
Journal of Computer Science 10 (7): 1238-1248, 2014
ISSN: 1549-3636
© 2014 Science Publications
doi:10.3844/jcssp.2014.1238.1248 Published Online 10 (7) 2014 (http://www.thescipub.com/jcs.toc)

Corresponding Author: Oh-Chul Kwon, Department of Computer Science and Engineering, Seoul National University,
 Seoul, South Korea Tel: +82-2-880-2562

1238 Science Publications

JCS

ADAPTIVE I/O SWITCHING FOR SEAMLESS CONVERGENCE
OF SMART PHONES AND EXTERNAL I/O DEVICES

Oh-Chul Kwon, Jusung Kim and Chang-Gun Lee

Department of Computer Science and Engineering, Seoul National University, Seoul, South Korea

Received 2014-01-15; Revised 2014-02-17; Accepted 2014-02-21

ABSTRACT

To be small and easy to carry, mobile devices cannot be equipped with large and highly capable
input/output devices. In order to overcome these limitations, this study proposes adaptive I/O
switching technique as a general solution for exploiting full features of various external input/output
devices in lieu of tiny input/output devices in a smartphone. Unlike existing physical-layer connection
based solutions or application-layer non-system solutions, we propose a generalized solution at the
mobile platform level. With this generalized solution, whatever activities of a smartphone can be
resolution-adaptively displayed in an external display device. Also, the generalized solution allows us
to use any kinds of external input devices for general mobile applications even if they are not designed
so. Adaptive I/O Switching technique is actually implemented on open source mobile platform and its
effectiveness is demonstrated with several example scenarios.

Keywords: Adaptive I/O Switching, External I/O Device, Mobile Platform, Smartphone

1. INTRODUCTION

Mobile devices like cell phones and tablets set us free
from locational restrictions. Moreover, thanks to
increasing processor speeds and radio communication
bandwidths, it becomes real for emerging smartphones to
provide general computing and IT services including
web browsing, video streaming and even document
editing. However, the Quality of Experiences (QoEs) of
those services are still very limited ironically because of
the most appealing aspect of mobile devices, that is,
“small and thus easy to carry”. To be small and easy to
carry, mobile devices cannot be equipped with large and
highly capable input/output devices.

Under this inherent limitation, we need to exploit
surrounding gadgets and appliances as alternative
input/output devices aiming at high QoEs of general
computing and IT services with smartphones. For this,
solutions are possible at different levels. First, there can
be a physical-layer connection based solution such as
TV-out connection, WHDI (Lawton, 2008), WiDi

(2010), WirelessHD (2010), Miracast (2013) and
Bluetooth (2013). Only with this layer solution,
however, the external display device simply shows the
magnified but the same image of the smartphone. That
is, it is not possible to reconstruct the images exploiting
the full resolution of the external display device. In the
input side, only the physically compatible input devices
can be used for mobile applications. Second, there can
be an application-layer non-system solution. However,
it can transfer images to external display devices only
for a specifically targeted mobile application but not
for general activities of the smartphone. Also in the
input side, it can allow us to use only a specifically
targeted external input device for a specifically
targeted mobile application but not for general input
devices and general mobile applications.

In order to overcome these limitations, we propose a
solution in the platform level, that is, an adaptive I/O
switching technique, to achieve the following two goals:

• Output side: All the images constructed from any
activities of the smartphone should be resolution-

Oh-Chul Kwon et al. / Journal of Computer Science 10 (7): 1238-1248, 2014

1239 Science Publications

JCS

adaptively reconstructed and displayed in the
external display device

• Input side: Any kinds of external inputs should be
transformed to internal input events so that they can
be used to control any mobile applications even if
they are originally designed without consciousness
of such external inputs

In this study, for this generic solution of adaptive

convergence of a smartphone and external input/output
devices, we discover the limitation of the current
structure of mobile platform and propose its
modifications for adaptive I/O switching. The modified
structure are actually implemented and demonstrated
with several example scenarios.

Android (2013) is the most widely used mobile
platform. Especially android is open source so that we can
easily analyze the internal architecture and apply our
propose technique. For these reasons, we choose Android
as the target of analysis and implementation in this study.

The rest of this study is organized as follows: The
next section briefly surveys related work. Section 3 and
section 4 address the adaptive I/O switching each.
Section 5 addresses our implementation. In Section 6,
evaluation and comparison are discussed. Finally,
section 7 concludes this study.

