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ABSTRACT 

Integrating formal verification techniques into the hardware design process provides the means to rigorously 
prove critical properties. However, most automatic verification techniques, such as model checking, are only 
effectively applicable to designs of limited sizes due to the state explosion problem. The Multiway Decision 
Graphs (MDG) method is an efficient method to define hardware designs into more abstract environments; 
however, the MDG model checker (MDG-MC) still suffers from the state explosion problem. Furthermore, all 
the backward reduction algorithms cannot be used in MDG, due to the presence of abstract state variables. In this 
study, an efficient extractor for MDG Hardware Descrpiton Languge (MDG-HDL) is introduced based on static 
(SS-MDG) and conditioned (CS-MDG) program slicing techniques. The techniques can obtain a chaining slice 
for given signals of interest. The main advantages of these techniques are: It has no MDG-HDL coding style 
limitation, it is accurate and it is competent in dealing with various MDG-HDL constructions.  The main 
motivation for introducing this approach is to tackle the state explosion problem of MDG-MC that big MDG-
HDL may cause. We apply our proposed techniques on different MDG-HDL designs and our analyses have 
shown that the proposed reduction techniques resulted in significantly improved performance of the MDG-MC. 
In this study, we present a general idea of program slicing, a discussion of how to slice MDG-HDL programs, 
implementation of the tool and a brief overview of some applications and experimental results. The underlying 
method and the tool based on it need to be empirically evaluated when applying to various applications. 
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1. INTRODUCTION 

Nowadays, designers use Hardware Description 

Languages (HDLs)  ) (Samat et al., 2011) to describe 

hardware designs at different levels, from high level of 

abstraction to low level circuits. One of the main 

advantages of using HDLs is that they can be formally 

verified to ensure the correctness of the designs at the 

different levels. However, as the complexity of modern 

circuit designs increase, verification of these designs has 

become the main bottleneck in the whole design process  

(Wang et al., 2009; Perry and Foster, 2005).  
One of the interesting HDLs is the HDL of Multiway 

Decision Graphs (MDG-HDL)   (Corella et al., 1997; Xu, 
1999; Xu et al., 1998; Zhou et al., 1994; Zhou and 
Boulerice, 1996). The method of Multiway Decision 

Graphs (MDG) is efficient in representing a design with a 
large data-path, where the Reduced Order Binary Decision 
Diagram (ROBDD)   (Aziz et al., 1994; Bryant, 1992) is 
less efficient. The MDG tool applies its own model 
checking (MDG-MC) to formally verify correctness of 
MDG-HDL designs. However, it is known that model 
checking   (Burch et al., 1990; Clarke et al., 1992; 1996; 
Jhala and Majumdar, 2009) suffers from state explosion 
problem due to the fact that as the number of state 
variables in the model being tested increases, the state 
spaces will increase exponentially. 

Therefore, there is a need to reduce the size of MDG-

HDL descriptions so that their equivalent models have 
fewer states. In many cases, it is not even possible to build 

the state transition relation of the design and the need for 

MDG-HDL reduction techniques is even more essential in 
these particular cases. 
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The idea of the reduction technique is as follows: if 
the model M can be reduced to M’, then the property P 
can be checked on the reduced model M’ and, in this 
case, we may avoid the state space explosion problem. 
Consequently, we need to ensure that P verified on M’ 
will also be verified on M. In other words, we need to 
make sure that M|=P ⇔ M’|=P in order to proceed with 
the property checking on the reduced model. 

Many of the most effective verification strategies are 
based on the idea of the extraction of useful verification 
knowledge from HDL description for design parts of 
interest. Program slicing which was originally proposed 
by (Weiser, 1984), is a static program analysis technique 
to extract appropriate fractions of sequential programs 
relevant to an application. These fractions are referred to 
as slices artifacts that preserve exact information about 
the program’s behavior projected onto the relevant 
segments of the original program. These techniques has 
been widely studied and applied to numerous applications 
in software engineering such as debugging (Deng et al., 
2000), testing (Lyle and Gallagher, 1998), maintenance 
(Gallagher and Lyle, 1991) and reuse (Lanubile and 
Visaggio, 1997). The slicing technique presents an 
opportunity to formulate an efficient method to extract a 
part of a design described in an HDL.  

This study describes the theoretical basis of using 
program slicing for dealing with the descriptions of 
designs in a MDG-HDL. We propose a new structure to 
represent the signal dependency between source code’s 
components of the MDG-HDL, the Components 
Dependence Graph (CDG). As a result, we can deal with 
slicing for given signals only with the relevant MDG-
HDL’s components.  To the best of our knowledge, this 
is the first try to use program slicing to extract a part 
from MDG-HDL descriptions. Our method makes 
MDG-MC more efficient in dealing with bigger designs. 
Also, our method can be very helpful in debugging errors 
in a big MDG-HDL source code.   

