
Journal of Computer Science 9 (5): 654-659, 2013

ISSN 1549-3636

© 2013 Science Publications

doi:10.3844/jcssp.2013.654.659 Published Online 9 (5) 2013 (http://www.thescipub.com/jcs.toc)

Corresponding Author: Albert Pravin, Department of Computer Science and Engineering, Sathyabama University, Chennai, India

654 Science Publications

JCS

Effective Test Case Selection and

Prioritization in Regression Testing

1
Albert Pravin and

2
Subramaniam Srinivasan

1Department of Computer Science and Engineering, Sathyabama University, Chennai, India

2Department of Computer Science and Engineering, Anna University, Regional Centre, Madurai, India

Received 2013-04-15, Revised 2013-05-24; Accepted 2013-05-28

ABSTRACT

Regression testing is used to ensure the validity of the changed software. Due to time budget and entire test
suite could not be executed. Hence it becomes an essential to minimize the test suite and choose a subset of
test cases from test suite which will be executed in least time and has the capability to cover all the faults.
Hence reordering the test case on the basis of time fault, test case prioritization technique prioritizes the test
cases using fault detection algorithm, which is proposed in this study. After finding the faults in the code,
the source code will be processed in the open source system like Webkit.

Keywords: Regression Testing, Webkit, Test Case Prioritization

1. INTRODUCTION

Regression testing is often more essential in order to
provide a high quality software. Regression testing plays
a vital role while changes occurred in the existing
software. The change is to be checked before it is to be
implemented. The test case is created to have an
coverage over the change that is performed in the
application. The main principle in the regression testing
is to provide assurance that the recently established
changes will not disturb the behavior of the existing,
unaffected part of the software. This is checked by
executing the test cases to find out the defects. Instead of
executing all the test cases the test cases which cover the
modification is to be selected and executed. For instance,
software development method based on components
mostly uses the black-box components, often accept
from third party. The internal of third party components
are unknown to the users, when any changes are created
in third party components might get in the time way with
other software system. So far it is very hard to complete the
regression testing. Test case selection and test case
prioritization are the two major part of the regression
testing. Test case selection solves the problem of selecting
the test case which will be useful to test the modified part of
the software. Finally test case prioritization concerns
ordering the test cases which maximize the attractive
properties of recent fault detection.

1.1. Related Work

The conceptual of regression test selection method

has been used to select the set of test cases Pravin and

Srinivasan (2013). In addition to one of the primary

assessment features of our techniques has defined the

evaluation principle called inclusiveness. It is the part of

the failing test cases contained in the choice relation to

the whole numeral of fault test cases as soon as

performing the entire test suite. In this research use most

important principle is selection size. It is calculated as

the percentage of numeral of preferred test cases in

excess of the total number of without selection. One

more review on prioritization and regression test

selection has been explained by Yoo and Harman (2012).

The genetic algorithm is analyzed and the

effectiveness for test case selection depending on fault

detection property of a program modification explained

by Singh and Parkash (2012). It will assign the priority

for the test cases depending up on the fault detected . But

this method doesn’t consist of any brief program

statement. Many researchers are viewed an

inclusiveness. Pravin and Srinivasan (2012) proposed an

Evolutionary Algorithm for the purpose of developing

the input sets . The test case is arranged in the test suite

in the ordered form So the fault is detected earlier in the

process proposed by Badhera et al. (2012).

Albert Pravin and Subramaniam Srinivasan / Journal of Computer Science 9 (5): 654-659, 2013

655 Science Publications

JCS

The case studies of all subject programs were small

programs among less than 500 line of program and

arranged by fault seeding. In this case Qt port of Web Kit

software tool as specified and its regression test suite

were educated. The system basis includes 1.9 million

fault were not seed but they were actual having an effect on

the software. One more important characteristic of test

case selection method is the coverage, which create use

of them. Pravin and Srinivasan (2012) uses the

knowledge based concept for selection of test cases.

Rothermel et al. (2002) used all-edges coverage. In this

studies showed to the various granularities are utilized

in test case selection created various decrement during

the test suite size. In this study the purpose of

coverage-based test suites will give test selection

results better to those offered by means of test suite,

which are not coverage-based. Procedure level

coverage used in this study, but didn’t try to reduce the

test suite in provisions of removing “redundant” test

cases. Additional studies detailed on various problems

of regression test case collection. Kumar et al. (2012)

describes the testing process which will improve the

Effeciency regarding the quality ,cost and effort.

