
Journal of Computer Science 9 (5): 660-670, 2013

ISSN 1549-3636

© 2013 Science Publications

doi:10.3844/jcssp.2013.660.670 Published Online 9 (5) 2013 (http://www.thescipub.com/jcs.toc)

Corresponding Author: Vijaya Karthick, P., Department of Information Technology, Kalasalingam University, Srivilliputhur, India

660 Science Publications

JCS

Dynamic Souple Wireless Grid

Applications for Horde of Jobs by

Sensible Centrality Scheduling with Redite

Vijaya Karthick, P. and V. Vasudevan

Department of Information Technology, Kalasalingam University, Srivilliputhur, India

Received 2013-04-22, Revised 2013-05-17; Accepted 2013-05-28

ABSTRACT

The Grid Computing has emerged as a thorny platform to tackle numerous large-scale issues,

particularly in science and engineering domains. One of the primary issues related to the economical

and effective utilization of heterogeneous resources in a Grid scheduling. It is mainly due to the

dynamic nature of grid. Grid scheduling could be subtle higher cognitive process that operates at

totally different levels of grids. Grid Schedulers is employed to map user’s job to resources in keeping

with their necessities. There are handful programming mechanism for grid environment the realistically

wear down this dynamic nature in literature. In this study, Sensible Centrality Scheduling is used to deal

with the programming computationally intensive Horde of Jobs (HOJ) applications. Their common and

first aim is that they create planning choices while not totally correct performance prediction

information. Another purpose to notice is that this Sensible algorithm adopts redite (needless

replication) jobs. Our analysis study employs variety of experiments with numerous simulation

settings. The results show the efficiency and aggressiveness of our algorithms in comparison to

existing ways and we proved that is sensible centrality algorithm is the best algorithm.

Keywords: Grid Computing, Horde of Jobs, Grid Scheduling

1. INTRODUCTION

The Grid allows the development of a virtual

computing system that interconnects across worldwide

heterogeneous computing systems with a spread of

resources. Here, resources refer not solely to physical

computers, networks and storage systems however

conjointly to abundant broader entities like databases,

knowledge transfer and simulation (Casanova et al., 2008).

The grid makes an attempt to with efficiency integrate

various resources that the users will access transparently, as

if they’re native resources. Therefore, it provides a

additional powerful setting compared to the user’s native

computing system. Additionally to its jobs capability, it is a

more cost-effective way in comparison to alternative

dedicated superior computer systems.

 The Grid has emerged as a concrete platform to

tackle large-scale issues, with associate degree

increasing range of applications in wide areas being

developed and ported to grid surroundings. There are

two typical application models that are very famous are

Horde-of-Jobs (HoJ) parameter sweep and workflow. A

HoJ application consists of freelance tasks and, thus, no

specific order of task execution, whereas associate

degree application within the advancement model

consists of mutual list of tasks. The Horde-of-Jobs (HoJ)

applications can be any classified into computationally

intensive and knowledge intensive. In this research work,

HoJ applications are mentioned as specific interest. HoJ

applications are normal parallel type of applications that

exist in several scientific and engineering fields, like the

essential native Alignment Search Tool (BLAST)

Vijaya Karthick, P. and V. Vasudevan / Journal of Computer Science 9 (5): 660-670, 2013

661 Science Publications

JCS

(Montagnat et al., 2008), MCell (Blanquer et al., 2005),

INS2D (Magnin and Montagnat, 2006) and many data

mining applications. Since tasks in a very HoJ

application are able to run severally and at a particular

time, distributed computing systems like grids are

appropriate to run such applications (Casanova et al.,

2008). Many problems that may be comparatively simple

to handle in square computing surroundings become

seriously challenging issues in grids, chiefly thanks to

the dynamism and heterogeneousness of the grid.

Scheduling, particularly, becomes the only most

troublesome task. As an example, the primary purpose of

a resource collaborating in a very grid is to serve the

native users of the organization that it belongs to.

