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ABSTRACT 

Tuning compiler optimization for a given application of particular computer architecture is not an easy task, 

because modern computer architecture reaches higher levels of compiler optimization. These modern 

compilers usually provide a larger number of optimization techniques. By applying all these techniques to a 

given application degrade the program performance as well as more time consuming. The performance of 

the program measured by time and space depends on the machine architecture, problem domain and the 

settings of the compiler. The brute-force method of trying all possible combinations would be infeasible, as 

it’s complexity O(2
n
) even for  “n” on-off optimizations. Even though many existing techniques are 

available to search the space of compiler options to find optimal settings, most of those approaches can be 

expensive and time consuming. In this study, machine learning algorithm has been modified and used to 

reduce the complexity of selecting suitable compiler options for programs running on a specific hardware 

platform. This machine learning algorithm is compared with advanced combined elimination strategy to 

determine tuning time and normalized tuning time. The experiment is conducted on core i7 processor. These 

algorithms are tested with different mibench benchmark applications. It has been observed that performance 

achieved by a machine learning algorithm is better than advanced combined elimination strategy algorithm.  
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1. INTRODUCTION 

Modern architecture designer strives to bring 

satisfactory system level performance by applying 

minimal power across a wide range of applications. But 

many compilers fail to deliver its performance because 

of rate of change in hardware evolution. A compiler 

usually provides a larger number of optimization options, 

from which users has to pick up best set of available 

options for a given application. Those who do not have 

in depth understanding of the compiler options and 

interactions among compiler options, then it is really 

difficult to pickup best set of options. Compilers usually 

provide three levels of optimization techniques. They are 

-O1, -O2 and -O3. As compiler optimization interacts in 

unpredictable manner in different architecture, finding an 

effective orchestration algorithm to search for the best 

combinations of optimization options is desired. 

Automatically selecting the best set of compiler 

optimizations for a particular program is a difficult task. 

Many existing framework available to select best set of 

optimal compiler setting from larger set of options. 

Andrews and Sasikala (2012) used  a new algorithm called 

as Advanced combined elimination which is a modified 

combination of batch elimination and combined elimination 

which provides the complexity of O(n
2
). Fursin and Temam 

(2011) used an algorithm called as Random search strategy 

which picks up best set of combinations in quick time. 

Park and Cavazos (2011) used different modeling 

techniques to find best set of combinations for a given 

benchmark applications.Combined elimination gives 

better results than other algorithms and only fewer 
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evaluations required to find optimal settings. However, 

these pure search or “orchestration” approaches do not 

use prior knowledge of the hardware, compiler, or 

program and instead attempt to obtain this knowledge 

online. Every time a new program is optimized, the 

system starts with no prior knowledge. In this study 

machine learning has been used in a modified form, 

which has the potential of reusing knowledge across 

iterative compilation runs, gaining the benefits of 

iterative compilation while reducing the number of 

executions needed. In this study we have selected GCC 

as the compiler infrastructure. GCC is currently the only 

production compiler that supports different architectures 

and has multiple aggressive optimizations making it a 

natural vehicle for our research. GCC provides three 

levels of optimization techniques. To obtain the best 

performance a user  usually applies the highest 

optimization level-O3. In this level the compiler perform 

the most extensive code analysis and expects the 

compiler generated code to deliver the highest 

performance. In this study we have proposed an 

automated framework to select the compiler options for a 

particular problem from large set options. Many previous 

works consider only limited set of options. For this 

framework, we have implemented compiler optimization 

selection algorithm advanced combined elimination 

strategy. This algorithm is compared with machine 

learning algorithm. Efficiency was evaluated to improve 

its tuning time and normalized tuning time. The study is 

organized as follows. 

1.1. Framework Architecture 

The optimization selection algorithm picks up best 

set of optimization techniques from ‘n’ available number 

of optimization techniques. These techniques applied 

for a given benchmark applications and compiled with 

GCC compiler. The target code is then analyzed with 

performance tools using Intel Vtune performance 

analyzer to collect set of program features. The 

performance was analyzed for improving the 

execution speed up and compilation time. This 

information is then given feedback option selector 

algorithm to pick up another best set. Figure 1 shows 

detailed description of framework architecture. 

