies performance 
dependencies and bottlenecks for a given processor and 
workload. We also present a hybrid implementation for 
MC workload to maximize performance. The model can 
be used to estimate performance for different processor 
settings (i.e., frequency, number of cores, Instructions-
Per-Cycle (IPC), efficiency and execution time).  

Goel et al. (2010) presented a per-core linear power 
model using sampled performance counter on single and 
multithreaded applications. Error deviation is <5% for all 
tested workloads.  

Bakthavatsalam and Mehata (2014) proposed a Hybrid 
instruction set implementation, as compared to our method 
in which the hybrid implementation between CPU and GPU 
is implemented within OpenCL code itself. 

Pennycook et al. (2011) presented a hybrid model of 
MPI and CUDA for NAS-LU benchmark and compares 
it to different processors and GPU architectures. Our MC 
hybrid design approach uses OpenCL code to use 
parallel implementation in which part of the computation 
task is off-loaded to CPU while GPU is running other 
computation task in parallel.  

Aoki et al. (2011) presented Hybrid OpenCL 
implementation for multiple nodes in network 
environment. The concept is similar to what we 
presented in this study between GPU and CPU, but in 
(Aoki et al., 2011) the performance is compared between 
Hybrid Open CL and OpenCL with MPI implementation. 

Yu el al. (2014) developed a new simplified 
computation method based on new parallel computation 
techniques in which computation time is minimized. In 
this study, we propose a different approach by offloading 
computation load to GPU when it is possible to offload. 

3. PERFORMANCE PREDICTION 
MODEL 

In this section, we derive a set of equations for the 
MC benchmark performance model. We collected most 
data using the CUDA profiling tool provided by 
Nvidia. These equations are based on generic GPU 

architecture but are also specific to benchmark 
behavior. The number of warps is generally the total 
number of threads divided by 32. Applying this to the 
benchmark, we get the following Equation 1: 
 

M * 256
warp#=

32
 (1) 

 
where, M is the number of options, 
loop_per_warp_thread is defined as Equation 2: 
 

N
loop_per_warp_thread=

1024
 (2)  

 
where, N is the simulation path. Using the CUDA profiling 
tool, we analyzed the logic loops through instructions issued 
per warp as shown in Fig. 1 Equation 3:  
 
Instructions_per_warp_thread =  
54.4×loop_per_warp_thread (3) 
 

And the cycles per warp thread can be calculated as 
Equation 4: 
 
cycles_ per_warp_thread_instr = 
per_warp_thread/IPC/Efficiency (4) 
 

The total number of cycles which is needed to 
determine the total time is defined by Equation 5: 
 
total_number_of_cycles = instruction_per_warp 
_thread×Warp#/SM#/(efficiency IPC) (5) 
 
where, instruction per warp thread is defined by Equation 6: 
 
Instructions_per_warp_thread =  
54.4 loop_per_warp_thread 74.64 (6) 
 

The final prediction equation for options per second 
is defined by Equation 7: 
 

M
BW (Options/sec) =

Total_ time
 (7) 

 
where, Total Time is defined as Equation 8: 
 
Total_time = Total_cycle /Core_Frequency (8) 
 
M = Defined as the number of options 
SM# = Number of core shaders frequency is the 

GPU core frequency 
IPC~1.0 = Efficiency ~0.92  
N = The simulation path  
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Fig. 1. Logic Loop Vs Instructions issued per Warp 
 

From these equations, we see that the MC benchmark 
performance is directly proportional to number of cores, 
IPC, efficiency and core frequency and is inversely 
proportional to simulation path N, warp# and total time. 