Moreover, the resource is possibly controlled by the

native scheduler. This means that the capability and

availableness of the resource for grid users are volatile,

that leads to the grid associate timeserving setting. This

places nice emphasis on the standard of the

programming methodology. The in recent years, vital

efforts like SETI@home (Anderson et al., 2002) have

been created to alter a colossal quantity of computation

(that is, computationally intensive larva applications

(CBoT)) by exploiting given laptop cycles across the

globe. The success of SETI@home spawned variety of

similar follow-up comes (for example, Folding@home

(Larson et al., 2003; Allen, 2005) and lots of more).

Folding@home is a distributed computing project that is

used for disease research that simulates protein folding,

computational drug designing and other types

of molecular proteins dynamics. In this study, we use

the idle processing resources of thousands of personal

computers owned by volunteers who have installed the

software on their machines. Additionally, a number of

grid programming algorithms for numerous application

models together with the larva application model are

proposed (Phan et al., 2005; Banino et al., 2004;

Mohamed and Epema, 2004; Ranganathan and Foster,

2002; Fujimoto and Hagihara, 2003). Inspite of the

efforts invested with in creating existing programming

algorithms highly economical, most of those algorithms

have issue in guaranteeing a decent quality of schedules.

It is same that performance prediction info on resources

obtained using the Network Weather Service (NWS)

(Casanova, 2001) is incorporated into programming

algorithms as in Xsufferage (Casanova et al., 2000) to

make sure sensible worth plan. However, it is impractical

to assume that excellent performance information on

underlying resources in a very grid is quickly obtainable.

In the past, two novel programming algorithms (Lee and

Zomaya, 2007), known as the Multi Allocation-Input-

data-based Listing (MAIL) formula (Lee and Zomaya,

2006a) and the Multiple Queues with Duplication

(MQD) formula (Lee and Zomaya, 2006b) that we have

a tendency to recently projected area unit conferred with

extra results obtained from a lot of intensive

experimental study. The Multi Allocation-Input-data-

based Listing (MAIL) formula focuses on programming

Data-intensive BoT (DBoT) applications, whereas the

MQD formula targets scheduling CBoT applications.

The Multi Allocation-Input-data-based Listing (MAIL)

formula uses a group of task lists that area unit made by

taking the information sharing pattern into consideration

which area unit organized dynamically, based on the

performance of resources throughout the execution of the

appliance. The first goal of this dynamic listing is to

minimize knowledge transfer, therefore resulting in

shortening the overall completion time of DBoT

applications. Multi Allocation-Input-data-based Listing

(MAIL) makes an attempt to further scale back serious

schedule will increase ensuing from few problematic

task/node assignments by adopting task duplication. The

MQD formula makes programming choices by implicitly

taking the recent employment pattern of resources into

account. Like Multi Allocation-Input-data-based Listing

(MAIL) it adopts a duplication theme so as to achieve

higher resource utilization and to avoid undesirable

scheduling choices. By higher resource access, their

common and primary strength is that they create

programming choices while not correct performance

prediction data.

 In this study, a specialized algorithm Known as

Sensible Centrality Scheduling algorithm (SCS) is

projected to mainly concentrate on CHoJ application. In

which dynamic listings of jobs are created primarily

based upon their workloads that ends up in minimize the

general finishing time of associate application.

1.1. MODELS

1.1.1. System Model

 The grid G in our analysis consists of variety of

location in each of that a group of P process node is

taking part in a grid. Where Li is that the i
th

 location

taking part in G and Ni is a set of nodes:

{ }1 2 3 nG L ,L ,L , L= …

Vijaya Karthick, P. and V. Vasudevan / Journal of Computer Science 9 (5): 660-670, 2013

662 Science Publications

JCS

And:

{ }i i,1 i,2 i ,pL ;1 i n N , N , .N≤ ≤ = …

 Each location is an autonomous administrative

domain that has its own native users, who use the

resources in it. These locations are connected with one

another through a Wide Area Network (WAN). Nodes

are composed of each space-shared and time-shared

machine with numerous process speeds, that is, CPU

speed. These resources aren’t entirely dedicated to the

grid. In alternative words, they’re used for both native and

grid jobs (Banino et al., 2004). Every of those nodes

have one or additional processors, memory, disk, so

forth. The availability and capability of resources, as an

example, nodes and network links, varies over time.