In this study testing shows that as the number of

variation between the program versions increased and

the number of test cases chosen also grew quickly as

well as the efficiency of test selection increased. Have

to apply test case selection to all version of important

changes are present and study how frequently a

complete retest is needed to realize consistent results.

Test case prioritization methods also included in this

study Singh and Parkash (2012). In this proposed

hybrid techniques has minimization, combining

modification and prioritization based selection to

recognize a delegate division of all test cases that will

result in various output performance on the new

software version Ahmed and Hermadi (2008). The case

studies on regression test case prioritization have been

included. Test data generation technique based on

adequacy based testing criteria was proposed by

Malhotra and Garg (2011). Shahid et al. (2011) This

study provides a study of the current testcoverage

researches conducted by other researchers for test

coverage in testing process and the existing approaches;

gaps and uncovered measurement of Test Coverage can

be explored further Panigrahi and Mall (2012)

developed an Regression Test Selection technique for

object oriented programs and the UML state machines

for the affected classes.The contorl and the data

dependancy also captured.

1.2. Test Case Selection Based on Time Fault

1.2.1. Test Case Prioritization

A test case in software engineering is a set of

conditions or variables under which a tester will determine

whether an application or software system is working

correctly or not. Test case Prioritization is of selecting test

cases in an order of higher priority with an earlier

execution and has components that specifies input,

operation and an expected outcome, that determine if a

properties of the particular application is working correctly.

1.3. Prioritization Methods

• Initial ordering

• Reverse ordering

• Random ordering

• Based on fault detection ability

1.4. Test Suite Reduction

In software application development, a test suite, less

commonly known as a suite for checking the validity of

the software, is a collection of test cases that are intended

to be used to test a software program to show that it has

some specified set of functionality. A test suite will

contain a detailed set of instructions or goals for each

collection of test cases and information on the system

configuration to be used during testing process. A set of

test cases may also contain prerequisite states or steps and

descriptions of the following tests.

1.5. Fault Detection Algorithm

Time budget to test the software is very less when

compared to the time needed to execute the all test cases

of test suite. Hence, an effective technique for choosing

the test cases from the test suite is essential, which

identify maximum distinct fault within the given period

of time. The majority of the study conduct in this

method, prioritized test case consists of test case which

has high value of fault values. These test cases are

arranged in the descending order of their fault values and

which are examined in the same order.

In this study, proposed a Fault detection algorithm,

which is mainly used for re-arrange the test cases in the

test suite such that the fault of the Fault detection

algorithm has been selected least time for its detection in

the test suite is detected first. Let Mi be a fault and it is

detected by test cases La, Lb, or Lc. TF for this time fault

in the test suite has been calculated as:

Albert Pravin and Subramaniam Srinivasan / Journal of Computer Science 9 (5): 654-659, 2013

656 Science Publications

JCS

i a a b b c c
TF(M) 1 / LML 1 / LML 1 / LML= + + (1)

In Equation (1), LMLa characterize total faults

detected by test case La and la represents the time of

execution of test case La. The other factors of Equation

(1) can be understood in the same way. TF (Mi)

represents total time allocated to detect fault Mi in test

suite and it has been assumption of a test case detects p

faults in n seconds, at that time fault will be detected in

n/p seconds. Additionally, in Equation (1), to facilitate

test case may be performed to detect fault Mi, test case

add minimum to TF (Mi). A bond is busted randomly.

For an example, consider a test suite, Tabulated in

Table 1, in Table 1 includes five test cases and it detects

five faults. These faults are tabulated in rows and test

cases are specified in columns.

In Table 1, for a specific row value 1 represented in a

column point out with the matching fault is detected by

the column test case. Least TF value is detected first in

the fault detection.

In the prioritized test cases, a test case whose TF

value minimum will be considered as highest priority

fault. The residual test cases are added to the prioritized

set. After eliminate those faults that have been covered

before with that of the recognized test case. Also

replication the similar steps have used with the purpose

of recognition of first test case. In order to prioritize the

test cases fault detection algorithm is proposed it is

shown in following algorithm.

1.6. Input

A test suite S, set of fault so far to detect (tf), time

budget (tb), total number of faults detected by a test

case Ti (tgsi), Faults detected by Test case Si (MSi) and

time taken to execute a test case Si (si). At first TF

consist of all faults.