3.1. MC Hybrid Configuration  

For high data intensive computation, the trend is to 
offload intensive computation to vector processor like 
GPU, compared to traditional approach of performing 
computation only on the CPU. Splitting the workload in-
between the CPU and GPU might be a better alternative. 
In this section, we will discuss MC option pricing 
algorithm in a hybrid implementation. MC is a two 
block-processing paradigm, one that generates samples 
and second that so the actual processing. Traditionally 
the CPU was the platform of choice for computing 
application. Recent development in the GPU space 
introduced what seems like a competitor for the CPU. As 
a result, there is currently a tendency to overrate the 
utility of the GPU in computing applications, in the same 
way that workloads where processed on the CPU in the 
past, the current trend if to offload computation to GPU. 
There is a big architectural difference between CPU and 
GPU; each exhibits strengths in areas where other is 
weak. The CPU comes with small number of cores 
compared to GPU but each of its cores delivers better 
single threaded performance. The GPU hides memory 
latencies by effectively managing a large number of 
threads; the CPU does it through cache memories. The 
GPU can’t handle very well task parallelism but it’s very 
suitable for data parallel applications; the CPU may not 
handle as well data parallelism but it handles very well 

task parallelism due for example to the presence of an 
efficient branching mechanism. Cache memory takes up 
quite a lot of the CPU die but on the GPU it’s less 
important. CPU and GPU trade off one architectural 
aspect for another, each specializing in another direction 
according to the demands of the market. It’s reasonable 
to assume that certain applications are more suitable for 
one or another. For the purpose of this study all 
measurements where performed on an Intel i7-2600K 
CPU and on a GTX 480 NVIDIA GPU. All 
implementations where done in OpenCL 1.1 for both 
platforms. For the 2 devices 1 context implementation tests 
were performed only on Intel i7-2600K with an internal 
GFX driver build with support for GPU OpenCL enabled. 
In Fig. 2, we show offloading computation for GPU, which 
leaves small window of opportunity for CPU.  

MC tries many scenarios and offers an estimation of 
the most probable outcome. The algorithm is composed 
of a random numbers generator software Pseudo 
Random Numbers Generator-(PRNG) and actual 
processing specific to the domain of application. The 
input is a set of options and the output is their 
corresponding expected values and confidence levels. 
The single device implementation is obvious. The 
implementation possibilities for a hybrid (CPU+GPU) 
architecture are done such that each device processes 
a chunk of the input set of options proportional with 
its compute capability were both PRNG and MC run 
on each device. Each device runs one of the MC 
components were one does PRNG and the other MC. 
Following measurements of the single device 
implementations we conclude that PRNG behaves 
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better on the CPU both in single and in double 
precision. In addition, MC apparently performs much 
better on the GPU than on the CPU (almost 100 times 
faster). In the MC case, we should note that the very 
large difference is mostly because the comparison 
done between the GPU with fast math enable and the 
CPU without fast math (not yet supported on the 
CPU). When fast math is disabled on the GPU or if 
the CPU algorithm is modified to use a fast 
implementation of the exponential function, the 
performance gap is reduced to about 3-6 times still in 
favor of the GPU. From the hybrid point of view, the 
choice seems to be to perform the PRNG on the CPU 
and after that MC on the GPU. Now from the point of 
view of the Open CL implementation and considering 
only two devices at a time, we constructed the below 
diagram to show hybrid options. We can have 2 
discrete devices in 1-2 contexts or 2 joined devices in 
1-2 contexts. (An example of 2 discrete devices is i7-
2600K and GTX 480; an example of 2 joined devices 
is i7-2600K and HD3000 GPU). The advantages of 
single vs. multiple contexts is, we can share memory 
objects if both devices reside in the same memory 
space reducing overhead and we can use events to 
synchronize between executions on all queues 
included in the same context. Considering these facts, 
it seems better to go for the single approach where 
possible. A crucial element of the hybrid 
implementation is the ability of the common Open CL 
API ‘enqueue’ functions to execute asynchronously-in 
other words to return control back to the host thread 

immediately after being issued. This is shown in Fig. 
3 where a problem was broken into 3 chunks.  