Therefore, the accurate completion time of jobs on a

selected node is difficult, if possible, to work out a priori.

Moreover, the job might fail to finish since the resource

failure on that it’s running.

1.2. Compute Intensive Horde-of-Jobs Model

 HoJ applications are normal parallel type of

applications that exist in several scientific and

engineering fields. An application K of this model

consist of r heterogeneous jobs {J1,J2…..Jr} without any

job dependencies. It is assumed that the work

(computation time) of every jobs within the CHoJ model

is understood which it varies between jobs. The input file

transfer for every job is negligible. The size of the jobs

itself is additionally tiny and, thus, transferring it does

not influence a lot of the finishing time of the jobs.

1.3. Scheduling Crisis

 The grid programming crisis self-addressed during

this study may be a job programming of a group K of r

freelance jobs, comprising a HoJ application, onto N

heterogeneous nodes dispersed across multiple location

in a grid. The first goal of this programming is to form as

several applicable job node matches as attainable in order

that the makespan, conjointly referred to as schedule

length, of a HoJ application is decreased. The makespan

during this study is outlined because the quantity of your

time taken from the time the primary computer file

transfer starts to the time the last job accomplished. The

function of the resource broker is to allocate the resources

to the requesting users. The resources and the users will be

dynamic in the wireless grid architecture. The resources

can also be provided for the intermittent users. The

resource broker is responsible for scheduling.

1.4. Related Work

 Grid programming is one among the foremost wide

investigated topics in recent times with the aim of their

effectiveness in use and its performance. A number of

programming algorithms that may be used for Horde of

Jobs based applications are projected.
 Because of the NP-complete nature of the job
programming drawback (Grama, 2003), the majority of
projected solutions are heuristic algorithms. These
heuristics embrace Max-Min, Min-Min, Sufferage
(Lang et al., 2006; Maheswaran et al., 1999),
XSufferage (Casanova et al., 2000) and Storage Affinity
(SA). However, they make associate arguable
assumption that excellent performance prediction
information on assets and jobs is thought at the time of
scheduling; thus, they’re Performance-Prediction
Information-Dependent Algorithms (PPIDA). In contrast
to these heuristics, a recently projected approximation
algorithmic program, list scheduling with Round-robin
with Duplication, does not need any performance
prediction info on assets or jobs (Lee and Zomaya, 2007)
focused on Practical Scheduling with bag of tasks. The
extension of this research work is carried out from the
job allocation. Max-Min selects the unexpected jobs
whose minimum earliest finishing time over all of the
nodes is that the longest among all of the unexpected
jobs. The chosen job is then allotted to the host on that
the minimum earliest finishing time is anticipated. The
sole distinction distinctive Min-Min from Max-Min is
that the job choice scheme. Specifically, Min-Min
provides priority to the job that has the shortest earliest
finishing time. Moreover it observes that, at the time of
every programming instance, Max-Min tends to schedule
the longest job, whereas it’s more doubtless that Min-
Min processes the shortest job. Sufferage makes
programming verdict by the sufferage value of jobs
(Ranganathan and Foster, 2002). The sufferage price of a
task is outlined as the distinction between its earliest
finishing time and its second earliest finishing time. At
every planning call, it computes the sufferage values of all
of the unscheduled jobs and schedules the jobs whose
sufferage value is that the largest. This approach is
effective because of the serious increase of makespan is
decreased. We cannot come to conclusion that this does
not guarantee that the general makespan is shortened.
 XSufferage widen the Sufferage planning heuristic

(Maheswaran et al., 1999) by taking information sharing

into consideration. It makes planning decisions

supported the sufferage worth of jobs. The sufferage

worth of a job in XSufferage is outlined because the

difference between its earliest location-level completion

time and its second earliest location-level finishing time.