1.7. Output

Prioritized test suite (p), set of Fault Detected (fd)

(initially fd is empty)

The general mathematical sets of operations (BUA,

B∩A, BA) are in the proposed algorithm is mainly used

because it is of:

• Simple

• Understandable

While ((tf‡ø) and ((s<=tb))

{

for (a=1;a<=n; a++)

{

i) q=oe; ii) r[0]= oe;

for (b=1;b<=n; b++)

{

if(m[a,b] ‡0)

{

i)q=r[b]; ii)M[a]=Sb;

}

TF[a]=TF[a]+r[b];

}//end if

}//end for

} //end for

Min= oe;

for (a=1;a<=n;a++)

{

if((TF[a]>0 and TF[a]<=Min))

if(s+sa<=CY)

{

i)Min=r[a]; ii)pn=a;

}

}//end for loop

s=s+spn;

fd=fd U MS pn;

tf=tf- MS pn;

p=p U S pn;

Make TF[a]=0; and m[a,b] =0 for all faults

detected by Sb and set m[a,b] =0 for test case Sb

that is currently executed

}//end while loop

Open source software system is a very complex,

huge and lively developing software system. This is

preserved by hundreds of developers in the region of world.

In that our many department members are included.

Recently with the object to develop the inner quality of

the system together with the consistency and

effectiveness of the regression testing system we have

started a long term project. As an initial step, we begin

with the estimation of the code coverage and other

regression test suite elements.

Table 1. Test suite representation with Fault

 S1 S2 S3 S4 S5

M1 1 0 1 0 1

M2 0 1 0 0 0

M3 1 1 0 1 0

M4 0 0 1 0 1

M5 1 1 0 0 1

Time 4 5 3 2 4

Albert Pravin and Subramaniam Srinivasan / Journal of Computer Science 9 (5): 654-659, 2013

657 Science Publications

JCS

1.8. In Open Source Software System

This is consisting of regarding 2.2 million lines of

code. In that typically JavaScript, c++ and python

between others. In this study we only intended on c++

components. This features to regarding 86% of the code.

The system has a comparatively big regression test

collection that consisting almost 24 thousand test cases.

Open source software system has a huge, geographically

dispersed development community and its building

environment is a usual one for dispersed team, which

contains grave configuration administration and strict

addition rules. For example a test set must pass before

any patch could land any of the mechanism in the

version control repository.

There are 113914 revisions present on April 11,

2012 and each day 90 revisions are shaped .The

requirement of performing all regression tests could not

fulfilled in many cases. Because the big size of the

regression test suite and very regular revisions.

The programmed build system always makes

regression tests. but due to the insufficient server

capacity failure may occur, if occurred it will be difficult

to find which revision is responsible. Therefore

performing the correction is very difficult. In addition

the completeness and consistency of the regression test

set has not at all been methodically checked, therefore

presently there is no real suggestion regarding regression

test suite defect detection capability. There may be faults

are detected by several test cases else can Stay

undetected. Forced by these problems, required to

examine the option to increase the speed of the test case

selection and prioritization execution, while keeping the

issue detection capability and same level of reliability.

1.9. Research Goals

There is three important phases of our research are

presented in the starting of our project in autumn 2011.

In the first round we found an open source software

system revisions decent number for collect information and

get a deeper approach into the code. The changes

performed to it, the regression test set, the source code

coverage and the test executions. Often in second phase,

based on the obtained result we applied an optimized and

somewhat different version of test choice in the official

open source software built system and started its continuous

process in similar to the construct processes. We observed

the system performance for a particular period of time and

made additional analysis and measurements of the gathered

data in order to confirm the initial findings.

Our current research movement is to further improve

the effectiveness of the execution by initiating test

prioritization in adding to easy selection. We support our

approach for test optimization on the long reputation

statement. From that it is likely to choose the more

applicable tests from the test set depending on the set of

changes implemented to the system.

2. MATERIALS AND METHODS

 Fault detection algorithm, which is mainly used or

re-arrange the test cases in the test suite such that the

fault of the Fault detection algorithm has been selected

least time for its detection in the test suite is detected

first.The input for the algorithm is the test suite,time and

the total numer of fault detected by the test cases. TF for

this time fault in the test suite has been calculated as:

i a a b b c c
TF(M) 1 / LML 1 / LML 1 / LML= + +

The general mathematical sets of operations (BUA,

B∩A, BA) is used in the proposed algorithm.The number

of test case and fault coverage is listed.Initially the code

coverage is done

3. RESULTS

Proposed technique performance is known by

comparing the existing technique of APFD with the

different time budget values. The main advantage of fault

detection algorithm is to reduce the random selection of

test case by assigning same values to two faults.