In Figure 3 graph A shows the execution duration if 
chunks are processed sequentially (even though PRNG 
takes place on the CPU and MC on the GPU). Graph B 
shows the performance gain of achieving parallel 
execution on both the CPU and the GPU when 
compared with the A case. The second approach is also 
very useful to hide memory IO overhead when the CPU 
and the GPU do not share the same memory space. In 
the A case every call is blocking and so, even if we 
have PRNG execute on the CPU and MC on the GPU, 
the chunks are executed sequentially. Having the calls 
execute asynchronously enables parallel execution on 
both devices and more efficient use of the available 
hardware resources. In the hybrid model addresses only 
the case of two devices and it is suitable for both single 
and dual context. The main difference between single 
and dual context is how the memory transfers are 
implemented; for the single context, approach explicit 
memory transfers are not implemented. For dual 
context memory, transfers are done through a 
combination of memory enqueue calls. The core to our 
hybrid design is running the PRNG on the CPU and 
MC on the GPU as shown in Fig. 4. Explicit memory 
transfers belong on the GPU Q. The problem gets 
broken down into N chunks and the algorithm loops 
over the problem in N+1 steps. On the first step only 
the CPU Q performs. On the last step only the GPU Q 
performs. Basically we issue asynchronously the 
enqueue calls (kernel and memory) to the CPU and 
GPU queues and then synchronize on each step. 

 

 
 

Fig. 2. Offloading computation to the GPU 
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 (A) (B) 
 

Fig. 3. Sequential versus parallel execution 
 

 
 

Fig. 4. MC Hybrid design 
 
After synchronization, additional post-processing is 
required to integrate results over the whole sample set. 
The sample set is what needs to be transferred towards 
the GPU as it is input for the actual MC processing.  

The measurements show that hybrid performance 
depends heavily on the problem size (sample set size and 
option count) and on the CPU/GPU ratio of compute 
capabilities. The problem size matters because it is the 
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main factor for workload balancing. Improperly 
balancing the two stages of the pipeline (CPU and GPU) 
leads to wasting compute power and memory transfers 
not being hidden. CPU/GPU compute ratio is also 
important because if it is too small can lead to a too 
small performance gain to make hybrid worth 
implementing. The original PRNG implementation, the 
one for the GPU, performed very poorly on the CPU (in 
single precision, almost 40 times slower on the CPU) so 
it was necessary to be redesigned. The best approach was 
to first make a sequential implementation for the CPU 
and then convert that code to be used as a kernel (so on 
several threads) in OpenCL-an approach similar to 
implementing for Message Passing Interface (MPI). The 
number of threads is not that important on the CPU as it 
is on the GPU-and this was to be expected as the CPU 
single thread performance is much better than that of the 
GPU single thread performance. 

The MC hybrid performance model is divided into 
two categories The GPU only time and the Hybrid 
time for GPU and CPU. We experiment the model for 
single precision and double precision for different 
options and sample sizes. We start with GPU time 
equation, which is given by Equation 9 and 10: 
 
GPUTime = (RandTime+ MCTime)×NGPU (9) 
 
Hybrid Time = T × NH (10) 
 

We assume the I/O time is negligible ~0 and MC 
Time = T for one pipeline step duration. The hybrid time 
equation is given by Equation 11 to 13: 
 
Hybrid Time = T×N (11) 
 
Where: 
 
NH NGPU+N1 and NGPU (12) 
 

And: 
 
TGPU = Rand Time×N+MC time (13) 
 

The difference between GPU and Hybrid time is 
derived as Equation 14: 
 
GPUtime-HybridTime = RandTime×N-T (14) 
 

In the results section, we implement the equation 
derived in this section to calculate the GPU and hybrid 

time for different options/sample size to derived the 
benefit for using hybrid model instead of just GPU for 
single and double precision floating point. Hybrid 
performance depends on many factors, such as problem 
size, load balancing, hiding memory operations using 
parallelism, algorithm optimization and capabilities of 
devices which are best when the devices are well 
balanced. The bigger the processing power gap between 
the devices the less performing hybrid will be. 