Vijaya Karthick, P. and V. Vasudevan / Journal of Computer Science 9 (5): 660-670, 2013

663 Science Publications

JCS

The sufferage values utilized in Sufferage are node level,

those adopted by XSufferage are location level. The

sufferage worth of a job is employed as a live of the

doable increase on makespan, that is, a job with an

oversized sufferage worth implies that the finishing time

of the job seriously increases, inflicting a doable increase

of makespan if it’s not allotted to the node on that the

earliest location-level finishing time is achievable.

Therefore, the larger the sufferage worth of a job, the

upper the planning priority the job gets.

 Storage Affinity (SA) primarily aims at minimizing

information transfer by creating scheduling choices that

incorporate the situation of knowledge previously

transferred. Additionally, it considers job replication as

presently as a number becomes obtainable between the

time once the last unexpected job gets allotted and the

time once the last running job finishes its execution.SA

resolve job/node assignments depends on the SA metric.

The SA of a job to a node is to quantity the jobs which

was stored in the node belongs. Though the

programming verdict SA makes is between a job and a

node. SA is calculated between a job and a location. This

can be as a result of, within the grid model used for SA,

each location within the grid uses one information

repository that may be fairly accessible by the nodes

within the location. For each programming verdict, the

SA calculates SA values of all unexpected jobs and

dispatches the job which has high value of SA. If none of

the jobs contains a positive SA value, one among them is

selected in arbitrary manner. By the time the

programming of all unexpected jobs is complete, there

would be as several as |N| running jobs, departure all |N|

node busy. On the completion of any of those running

nodes, SA starts job duplication. Now, every of the

remaining running jobs is taken into account for

duplication and also the best one is selected. The

selection verdict is predicated which depends on the SA

value and the variety of replicas.

 RR could be a grid programming rule for freelance

coarse grained jobs. Because the term implies, its

uniqueness comes from the round-robin order

duplication theme that makes duplicates of running jobs

in an exceedingly round-robin fashion after conducting

list programming for all of the special jobs. RR initial

every which way assigns a job to every node within the

grid and so waits till one or additional of these assigned

nodes complete their jobs. On the completion of a job,

the next special job is sent to the node on that the

completed job has run. This tends to end in quick assets

obtaining additional jobs. Once all of the jobs are

dispatched, RR starts duplicating running jobs, hoping

that these replicas end prior to their novels. RR performs

programming with none dynamic data on assets and

nodes. The rule is comparable to alternative

programming heuristics that need such performance data.

The new Multi Allocation-Input-data-based Listing

(MAIL) algorithm rule cluster jobs into variety of

dynamic lists supported their information distribution

modes. Each of these lists is meant to be scheduled onto

identical location in the grid so as to attenuate convey the

details, that is vital to shortening the finishing time of

DBoT applications in explicit. Since the performance of

grid resources fluctuates over time, the lists square

measure organized dynamically during application

runtime. In a trial to with efficiency contend with the

dynamism of grid resources, the Multi Allocation-

Input-data-based Listing (MAIL) adopts a job

duplication that’s particularly useful in avoiding serious

schedule will increase. For example, one or two of jobs

is also running unexpectedly long, increasing the

schedule considerably due to the overload or irregular

behaviors of the assets on which they’re running or

being transferred. A same duplication approach is

found in RR. Note that Multi Allocation-Input-data-

based Listing (MAIL) doesn’t use any prediction data

on the performance of assets and its use, apart from the

information on input file, that is, size and placement,

which is Multi Allocation-Input-data-based Listing

(MAIL) rectifiable by the computer hardware whereas

planning the jobs of associate application. However,

it’s not assumed that the information is offered for

following invocation of the application. The Multi

Allocation-Input-data-based Listing (MAIL) consists of

2 major phases: Job Grouping part-group’s jobs into a

set of lists supported their information sharing pattern,

associates these job lists with location information and

breaks and/or associates them with nodes. Scheduling

part-assigns jobs to nodes, dynamically reorganizing

job lists and duplicates jobs once all jobs square

measure scheduled and a few jobs are still running.