1.2. Selection Algorithms 

Given a set of “n” ON-OFF optimization options {F1, 

F2…Fn), find the best combination of flags that minimizes 

application execution time and compilation time.  

 
 
Fig. 1. Optimization selection framework 
 
In this study a novel performance tuning algorithm 
advanced combined elimination algorithm is compared with 
a machine learning algorithm which picks up best set of 
options to improve tuning time and normalized tuning time.  

1.3. Advanced Combined Elimination Strategy 

Let S be the set of available optimization options: 

• Let B represents selected compiler options set 
• Find TB, by applying all flags are on 
• Compile the program with TB configuration and 

measure the program performance 
• Calculate Relative Improvement Percentage (RIP) 

for each and every optimization options. Relative 
improvement percentage is calculated based on 
finding the time required by applying particular flag 
ON and OFF with respect to TB 

• Store all the values in an array based on ascending 
order. i.e., the most negative RIP is stored in first 
position of the array 

• Remove the first two most negative RIP’s from an 
array instead of one. Now the value of TB is changed 
in this step 
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• Remaining values in an array i.e., i vary from 3 to n, 
Calculate RIP and store the negative RIP’s in array 

• If all values in an array represent positive values 
then set of flags in B represents best set 

• Else  
• Repeat steps ii until B contains only positive values 
• Stop 

1.4. Machine Learning Algorithm 

The logistic regression model is a machine learning 

(Hung et al., 2009) technique used to pick up set of 

options from a trained dataset. For a larger benchmark 

applications, finding the best set of compiler options will 

take more amount of time. To find a best set with less 

number of evaluations, we proposed a machine learning 

strategy. Collect set of program features for a given 

benchmark applications for a specific hardware during 

the training stage itself. 

For training we have collected more than 1000 set of 
combinations. These combinations compiled with gcc or 
g++ compiler and record the execution speed up. For 
collecting program features Intel Vtune performance 
profiler used. For collecting static program features 
Milepost GCC machine compiler used (Fursin and 
Temam, 2011). The model is evaluated based on leave one 
out cross validation procedure. i.e., if we have consider N 
= 10 (Where N is number of benchmark applications), i.e., 
the models are trained on N-1 benchmarks and tested on 
the N

th
 benchmark. The models were trained with 9000 

points. The programs were compiled with 1000 sets of 
compiler setting and the performance is measured for a 
specific hardware platform. The various information 
such as compilation and execution time is stored on the 
repository. After training stage if a similar kind of 
program arrives by looking database one can who 
quickly searches best set of optimal settings. 

1.5. Experimental Procedure 

In this study we have considered recent version of 
GCC compiler. GCC provides different levels of 
optimization techniques. Previous work considered only 
limited set of optimization techniques. In this study more 
number of optimization techniques considered. Table 1 
show different levels of optimization techniques from -0 
to -o3.o3 is the highest level techniques. Level 1 consists 
of important techniques such as floop-optimize, dead 
code elimination, ftree-dce, dead store elimination, ftree-
dse and scalar replacement of aggregates. Level 2 
consists of important techniques such as global common 
sub expression elimination, gcse, peephole optimization, 
fpeephole2 and various basic block optimization techniques 
and scheduling optimization techniques. Level 3 consists of 

inline functions and unrolling. Although optimization level 
3 (-O3) can produce faster code, the increase in the size of 
the binary image can have adverse effects on its speed. 

1.6. Mibenchmark Programs 

The Mibench benchmark suite programs are used to 
experiment the proposed algorithm. These benchmark 
suites are comparable with SPEC benchmark suite. 

1.7. Bzip2 

 Bzip2 is a free and open source implementation of 
the Burrows-Wheeler algorithm. Bzip2 compresses most 
files more effectively than the older LZW (.Z) and 
Deflate (.zip and .gz) compression algorithms, but is 
considerably slower. Bzip2 compresses data in blocks of 
size between 100 and 900 kB and uses the Burrows-
Wheeler transform to convert frequently-recurring character 
sequences into strings of identical letters.  

1.8. Consumer_jpeg_c  

The JPEG standard allows “Comment” (COM) 
blocks to occur within a JPEG file. Although the 
standard doesn't actually define what COM blocks are 
for, they are widely used to hold user-supplied text 
strings. This lets add annotations, titles, index terms, in 
JPEG files and later retrieve them as text.  COM blocks 
do not interfere with the image stored in the JPEG file. 
Maximum size of a COM block is 64K. 