The contributions of this study are as follows: 

• We proposed and implemented static and 

conditioned slicer techniques for MDG-MC, called 

SS_MDG and CS-MDG 

• Our approaches are fully automatic. In other words, 

our approaches do not need a knowledgeable user to 

be able to generate meaningful slices  

• Our approaches are the first slicer techniques that 

can handle the inter-model signal dependency in 

MDG-based designs 
• We have validated our proposed technique using a 

simple case study. Our results show the remarkable 
efficiency of using our approaches in terms of time, 
size and memory     

The rest of this study is organized as follows. I give 

the related work, a preface the basic background. Alos, I 

describe the introduced Components Dependence Graph 

of MDG-HDL (CDG). Then I discusse conditioned 

slicing approaches for MDG-HDL. Then I describe how 

to apply slicing technique for efficient MDG-MC. 

Finally I show a case study with expermintal results, 

conclusion and future work. 

1.1. Related Work and Backgrounds 

The goal of model reduction techniques is to identify 

substructures of logic, which can be replaced by simpler 

equivalent pieces of logic. In general, there are two 

classes of reduction techniques: automatic techniques 

where the reduction can be done with no manual 

intervention and manual techniques which need some 

degree of manual effort to be able to identify irrelevant 

substructures. In the context of hardware verification, a 

majority of the reduction techniques are applied at the 

gate level (Boolean level) of the hardware design 

description. The following is an overview of the 

reduction techniques used in model checking; it is by no 

means comprehensive, but summarizes the most relevant 

reduction techniques.  

Logic optimization techniques, including Boolean 

minimization and constant propagations, are the basic 

logic minimization algorithms of the reduction 

techniques (Hachtel and Somenzi, 1996; De Michelli, 

1994). Fan-in cone reduction is the class of reduction 

techniques involved in identifying the set of 

environment/model signals that are essential for the 

specification being checked and in neglecting all 

others. The reduction of the independent state 

machines and unreachable states is another category 

of the automatic reduction techniques (FSM 

minimization)  (Aziz et al., 1994). Another class of 

reduction techniques such as symmetry reduction, 

abstraction and compositional verification   can 

significantly reduce state space. However, none of 

these methods are fully automated; therefore, they 

need some manual or full manual effort, or require the 

model to be expressed in an intermediate format. 
Verification approaches are mainly based on the 

extraction of useful verification information from HDLs 
for design component of attention. Various researches 
give a lot of attention to extraction controller from 
datapath  (Moundanos et al., 1998; Ho et al., 1995) and 
verifying the controller part only. Though, the introduced 
techniques are not capable to deal with big designs 
efficiently because the ability of separating controller 
form datapath depends on assigning specific labels 
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manually. This process of labeling hundreds of control 
registers is difficult especially in the case where the 
original designers are not available. 

Slicing technique  (Tip, 1995) is a source to source 

transformation technique and it can be used to extract a 

part of interest from a design described in HDL. 

However, slicing algorithms are developed originally for 

sequential languages. Therefore, they cannot be used 

without modification for slicing HDLs which tolerate 

concurrent constructs.  Slicing technique has been 

extended to HDLs and the technique has effectively been 

applied to hardware verification. The study in  (Hachtel 

and Somenzi, 1996) suggested an approach to use 

program slicing for analyzing VHDL designs. They used 

the VHDL simulation semantic to explain the slice model 

based on a new dependence graph called signal dependence 

to emulate the concurrent execution of HDL, which is an 

inter-process dependence. Clarke et al. (1999) proposed an 

automated slicing technique for VHDL. They introduced 

System Dependence Graphs (SDG) and presented a 

mapping from VHDL to generic graph-reachability 

representation. In the work (Vasudevan et al., 2006), which 

is the work most related to ours, the authors proposed a 

reduction technique that extends the conditioned slicing 

technique to HDLs’ They have developed a technique for 

computing conditioned slicing to HDLs from the 

antecedent of property specifications. 