 The MQD will proceed with the programming

method. On completion of jobs, the performance

ranking of the host on which the jobs is finished is

computed. The performance of a bunch used for

computing its performance ranking is quantified by

dividing the employment of the last job the node

finished by the job total finishing time. The above

performance ranking decides that a queue future job

for the node is chosen from it.

Vijaya Karthick, P. and V. Vasudevan / Journal of Computer Science 9 (5): 660-670, 2013

664 Science Publications

JCS

1.5. Proposed Work

 It is observed that good performance data on

underlying resources during a grid is extremely

thorny, if not impossible to get. Therefore, a best

schedule generated by a programming rule might not

truly be deliverable if the programming choices are

created victimization performance prediction data. On

the opposite hand, if programming is meted out while

not intuitive judgments, as an example, in a first-

come, first-serve manner, the standard of the schedule

can simply become poor.

 The Grid computing facilitates flexible, secure,

coordinated large scale resource sharing among dynamic

collections of individuals, institutions and resource

sharing in a geographical distributed area.

 It is an evolving Technology of set of open

standards for Web services and interfaces that make

services, or computing resources, available over the

Internet. These days the grid technologies are used on

homogeneous clusters and heterogeneous clusters and

they can add value on those clusters by assisting, for

example, with scheduling. The criteria for Grid

Computing involves by coordinating the resources that

are not subject to centralized control. It uses standard,

open, general-purpose protocols and interfaces and

delivers nontrivial qualities of service.

1.6. Architecture of Grid Environment

 The main components of grids are:

• Grid Information Server

• Global Grid Resource Broker

• Local Grid resource Broker

• Grid Users

• Grid resources like computers, laptops, Servers,

Printers

 In Fig. 1, the Architecture of the Grid is depicts the

various components of Grid. The role of Global Grid

Resource Broker is the client Registration of jobs to

process and the role of Resource nodes is to donate the

resources at local Grid resource Broker and process the

client request as per the instruction given by Local Grid

Resource Broker. All the resource statics like resource

node, resource node size, resource header information

will be collected from all the LGRB by Grid Information

server and it is forwards to the GGRB. The main

component in which scheduling will takes place in global

grid resource broker.

Fig. 1. Architecture of grid environment

(a)

(b)

Fig. 2. Initial set of k jobs, (a) Initial set of jobs, (b)

Preprocessed jobs

This GGRB provides all the information like

resource type, resource variants, resource allocations

and the corresponding nodes like nodes 1, node2,

node3 and the information of the nodes will be

acquired by GGRB. The Grid Scheduling takes place

in the time sequence. To provide the efficient

scheduling with the available resources is the one of

the top issues in the Grid Computing environment.

The mechanism of Sensible Centrality Scheduling (SCS)

algorithm is explained in the Fig. 2 with initial set of K

jobs. Initially jobs are organized in descending order by

workload and programming of jobs are mentioned.

Vijaya Karthick, P. and V. Vasudevan / Journal of Computer Science 9 (5): 660-670, 2013

665 Science Publications

JCS

Table 1. Workload allocated to nodes

Nodes -----------SCS--------- ------------MDQ----------- ----------MAX-MIN-------- ---------MIN-MIN------

1 34 48.57% 54 77.07% 44 62.875% 34 48.57%

2 48 48.00% 76 76.00% 48 48.00% 48 48.00%

3 22 40.74% 34 62.96% 22 40.74% 34 62.96%

Table 2. Comparison of Algorithm by Makespan

Algorithm Total time (min) Average makespan (min)

SCS 10.8 3.60

MDQ 15.3 5.10

MAX-MIN 11.1 3.70

MIN-MIN 11.5 3.83

From the well known workload we compute the
centrality value by dividing the sum of maximum and
minimum workload and bi as sown in the step. Initially
overall processing speed of each node is calculated with
the help of node processing speed in various time limits.
Based on these values we assign rank to the node. In this
algorithm we use three queues (i.e.,) MajQ, MinQ,
RepQ. The job assigned to the MajQ and MinQ are
depends upon the centrality. RepQ is used to avoid the
job redite (needless replication) by deleting the job from
the queue (RepQ) once it assigned for processing. The
jobs in the MinQ are only assigned to the nodes which
have highest rank value.