2. RELATED WORK

To address the tiny display problem of mobile devices,
there are many techniques for using external display
devices. The latest smartphones with Mobile High-
Definition Link (MHL, 2008) can connect them to a TV to
watch videos and photos via High Definition Multimedia
Interface (HDMI, 2009). Greaves et al. (2008) uses a
different approach using a projector to display the mobile
device’s screen and Singh et al. (2010) create a low cost
interactive electronic whiteboard by using a projector
and Nintendo Wiimotes. Also, there are several
WirelessHD protocols such as WHDI, WiDi,
WirelessHD and Miracastto beam a display wirelessly
from a small device to TV or projector.

These techniques, however, provide only physical
connections to external devices so that the mobile
device’s display can show up in the external display
device, i.e., simple magnified view of the same image
content of the mobile display. Thus, only with this
physical-layer connection based solution, it is not
possible to resolution-adaptively reconstruct the image
content of the smartphone and hence we cannot exploit

the full features of the external display device such as the
high resolution feature of an external HDTV. Motorola
Atrix (2011) exploits the external device’s full feature
by using a docking device called “WebDock”.
However, it is not a general solution since it works only
with dedicateddevices made by Motorola. The I/O
virtualization technique (Ha et al., 2010) provides a
notion of a virtual driver to exploit general output
devices. However, it is still in a conceptual level
without any specific methodologies. In contrast to
these existing techniques, our proposed solution is
made in the mobile platform and Linux kernel level so
that all the images from any activities of the
smartphone can be resolution-adaptively reconstructed
and displayed in the external display device.

The idea of resolution adaptive display switching is
already available in remote desktop mechanisms such as
in RDP (2013), VNC (Richardson et al., 1998) Citrix
(2009) and IKVM (2010). However, the current mobile
platform does not have such a mechanism. More
seriously, it does not have structural room to embed such
a mechanism. In this sense, our proposed resolution
adaptive display switching technique can be understood
as the first working system in the mobile platform.

Since ORiordan et al. (2005) investigated text input
method for mobile phones, in order to overcome the
limitations of mobile input devices, there are many
techniques for using external input devices. For
example, iControlPad (2011) and Zeemote (2012)
present joypads for a mobile device using Bluetooth.
Mora and Papp (2012) is a mobile application, which
can accept inputs from keyboard and mouse of PC.
These techniques, however, are supported only in
specific applications or devices. In contrast, our
technique transforms any kinds of external input data to
internal input events so that they can be taken by any
existing mobile applications that are originally
designed without consciousness of such external inputs.

The remote desktop mechanisms such as RDP, VNC,
Citrix and IKVM also allow us to use physically separated
input devices, e.g., the remote keyboard/mouse. However,
those mechanisms can transfer inputs only from known
devices. Utilizing even unknown input devices as in our
technique is not possible.

Mobizen (2012), MyMobiler (2012) and
TeamViewer (2013) allow us to remotely control the
smartphone by the computer. These solutions are
possible to support advanced I/O switching, but only
support display mirroring and restricted input devices.

Oh-Chul Kwon et al. / Journal of Computer Science 10 (7): 1238-1248, 2014

1240 Science Publications

JCS

3. ADAPTIVE SWITCHING OF DISPLAY
DEVICES

This section addresses the issue of adaptively
switching display devices. In section 3.1, we first briefly
explain the drawing mechanism of Android and then
discover its limitation for adaptive display switching.
Section 3.2 presents our proposed adaptive display
switching technique. Section 3.3 shows several use cases
made possible by the proposed solution.

3.1. Drawing Mechanism of Android

Figure 1 shows the part of Android related to the
display process from applications to the LCD panel of a
smartphone. As shown in the figure, each mobile
application has a number of image draw spaces called
“surfaces”. When applications draw something on their
surfaces, all of the surfaces are composed by a layout
module called “SurfaceFlinger”, which in turn calls
OpenGL (2013) functions. Finally, OpenGL draws the
final display image to the framebuffer, whose content is
eventually displayed on the LCD panel. For this display
process to work, in the boot-up time of an Android
device, the Surface Flinger gets the display information
such as LCD resolution, bpp format and fps from the
kernel device driver and allocates the framebuffer
memory accordingly. After such boot-up time
initialization of display information and framebuffer,
they cannot be changed. Thus, the applications and
OpenGL can draw display images only with the original
display configuration.