4. EXPERIMENTAL RESULTS 

4.1. MC Performance Experimental Results  

First, we verify MC using the Nvidia Tesla 2050  
(CUDA cores = 448, or SM# = 448/32 = 14) and NV 
GTX580 (CUDA cores = 512 or SM# = 512/32 = 16) 
graphics cards. The data results show an error of<5% 
between the estimated and measured data at different 
core frequencies and numbers of cores, shown in Fig. 5. 
For both cards (Tesla 2050 and GTX580), the simulation 
path N = 256*1024 and options number M = 2048.  

For MC Hybrid model performance results, solving 
the equations we derived in hybrid model section, if 
we know the RandTime for CPU and T, we can 
calculate N for which there is a performance gain. For 
the single precision case, T~65%* RandTime, which 
means that N is at least 2, this will give us theoretical 
performance gain of 35%. 

From Fig. 6, the random time for CPU reaches a max 
of 2863ms for number of samples = 27, while the GPU it 
reaches a max of 1844 ms for samples = 27. Therefore, 
the CPU RAND time is only 1.55 slower than the GPU 
RAND time. For 800 options and 128×1024×1024 
samples, the GPUtime = 4883 ms and Hybridtime = 3526 
ms which is ~27.8% improvement in performance. 
Performance can be increased by increasing the sample 
size, for example, Options = 800, Samples = 1024 MB, 
Hybrid Chuck = 16 MB and GPU chunk = 128 MB, we 
calculated Hybrid time to be 28.8% faster than GPU only 
time. If we change the sample size to 2048 MB, we 
calculate the hybrid time to be ~29% faster than GPU only 
time. We repeat the same experiment for double precision. 

For double precision, the CPU Random generating 
numbers is 5× times faster than the GPU. From Fig. 7, 
CPU RAND time is~1360 ms, while the GPU RAND 
time is ~6950 ms. In case of 64 options, 120×1024×1024 
sample size, the GPU time is calculated at 11419 ms 
while the Hybrid time 0is 5210 ms, this is ~54% 
improvement in performance. 
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Fig. 5. Estimated Vs Measured for MC 
 

 
 

Fig. 6. GPU and CPU RAND timing for single precision for different random sizes 
 

 
 

Fig. 7. GPU RAND and CPU RAND timing for double precision for different random sizes 
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5. CONCLUSION 

In this study, we analyzed MC benchmark; we 
developed a performance estimation model as a 
function of several processor architecture parameters 
related to performance. We verified the model by 
testing different processors configuration running a 
given benchmark and compared measured results with 
estimated results. All tested experiments for 
performance show deviation error between estimated 
and measured data of <5%. We also presented a 
hybrid implementation and performance model for 
MC workload in which we analyzed performance 
benefits for MC workload when running in hybrid 
mode instead of GPU only mode. The Hybrid model is 
implemented from the perspective of data and task 
decomposition. Pipelining should be used to hide 
memory traffic between devices. Parallel execution on 
all devices can be achieved using asynchronous 
operations, which either is synchronizing using events 
or simply use an in-order queue and asynchronous 
operations. Hybrid performance depends on many 
factors such as problem sizes, algorithms 
optimizations, capabilities of devices in which it’s 
best when the devices are well balanced; the bigger 
the processing power gap between the devices the less 
performing hybrid will be. In conclusion, the hybrid 
implementation for MC shows the CPU is about 3-6 
times slower than the GPU for data parallel problems, 
but the CPU can perform much better on task parallel 
problem. For double precision PRNG, the i7 CPU is 
about 6 times faster than the GTX 480 and about 3 
times faster on CPU as compares to Tesla M2090. We 
conclude that hybrid implementation is a possibility to 
achieve higher performance under certain 
circumstances like we have described in this study.  
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