The jobs in the MajQ are assigned to the remaining
nodes based on the node rank. Either MajQ or MinQ jobs
are get finished, it go for RepQ to find out the
unscheduled jobs. If exits it process those jobs in the
above procedure. This is shown below:

Input: A set of k of jobs, a set N of nodes.
Output: A schedule of K onto N

Algorithm of SCS

1. Sort k in decreasing order by workload

2. Let centrality = max (K)+min (K)/2
3. Create 3 queues/*majQ,min Q,Rep Q*/
4. for each k then
5. Rep Q = k
6. if (k> = centrality)
7. then

8. Assign maj Q=k
9. else
10. Assign min Q=k
11. end if
12. end for
13. Compute the processing speed of all nodes and
assign rank.
14. Let O = Nodes which are sorted in ascending order

based on ranking factor.

15. Let m be the minimum ranking node

16. for each value (vi) of min Q

17. Let m = vi

18. Delete vi from Rep Q

19. End for

20. for each value vj of maj Q

21. Allocate vj to the nodes in ‘O’ order except M

22. Delete Vj from Rep Q

23. end for

24. if last job in min Q is completed then

25. Check Rep Q to find unscheduled jobs
26. if any
27. goto step 2127. vi = min (RepQ)
28. goto step17
29. end if
30. if last job in Max Q is completed then
31. check Rep Q to find unscheduled jobs
32. if any
33. vj = max(RepQ)
34. end if

1.7. Experimental Evaluation

The primary role of the scheduling algorithm is to

minimize the makespan as much as possible. In order to

attenuate makespan, one of the important key issues is

to avoid repetition. The various workloads assigned to

the nodes by each algorithm are offered in Table 1 when

compared to other algorithm, SCS acquire minimum

makespan which is clearly clarified from the Table 2.

1.8. Grid Simulator Tool

 The grid simulator Tool used for this study is

enforced with GridSim tool due to its made set of

simulation facilities that Multi Allocation-Input-data-

based Listing (eaMAIL) y permits the event and analysis

of planning procedures for heterogeneous distributed

computing environments in simulating grids is Tiers an

arbitrary constellation generator that fabricate arbitrary

network models analogous to the structure of the web.

Properties of resources and jobs within the simulations

conducted during predefined set of assets and job factors

shown in Table 2. This was proved by writing the

various test cases for every node and network link is

simulated by employment traces obtained from actual

systems deployed because the GrADS test bed, where

the end to end testing was carried out.

Vijaya Karthick, P. and V. Vasudevan / Journal of Computer Science 9 (5): 660-670, 2013

666 Science Publications

JCS

 (a)

 (b)

Vijaya Karthick, P. and V. Vasudevan / Journal of Computer Science 9 (5): 660-670, 2013

667 Science Publications

JCS

 (c)

 (d)

Fig. 3. Programming of Jobs, (a) Node processing speed, (b) SCS (c) MDQ, (d) Max-Min

1.9. Simulation Results

 The SCS algorithm and three previously proposed

algorithms, MDQ, Max-Min, Min-Min, are compared by

using a total of 20,000 simulations for each Fig. 3. The

10,000 simulations are composed of 150 simulated grids

and 30 simulated jobs and each of these 3,000 grid-job

pairs is run 10 times with different host workload traces.