This boot-up time configuration of display
information and framebuffer is the major limitation for
the current mobile platform to support the adaptive
display switching.

3.2. Proposed Adaptive Display Switching

In order to overcome the aforementioned limitation,
we propose the adaptive display switching technique that
allows run-time reconfiguration of display information
and framebuffer. Fig. 2 shows the modified drawing
mechanism for adaptive display switching. In order to
dynamically reconfigure display information and
framebuffer, “DisplaySwitchFunction”is implemented in
SurfaceFlinger. This functionmodule is called whenever
a new display device is detected (e.g., the HDMI cable is
connected or UPnP (2010) found a new display device
via Wi-Fi and so on) and chosen by a user. Once called,
the function module performs the followings:

• Read the new display device profile

• Change the display information (device resolution,
bpp, format, fps,) in layout module (SurfaceFlinger)

• Allocate a new framebuffer according to the new
display information and

• Re-initialize graphic engine Open, 2013 such that it can
draw the display image on the new framebuffer
according to the new display information

For the new framebuffer’s content to be displayed in
the external display device, we also implement the
“Transmitter” module, which continuously deliver the
framebuffer content to the external display device
through the corresponding device drivers such as Wi-Fi,
HDMI and USB connection. With this modified
structure, we can have more than one framebuffer at a
time. In order to effectively utilize those multiple
framebuffers, we also implement a multiple framebuffer
management mechanism. By this mechanism, the
multiple framebuffers can be concurrently used in many
useful ways as will be discussed in section 3.3.

3.3. Use Cases of the Adaptive Display Switching

With modified structure, we can naturally have
more than one framebuffer, that is, the original
framebuffer for the smartphone’s LCD panel and
newly allocated framebuffers for external display
devices. These multiple framebuffers make possible
many handy use cases. This section presents three
example use cases. The first two are already
implemented and ready for demonstration and the
third will be implemented in our future work.

The first use case is for the movie player application.
After switching the movie screen to an external display
device, we use the original LCD panel of the smartphone
as a remote controller as shown in Fig. 3. For this, we
provide the original framebuffer’s address to application
developers. Then, the application developer can make a
movie player with two modes, normal mode and external
screen mode. In the normal mode, the control buttons
and scroll bars show up on the smartphone’s original
LCD panel overlaid over the movie screen. In the
external screen mode, the movie screen is show up in the
external display device with the adapted resolution while
the original framebuffer for the LCD panel contains the
remote controller image with buttons of play forward,
play backward, pause, stop. Thus, the smartphone can
now be used as a remote controller for watching the
movie with the external display device.

The second use case is to use the original framebuffer
as a viewfinder of a large external display device as
shown in Fig. 4. The external display device is usually
larger than the smartphone’s original LCD panel.

Oh-Chul Kwon et al. / Journal of Computer Science 10 (7): 1238-1248, 2014

1241 Science Publications

JCS

Fig. 1. Drawing mechanism of android

Fig. 2. Modified drawing mechanism for proposed adaptive display switching

Oh-Chul Kwon et al. / Journal of Computer Science 10 (7): 1238-1248, 2014

1242 Science Publications

JCS

Fig. 3. Remote controller use case

Fig. 4. Viewfinder use case

Accordingly, the resolution of the new framebuffer for
the external display device is bigger than the original
framebuffer. Thus, the original framebuffer cannot show
the whole display image without degrading the image
resolution. Therefore, in the viewfinder use case, the
original framebuffer show only a small part of the new
framebuffer starting from (x, y) position as in Fig. 4.
When a user drags the smartphone’s LCD panel, the
starting point of the viewfinder, i.e., (x, y) is changed.
So, visible part of the whole image is also changed. This
viewfinder use case is effective when browsing webs or
controlling the focus area of a large picture.

The third use case is for general usage of multiple
framebuffers. In the current smartphone with only one
fixed framebuffer, there can be only one foreground

application that shows its image on the LCD panel. In
contrast, proposed solution supports multiple
framebuffers. Thus, it is possible to use them for
multiple display devices at the same time. This implies
that we can arbitrarily map multiple applications to
multiple external display devices, which allows us to
have multiple foreground applications at the same time.
This use case will be implemented in our future work.