Consumer_tiff2bw Tiff2bw converts an RGB or 
Palette color TIFF image to a grayscale image by 
combining percentages of the red, green and blue 
channels. By default, output samples are created by 
taking 28% of the red channel, 59% of the green channel 
and 11% of the blue channel. To alter these percentages, 
the -R, -G and -B options may be used. 

1.9. Qsort 

The sort test sorts a large array of strings into 
ascending order using the well known quick sort 
algorithm.  The small data set is a list of words; the large 
data set is a set of three-tuples representing points of data. 

1.10. Dijkstra 

The Dijkstra benchmark constructs a large graph in 
an adjacency matrix representation and then calculates 
the shortest path between every pair of nodes using 
repeated applications of Dijkstra’s algorithm.  

1.11. Patricia 

A Patricia tries is a data structure used in place of full 
trees with very sparse leaf nodes. Branches with only a 
single leaf are collapsed upwards in the tries to reduce 
traversal time at the expense of code complexity. Often, 
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Patricia tries are used to represent routing tables in 
network applications. The input data for this benchmark 
is a list of IP traffic from a highly active web server for a 
2 h period. The IP numbers are disguised. 

1.12. Security Blowfish 

 Blowfish is a keyed, symmetric block cipher, included 
in a large number of cipher suites and encryption products. 
Blowfish provides a good encryption rate in software and 
no effective cryptanalysis of it has been found to date.  

1.13. Susan 

 SUSAN is an acronym standing for Smallest Univalve 
Segment Assimilating Nucleus. For feature detection, 
SUSAN places a circular mask over the pixel to be tested 
(the nucleus). For corner detection, two further steps are 
used. Firstly, the centroid of the SUSAN is found.  

1.14. Metrics used for Evaluation 

Relative Improvement Percentage (RIP), RIP (Fi), 
which is the relative difference of the execution times of 
the two versions with and without Fi Equation 1: 

 

RIP(Fi) T(Fi 0) T(Fi 1) T(Fi 1) 100= = − = ÷ = ×  (1) 

 
If Fi = 1 then Fi is ON, else OFF. 
The baseline of this approach switches on all 

optimizations. 
TB = T(Fi = 1) = T(F1 = 1, F2 = 1,…Fn = 1),Where 

TB  represents base time Equation 2: 

 

RIP(Fi 0) T(Fi 0) TB TB 100%= = = − ÷ ×  (2) 

 
If RIP (Fi = 0) <0, the optimization of Fi has a 

negative effect, so it is better to turn off the function. 

1.15. Tuning Time 

It is the time taken by each probe, to determine the 

effect of individual options in a set of candidate options. 

1.16. Normalized Tuning Time 

It is the time taken for computing time needed to 
check the effects of individual options. It is calculated 
using the following equation. 

NTT = tuning time for entire probe/(number of re 
executions*total candidates). 

2. MATERIALS AND METHODS 

Advanced combined elimination algorithm and 

machine learning algorithm  is implemented. Then the 

normalized tuning time is calculated using the above 

equation. Architecture used for testing was Intel Corei7 -

2630 QM CPU 2.2 Ghz. With 8GB RAM, using ubuntu 

operating system and the compiler was GCC 4.3.2. 

3. RESULTS 

Table 1 shows list of chosen optimization techniques  
for a GCC compiler. Results obtained from the 
experiment are tabulated in Table 2. Table 2 represents 
Normalized tuning time. 
 
Table 1. List of optimization techniques 

Level-o1 techniques Level-o2 techniques Level-o3 techniques 

fcprop-registers falign-functions fgcse-after-reload 

fdefer-pop falign-jumps finline-functions 

fdelayed-branh falign-loops funswitch-loops 

fguess- 

branch-probability falign-labels 

fip-conversion fcaller-saves 

fip-conversion2 fcross-jumping 

floop-optimize fdelete-null 

-pointer-checks 

fmerge-constants fexpesive 

-optimizations 

fomit- 

frame-pointer fforce-mem 

ftree-ccp fgcse 

ftree-ch fgcse-lm 

ftree-copy-rename fgcse-sm 

ftree-dce foptimize-sibling-calls 

ftree-dominator-opts fpeephole2 

ftree-dse fregmove 

ftree-fre freorder-blocks 

ftree-lrs freorder-functions 

ftree-sra frerun-cse-after-loop 

ftree-ter frerun-loop-opt 

  fsched-interblock 

  fsched-spec 

  fschedule-insns 

  fschedule-insns2 

  fstrength-reduce 

  fstrict-aliasing 

  fthread-jumps 

  ftree-pre 

  fweb 

 
Table 2. Normalized tuning time in seconds 
Benchmark  Machine  
applications Ace learning algorithm 