The simulation results presented in this study clearly

show the promising performance of the SCS algorithm

compared to the other three. The experimental results of

Max-Min, Min-Min and MDQ shown in Fig. 4. The

normalized average makespan is shown in the Fig. 5. It

is defined as the average makespan of an algorithm

over that of SCS that generates the shortest makespan

among the three algorithms presented in this study

models analogous to the structure of the web.

Properties of resources and jobs within the simulations

conducted during this study are random and uniformly

scattered between a predefined set of assets and job

factors shown in Table 2. Every node and network link

is simulated by employment traces obtained from actual

systems deployed because the GrADS test bed and the

virtual test has been conducted.

Vijaya Karthick, P. and V. Vasudevan / Journal of Computer Science 9 (5): 660-670, 2013

668 Science Publications

JCS

 (a) (b)

 (c) (d)

Fig. 4. Simulation results for completion of jobs (a) SCS (b) MDQ (c) MAX-MIN (d) MIN-MIN

Fig. 5. Simulation results for average makespan in various algorithm

Vijaya Karthick, P. and V. Vasudevan / Journal of Computer Science 9 (5): 660-670, 2013

669 Science Publications

JCS

2. CONCLUSION

This study bestowed an algorithm called Sensible

centrality Scheduling (SCS) for HOJ application in grid

environment. They are fastidiously designed to include

the fundamental features of the grid (that is, vitality and

heterogeneity) into the decision-making process.

Practicability and performance are the two main design

goals. The projected algorithms achieve these goals by

victimization intuitive approaches. SCS takes the work

pattern of resources into thought for programming

choices and conjointly it neglect job duplication.

Extensive experiments with numerous take a look at

superior performance of SCS. It mostly delivers higher

schedules compared to those generated by the four

algorithms (that is, Max-Min, Min-Min and MQD).

Further focus to be carried out to enhance this algorithm

to process the suspended jobs.

3. ACKNOWLEDGEMENT

 This research work is supported in part by the

Kalasalingam University, srivilliputhur, India under the

research and development scheme to promote the

research work.

4. REFERENCES

Allen, B., 2005. Einstein@Home. LSG.

Anderson, D.P., J. Cobb, E. Korpela, M. Lebofsky and

D. Werthimer, 2002. SETI@home: An experiment

in public-resource computing. ACM Commun., 45:

56-61. DOI: 10.1145/581571.581573

Banino, C., O. Beaumont, L. Carter, J. Ferrante and A.

Legrand et al., 2004. Scheduling strategies for

master-slave tasking on heterogeneous processor

platforms. IEEE Trans. Parallel Distribut. Syst., 15:

319-330. DOI: 10.1109/TPDS.2004.1271181

Blanquer, I.B., V.H. Hernandez and J.D. Segrelles, 2005.

An OGSA middleware for managing medical

images using ontologies. J. Clin. Monit. Comput.,

19: 295-305. PMID: 16328944

Casanova, H., 2001. Simgrid: A toolkit for the

simulation of application scheduling. Proceedings of

the 1st IEEE/ACM International Symposium on

Cluster Computing and the Grid, May 15-18, IEEE

Xplore Press, Brisbane, Qld., pp: 430-437. DOI:

10.1109/CCGRID.2001.923223

Casanova, H., A. Legrand and M. Quinson, 2008.

SimGrid: A generic framework for large-scale

distributed experiments. Proceedings of the 10th

International Conference on Computer Modeling

and Simulation, Apr. 1-3, IEEE Xplore Press,

Cambridge, UK., pp: 126-131. DOI:

10.1109/UKSIM.2008.28

Casanova, H., A. Legrand, D. Zagorodnov and F.

Berman, 2000. Heuristics for scheduling parameter

sweep applications in grid environments.

Proceedings of the 9th Heterogeneous Computing

Workshop, May 1-1, IEEE Xplore Press, Cancun,

pp: 349-363. DOI: 10.1109/HCW.2000.843757

Fujimoto, N. and K. Hagihara, 2003. Near-optimal

dynamic task scheduling of independent coarse-

grained tasks onto a computational grid. Proceedings

of the International Conference on Parallel

Processing, Oct. 9-9, IEEE Xplore Press,

Kaohsiung, pp: 391-398. DOI:

10.1109/ICPP.2003.1240603

Grama, A., 2003. Introduction to Parallel Computing.