Based on assumption, fault detection algorithm takes

all test cases in equal time to their detection of faults.

Based on assumed test suite with known faults, it is not

easy task to predict the performance of test case and

producing the test case is a difficult task as shown in

Fig. 1 the performance of proposed technique is

measured in terms of number of test cases and

efficiency. When the number of test case increase the

efficiency fault detection also increases.

From the Fig. 2 it explains about the comparison of

existing and proposed system is shown, the FD value is

higher than the APFD. Hence FD compare with APFD

the FD is detecting more faults then APFD.

Albert Pravin and Subramaniam Srinivasan / Journal of Computer Science 9 (5): 654-659, 2013

658 Science Publications

JCS

Fig. 1. Number of test cases Vs efficiency

Fig. 2. Comparison of existing and proposed approach

4. DISCUSSION

The performance of proposed technique is

measured in terms of number of test cases and

efficiency. When the number of test case increase the

efficiency fault detection also increases.The

perfomance is calculated by comparing the existing and

the proposed methods .From the Fig. 2 we know that

FD value is higher than the AFD.

5. CONCLUSION

In the prioritized test suite, selection of test cases is

not easy task as the principles of selections are difficult.

Fault detection algorithm is proposed in order to reorder

the test cases on the basis of their efficiency to find the

faults which have least assigned time in test suite. While

forming the prioritized test suite, Fault detection

algorithm minimizes the opportunity of selection of test

cases. After finding the fault, experiments the real test

suites with the open source software.

6. REFERENCES

Ahmed, M.A. and I. Hermadi, 2008. GA-based multiple

paths test data generator. J. Comput. Operat. Res.,

35: 3107-3124. DOI: 10.1016/j.cor.2007.01.012

Badhera, U., G.N. Purohit and D. Biswas, 2012. Test

case prioritization algorithm based upon modified

code coverage in regression testing. Int. J. Soft. Eng.

Applic., 3: 29-37. DOI: 10.5121/ijsea.2012.3603

Kumar, A., S. Gupta, H. Reparia and H. Singh, 2012. An

approach for test case prioritization based upon

varying requirements. Int. J. Comput. Sci. Eng.

Applic., 2: 99-107. DOI: 10.5121/ijcsea.2012.2309

Malhotra, R. and M. Garg, 2011. An adequacy based test

data generation technique using genetic algorithms.

J. Inform. Proc. Syst., 7: 363-384.

Panigrahi, C.R. and R. Mall, 2012. A hybrid regression

test selection technique for object-oriented

programs. Int. J. Soft. Eng. Applic., 6: 17-34.

Pravin, A. and S. Srinivasan, 2012. Evolutionary

algorithm for knowledge based unit testing. CiiT Int.

J. Soft. Eng.

Pravin, A. and S. Srinivasan, 2013. An efficient

algorithm for reducing the test cases which is used

for performing regression testing. Proceedings of the

2nd International Conference on Computational

Techniques and Artifical Intelligence, Mar. 17-18,

Dubai, pp: 194-197.

Rothermel, G.G., M.J. Harrold, J.V. Ronne and C. Hong,

2002. Empirical studies of test-suite reduction.

Software Test. Verificat. Reliab., 12: 219-249. DOI:

10.1002/stvr.256

Shahid, M., S. Ibrahim and M.N. Mahrin, 2011. A study

on test coverage in software testing. Proceedings of

the International Conference on Telecommunication

Technology and Applications, (CSIT’ 11), pp: 5-5.

Albert Pravin and Subramaniam Srinivasan / Journal of Computer Science 9 (5): 654-659, 2013

659 Science Publications

JCS

Singh, A. and K. Parkash, 2012. Fault based analysis to

perform test case prioritization in regression testing.

Int. J. Adv. Res. Comput. Sci. Soft. Eng., 2: 165-

171.

Yoo, S. and M. Harman, 2012. Regression testing

minimization, selection and prioritization: A survey.

Soft. Test. Verificat. Reliab., 22: 67-120. DOI:

10.1002/stv.430