Bzip2 0.000130 0.000020 
Consumer_jpeg.c 0.000170 0.000030 
Consumer_tiff2bw 0.000190 0.000030 
Network_dijkstra 0.000025 0.000010 
Network_Patricia 0.000080 0.000020 
Qsort 0.000140 0.000030 
Security_blowfish 0.000230 0.000035 
Susan 0.000170 0.000025 



Jeyaraj Andrews and Thangappan Sasikala / Journal of Computer Science 9 (6): 749-756, 2013 

 

753 Science Publications

 
JCS 

4. DISCUSSION 

In this stydy, we compare advanced combined 

elimination algorithm with a machine learning algorithm 

to find tuning time and normalized tuning time. Figure 2 

shows comparison of ACE and a machine learning 

algorithm. For most of the benchmark applications LRM 

gives least tuning time when compared to advanced 

combined elimination algorithm, because program 

features    can   be   extracted   and stored  in  a  database. 

So if a similar program arrives with help of database one 

can quickly select best set of techniques.  For some of 

the benchmark applications especially bzip2, dijkstra and 

qsort advanced combined elimination gives more or least 

tuning time when compared to LRM. Figure 3 shows 

comparison of execution time of different levels of GCC 

compiler optimization techniques with advanced 

combined elimination algorithm. GCC compiler consists 

of three different levels of optimization techniques. 

They are -o1, -o2 and highest level optimization 

techniques -o3. If by applying only the set of techniques 

from -o1 may reduce the compilation time but not so much 

of an performance on the execution time. So by considering 

set of techniques from -o2 improves execution time for 

most of the benchmark applications. By applying -o3 

techniques for a given application may increase compilation 

and code size, but improves the program performance. 

 A good optimization algorithm should achieve both 

program performance and short tuning and short 

normalized tuning time. Figure 3 shows when compared 

to different levels of optimization techniques, ACE gives 

least execution time for all the benchmark applications. 

Figure 4 shows comparison of normalized tuning time 

between ACE over LRM. Normalized tuning time is 

calculated by finding tuning time for each probe divided 

by number of re executions multiplied by total 

candidates. Table 2 shows normalized tuning time for 

every benchmark applications. Figure 5 shows execution 

time speed up between different levels of optimization 

techniques over LRM. Figure 6 shows combined 

execution time between ACE and LRM over different 

levels. From Fig. 6 we can conclude that LRM achieves 

both program performance and short normalized tuning 

time for most of the benchmark applications. 

 

 

 

Fig. 2. Comparison of tuning time 
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Fig. 3. Execution time over ACE 

 

 
 

Fig. 4. Comparison of normalized tuning time 
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Fig. 5. Execution time over LRM 

 

 
 

Fig. 6. Comparison between different levels over ACE and LRM 

 

5. CONCLUSION 

In this study, an alternative framework proposed for 

finding tuning time and normalized tuning time for 

Mibench benchmark applications. In this framework we 

have integrated Milepost GCC v2.1 and Intel Vtune 

performance analyzer for extracting program features 

upon training stage. These in formations are stored in a 
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repository. So with the help of this information one can 

find best set of optimization techniques if a similar kind 

of program arrives. For this frame work we have 

implemented advanced combined elimination strategy. 

The results are compared with a machine learning 

algorithm. The results show that machine learning 

algorithm which improves the program performance, 

tuning time and normalized tuning time. 

In the future, we incorporate more compiler option 

selection algorithms to improve tuning time and 

normalized tuning time. In future we incorporate LLVM, 

ROSE and path64 and other compilers in our framework. 

In future we include simulators in our framework to 

enable software and hardware optimization. 
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