4. ADAPTIVE SWITCHING OF INPUT
DEVICES

This section addresses the issue of adaptively
switching input devices. Unlike the existing ad hoc
solutions that work only with specific predefined

Oh-Chul Kwon et al. / Journal of Computer Science 10 (7): 1238-1248, 2014

1243 Science Publications

JCS

input devices, we aim at a general solution that can
take inputs from various external input devices in a
unified way. In Section 4.1, we first explain the input
delivery mechanism of the current mobile platform
and then discover its limitation for adaptive input
switching. Section 4.2 presents our proposed adaptive
input switching technique. Section 4.3 shows several
use cases made possible by the proposed solution.

4.1. Input Delivery Mechanism of Android

Figure 5 shows the part of the mobile platform
related to the input process from input devices to
applications. As shown in the figure, mobile platform
generally categorizes input devices into two groups:
(1) regular input devices such as QWERTY keyboard
touch screen and track ball and (2) sensor input
devices such as accelerometer sensor, orientation
sensor and magnetic field sensor. Inputs from these
two groups are handled quite differently.

First, the regular input events are handled by a
permanent daemon called “InputManager” since regular
inputs are always needed regardless what applications
are foreground one. InputManager has two threads-
“InputReaderThread” and “InputDispatcherThread”.
InputReaderThread continuously polls input events
from regular input drivers and delivers input events if
any to InputDispatcherThread. Then, InputDispatcher-
Thread dispatches the input events to the current
foreground application that can be found by “Window-
ManagerService”.

On the other hand, the sensor inputs are handled only
when an executing application needs them. More

specifically, when the application needs sensor inputs, it
creates “SensorManager” in its “Context”. At this
moment, SensorManager is initialized and starts
“SensorManagerThread”. Then, SensorManagerThread
polls sensor data from sensor drivers and notifies the
changed sensor data to the application.

Although well structured, the above current input
delivery mechanism works only for the predefined
input devices that are embeddable in a mobile device.
Thus, it is limited in adaptively using external input
devices which are not originally intended to be used
by applications. For example, if a racing game
application is implemented to use the smartphone’s
touch inputs and embedded accelerometer inputs, with
the current mobile platform, it is not possible to play
the game with a fancier external input device with a
steering wheel and foot pedals.

In order to overcome the aforementioned
limitation, we propose the adaptive input switching
technique as in Fig. 6 that can transform external
input data to internal input events such that the
external input data can be treated as inputs from any
of existing internal input devices.

In the modified mechanism, “ExternalInputDevice-
Manager” communicates with external input devices
through Wi-Fi or Bluetooth. For external input devices
that have only wired connections such as USB or serial,
we assume they are connected through a small dongle
called “Input Device Hub” that converts from wired
interface such as serial and USB to wireless interface
such as Wi-Fi and Bluetooth as shown in Fig. 6.

Fig. 5. Input delivery mechanism of android

Oh-Chul Kwon et al. / Journal of Computer Science 10 (7): 1238-1248, 2014

1244 Science Publications

JCS

Fig. 6. Modified input delivery mechanism for adaptive input switching

For input data streams given by external input

devices, ExternalInputDeviceManager maps them to
any of existing input events either manually or
automatically. If an external input data stream is
mapped to one of regular input devices, it ishandled by
“Regula Input-Simulator”. That is, Regula Inpu
Simulator transforms the external inputs into the
mapped internal events and injects them into the queue
of InputDispatcherThread. This way, the external input
data can be dispatched to the current foreground
application just like inputs from an existing internal
input device. If mapped to one of sensor input devices,
“SensorInputSimulator” handles the external input data
and feeds them into SensorManage-Thread. Now, the
external input data can be treated as inputs from an
existing internal sensor device.

This adaptive input switching technique allows a
smartphone to adaptively switch to various external input
devices in a unified way. More importantly, it allows us
to use external input devices for controlling general
applications even if they are not designed to use those
external input devices.

4.2. Use Cases of the Adaptive Input Switching

One typical use case of the adaptive input switching
is to use a fancy external input device for playing a
game. For example, using our adaptive input switching, a

user can play the racing game with racing wheel and foot
pedals as shown in Fig. 7. The mobile racing game in the
left side of Fig. 7 is originally designed to use the
smartphone’s internal accelerometer sensor’s y-axis
value for steering and buttons on the touch screen for
acceleration or braking. Nevertheless, using the adaptive
input switching technique, input data from the external
steering wheel can be mapped to the accelerometer
sensor’s y-axis value and input data from foot pedals can
be mapped to (x, y) values of buttons on the touch
screen. Therefore, a user can enjoy more realistic racing
game with the external input device.