2nd Edn., Addison Wesley, Harlow, ISBN-10:

0201648652, pp: 636.

Lang, B., I. Foster, F. Siebenlist, R. Ananthakrishnan and

T. Freeman, 2006. Attribute based access control for

grid computing. Mathematics and Computer Science

Division.

Larson, S.M.. C.D. Snow, M. Shirts and V.S. Pande,

2003. Folding@Home and Genome@Home: Using

distributed computing to tackle previously

intraceable problems in computational biology.

Biophysics Program, Stanford University.

Lee, Y.C. and A.Y. Zomaya, 2006a. Data sharing pattern

aware scheduling on grids. Proceedings of the

International Conference on Parallel Processing,

Aug. 14-18, IEEE Xplore Press, Columbus, OH., pp:

365-372. DOI: 10.1109/ICPP.2006.30

Lee, Y.C. and A.Y. Zomaya, 2006b. A grid scheduling

algorithm for bag-of-tasks applications using

multiple queues with duplication. Proceedings of the

1st IEEE/ACIS International Workshop on

Computer and Information Science, Jul. 10-12,

IEEE Xplore Press, Honolulu, HI., pp: 5-10. DOI:

10.1109/ICIS-COMSAR.2006.7

Lee, Y.C. and A.Y. Zomaya, 2007. Practical scheduling

of bag-of-tasks applications on grids with dynamic

reMAIL(Multi Allocation-Input-data-based Listing)

ience. IEEE Trans. Comput., 56 815-825. DOI:

10.1109/TC.2007.1042

Vijaya Karthick, P. and V. Vasudevan / Journal of Computer Science 9 (5): 660-670, 2013

670 Science Publications

JCS

Magnin, I.E. and J. Montagnat, 2006. The grid and the

biomedical community: Achievements and open

issues. Proceedings of the EGEE User Forum,

(EGEE’ 06), Geneva, Switzerland.

Maheswaran, M., S. Ali, H.J. Siegel, D. Hensgen and R.

Freund, 1999. Dynamic matching and scheduling of

a class of independent tasks onto heterogeneous

computing systems. Proceedings of the 8th

Heterogeneous Computing Workshop, Apr. 12-12,

IEEE Xplore Press, San Juan, pp: 30-44. DOI:

10.1109/HCW.1999.765094

Mohamed, H. and D. Epema, 2004. An evaluation of the

close-to-files processor and data co-allocation policy

in multiclusters. Proceedings of the IEEE

International Conference on Cluster Computing,

Sep. 20-23, IEEE Xplore Press, pp: 287-298. DOI:

10.1109/CLUSTR.2004.1392626

Montagnat, J., A. Frohner, D. Jouvenot, C. Pera and P.
Kunszt et al., 2008. A secure grid medical data
manager interfaced to the gLite middleware. J. Grid
Comput., 6: 45-59. DOI: 10.1007/s10723-007-9088-2

Phan, T., K. Ranganathan and R. Sion, 2005. Evolving
toward the perfect schedule: Co-scheduling job
assignments and data replication in wide-area
systems using a genetic algorithm. Proceedings of
the 11th International Conference on Job Scheduling
Strategies for Parallel Processing, Jun. 19-19,
Springer Berlin Heidelberg, Cambridge, MA, USA.,
pp: 173-193. DOI: 10.1007/11605300_9

Ranganathan, K. and I. Foster, 2002. Decoupling
computation and data scheduling in distributed data-
intensive applications. Proceeding of the 11th IEEE
International Symposium on High Performance
Distributed Computing, Jul. 24-26, IEEE Xplore
Press, pp: 352-358. DOI:
10.1109/HPDC.2002.1029935