Another use case we can think of is to use external
input devices in a personalized way. For example, using
our adaptive input switching, the disabled and elderly
people can use external input devices to control the
smartphone in their customized ways with the most
convenient settings for their physical and mental status.
This use case will be implemented in our future work.

5. IMPLEMENTATION

The proposed adaptive I/O switching technique are
actually implemented on the Nexus (2010) and the Odroid-
7 (2012) with Android 2.3.4 platform (Gingerbread), Linux
kernel V2.6.35, Samsung Cortex A8 1GHz CPU and 512
MB RAM. The followings are our implementation results.

Oh-Chul Kwon et al. / Journal of Computer Science 10 (7): 1238-1248, 2014

1245 Science Publications

JCS

Fig. 7. Transformation of input data from the external racing wheel input device

 (a) (b) (c)

Fig. 8. Adaptive display switching (a) mobile display (b) HDTV with our resolution adaptation (c) HDTV with mirroring

Fig. 9. Mobile racing game demonstration with the external racing wheel and HDTV

First, in order to show the effect of our adaptive
display switching, Fig. 8 shows how the mobile

display content in Fig. 8a is displayed in HDTV with
or without our resolution adaptive display switching

Oh-Chul Kwon et al. / Journal of Computer Science 10 (7): 1238-1248, 2014

1246 Science Publications

JCS

(Fig. 8b and 8c, respectively). With our resolution
adaptive display switching in Fig. 8b, we can clearly
see that the display information and framebuffer have
been dynamically reconfigured adapting to the fully
featured resolution of HDTV. In contrast, if we simply
connect the smartphone to HDTV with the existing ad
hoc solutions such as TV-out and HDMI cables, we
can only see the magnified view of the same content
of small LCD panel as shown in Fig. 8c. Moreover,
this resolution adaptive display switching works for
all activities including image viewer, web browser,
which is not possible by an application-layer non-
system solution.

Second, in order to show the combined effect of our
display switching and input switching together, Fig. 9
shows a snapshot of our system where a mobile racing
game application is being played with the external
racing wheel input device and the big HDTV Note that
the mobile racing game application runs in the
smartphone while the input comes from the external
steering wheel and foot pedals and the output game
image shows up in the external HDTV. More
importantly, the racing game application is designed to
be controlled only by smartphone’s accelerometer and
touch inputs but it can be successfully controlled by
external steering wheel and foot pedals thanks to our
adaptive input switching technique.

6. EXPERIMENT RESULTS

In order to validate the usefulness of the proposed
adaptive I/O switching, we conduct experiments with
users. For these experiments, we recruit 50 evaluators.
The 50 evaluators are divided into two groups, that is,
each group has 25 evaluators.

Then, we ask the first group to find certain
information from a web page using the small display
(4 inch) of smartphone. We also ask the second group
to do the same using our adaptive I/O switching to
32inch HDTV. Figure 10 compares the time taken for
the first group members and the second group
members to finish their jobs. Each dot in the figure is
the time for a specific evaluator to finish the job. The
figure also shows the average time and 95%
confidence interval of each group. Although there are
large personal variations, we can clearly observe that
the average time for the second group to finish implies
that with our adaptive I/O switching, users can at least
double their productivity on average.

Similarly, Fig. 11 reports the times taken for
another mission that is, finding differences between
two similarly looking pictures. For comparison, we
present two groups with same picture which has same
resolution. In this different mission as well, we can
observe the similar improvement of productivity.

Fig. 10. Times taken for information retrieval from a web page

Oh-Chul Kwon et al. / Journal of Computer Science 10 (7): 1238-1248, 2014

1247 Science Publications

JCS

Fig. 11.Times taken for finding differences from two similar pictures

7. CONCLUSION

This study proposes our adaptive I/O switching
technique as a solution for the adaptive convergence of a
smartphone and external input/output devices. Unlike the
existing ad hoc ways of using only specific external
devices, the proposed solution can be a generic solution
that can adapt to the features of various external
input/output devices for general mobile applications in a
unified way. The proposed solution is actually
implemented and their effectiveness is demonstrated
with several example use cases.

The current implementation of the modified mobile
platform is limited in the sense that it supports only hard-
coded mappings from external inputs to internal input
events. In the future, we plan to extend our adaptive
input switching such that the mobile platform can guide
individual users to customize their preferred way of
using external inputs.

8. ACKNOWLEDGEMENT

This research was supported by the Ministry of
Science, ICT and future Planning (MSIP), Korea,
under the Information Technology Research Center
(ITRC) support program (NIPA-2013-H0301-13-

3005) supervised by the National IT Industry
Promotion Agency (NIPA).

9. REFRENCES

Android, 2013. Introducing Android: The world’s most
powerful mobile platform. Google Inc., Mountain
View, CA, USA.

Atrix, 2011. Motorola Atrix 4G User's Guide.
Motorola Inc., pp:44-46, Schaumburg, IL, USA.

Bluetooth, 2013. Bluetooth 4.1 Features and Technical
Description. Bluetooth Special Interest Group.

Citrix, 2009. Citrix Receiver for Windows User’s Guide.
Citrix Systems.

Greaves, A., A. Hang and E. Rukzio, 2008. Picture
browsing and map interaction using a projector
phone. Proceedings of the 10th International
Conference Human Computer Interaction Mobile
Devices Services, Dec. 2-5, ACM, USA, pp: 527-
530. DOI: 10.1145/1409240.1409336

Ha, K., K. Kang and J. Lee, 2010. N-screen service using
I/O virtualization technology. Proceedings of the
International Conference Information
Communication Technology Convergence, Nov. 17-
19, South Korea, pp: 525-526. DOI:
10.1109/ICTC.2010.5674784

Oh-Chul Kwon et al. / Journal of Computer Science 10 (7): 1238-1248, 2014

1248 Science Publications

JCS

HDMI, 2009. Introducing HDMI 1.4 Specification
Features. HDMI LLC.

iControlPad, 2011. Gaming controls for your
smartphone-instruction manual. iControlPad Inc.,
Newcastle, UK.

IKVM, 2010. IKVM.NET User's Guide. IKVM.
Lawton, G., 2008. WirelessHD Video Heats Up.

Comput., 41:18-20. DOI: 10.1109/MC.2008.509
MHL, 2008. Whit is MHL (Mobile High-Definition

Link), MHL LLC. Sunnyvale, CA, USA.
Miracast, 2013. Wi-Fi certified miracast: Extending

the Wi-Fi experience to seamless video display.
Wi-Fi Alliance. Austin, TX, USA.

Mobizen, 2012. Installing and launching mobizen.
RSupport, Seoul, South Korea.

Mora, P. and Z. Papp, 2012. WebKey for Android.
WebKey, Hungary.

MyMobiler, 2012. MyMobiler for Android-Remote
Display and Input. MTUX Corp., Redmond, USA.

Nexus, S., 2010. Nexus S owner’s guide. Google Inc.,
Mountain View, CA, USA.

Odroid-7, 2012. Odroide-7 Platform Developer Edition.
HardKernel Co., Anyang, South Korea.

OpenGL, 2013. OpenGL ES Version 3.0.2. Khronos
Group, Beaverton, USA.

ORiordan, B., K. Curran and D. Woods, 2005.
Investigating text input methods for mobile phones.
J. Comput. Sci., 1: 189-199. DOI:

10.3844/jcssp.2005.189.199
RDP, 2013. Remote desktop protocol. Microsoft.
Richardson, T., F.Q. Stafford, R.K. Wood and A.

Hopper, 1998. Virtual network computing. IEEE Int.
Comput. 2: 33-38. DOI: 10.1109/4236.656066

Singh, D., R. Omar and A. Anuar, 2010. Low cost
interactive electronic whiteboard using Nintendo
Wii remote. Am. J. Applied Sci., 7: 1458-1463.

TeamViewer, T., 2013. TeamViewer 9 Manual-Remote
Control. TeamViewer, Uhingen, Germany.

UPnP, 2010. White Paper: Universal Plug and Play
(UPnP)-Your Simple Solution for Home, Office and
Small Business interoperability.

WiDi, 2010. Intel Wireless Display (WiDi). Inte.
WirelessHD, 2010. WirelessHD Specification Version

1.1 Overview. WirelessHD Consortium.
Zeemote, 2012. Zeemote JS1 Mobile Gaming Controller.

Zeemote Technology Inc. Santa Clara, USA.