In view of the fact that there is no pre-image 

operation in MDG due to the presence of abstract 

variables, none of the backward reduction algorithms are 

appropriate for MDG  Consequently, it is desirable to 

apply the reduction techniques at a higher level of 

abstraction. There has been considerable work conducted 

over the years on developing model reduction techniques 

for the MDG-MC in order to solve the state space 

explosion problem (Abed et al., 2007; Al-Sammane et al., 

2007; Hou and Cerny, 2000). The work in (Hou and 

Cerny, 2000) introduces a model reduction technique 

based on property dependent state variables of a property 

P that needs to be verified. The authors proposed a 

technique based on a heuristic iterative reduction 

algorithm. Moreover, the authors of (Al-Sammane et al., 

2007) proposed another idea to construct a reduced 

MDG model for a circuit described in a more abstract 

level. By using a high level symbolic simulation and 

by running appropriate symbolic simulation patterns, 

the reduced model can be obtained from a circuit 

described in VHDL. Also, in (Abed et al., 2007), they 

used a rewriting based SAT solver to prune the 

transition relation Tr of the circuits in order to 

produce a smaller one that is fed to the MDG-MC. 

Compared to other existing approaches our slicing 
techniques have several advantages such as: (a) our 
proposed techniques have no limitation on the MDG-HDL 
coding style. (b) our method is experimentally proven to be 
able to extract the part of MDG-HDL description that only 
contains the relevant components to the slicing criteria and 
that of course improve the efficiency of the verification 
process. (c) our techniques are fully automatic without user 
intervention. (d) it is known that the RTL design is the 
golden model for the low level design processing. 
Consequently, dealing with RTL design makes our 
proposed technique more efficient than other techniques 
that deal with designs in other levels. (e) Finally, our 
technique is intrinsically simpler than other MDG model 
reduction techniques and it lends itself easily to automation. 

  Flowing I give some definitions that are important to 
understand the basic concept of slicing technique and to 
explain our proposed techniques. The following 
definitions are derived from previous research in 
program slicing (Weiser, 1984; Samat et al., 2011; Tip, 
1995). Interested researchers may check the given papers 
for detailed descriptions. 

Definition 1 

Assume that Prg is a sequential program, i represents 
a statement, ∑ is the variables set and V represents a 
subset of the variables in Prg. Let N be the set of nodes 
of the Control Flow Graph (CFG) of Prg On the CFG, i 
represent a nod. The slicing criterion C can be defined as 
a pair of (i, V) such that i∈N and V∈∑.  

Suppose that we have a slicing criterion C = (I, V), 
we can say that a set of statements Is affect the values of 
V at i, when Is computes a subset of V that is used in i. 
In the same way, Is is said to be affected by the values of 
V at i, when a subset of V that is defined at i computes 
the variables used in Is. 

Definition 2 

 Let S be a slice of Prg based on C = (I,V). We can 
say that S represents an executable subset of Prg that 
enclose all Is that possibly will affect or will be affected 
by the values of V at i. 

Definition 3 

 Let n be a node in CFG of rg, D(n) be the set of 
variables that represent the left-part of an assignment 
defined at n. U (n) be the set of variables that 
represent the right-part of an assignment statement 
used at n. SUCC (n) be the set of successors of a node 
n in the CFG of the Prg. The superscript 0 show that 
this set of variables is immediately relevant. 
Consequently, computing the variables 0

cR (n)  that are 
immediately relevant to C = (i,V) can be done by the 
following formula: 
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0 0

c c

0

c

R (n) {v V | n i} {U(n) | D(n) R

(SUCC(n) }) {R (SUCC(n)) D(n))}

= ∈ = ∪ ∩

≠ φ ∪ −
 

 

The search to find the immediate relevant variables to 
0

cR (n)  starts from node i and goes backward. The 

primary subset {v ∈V|n = i}of the above formula is the 

base case; the following subset 
0

c{U(n) | D(n) R (SUCC(n) )}∩ ≠ φ  marks the variables used 

to assign values to other relevant variables. The third 

subset 0

c{R (SUCC(n)) D(n))}−  removes a relevant 

variable for which all the immediately relevant variables 

have been found. 

Definition 4 

 Let 0

cS  be the statements that are included in the 

slice. 0

cS  can be computed by the following formula: 

 
0

cS {n N | D(n) (SUCC(N)) }= ∈ ∩ = φ  

Definition 5 

 Let 0

cB  the set of conditional statements which 

control the execution of the statements in 
0

cS . INFL(b) be 

the set of statements based on the condition b.  0

cB  can 

be computed as follows: 
 

0 0

c cB (b N | INFL(B) S )= ∈ ∩ ≠ φ  

 
Computing the full slice Sc that can be extracted from 

Prg can be done recursively based on the set of variables 

and statements that have either direct or indirect 

influence on V. Starting from zero, the superscripts 

define the level of recursion: 
 

i 1 i 0

c c b,u (b))R (n) R (n) R (n)+ = ∪  

 
i 1 i 1 i

c c cS (n) {n N | D(n) R (SUCC(n)) } B+ += ∈ ∩ ≠ φ ∪  

 
i 1 I 1

c cB {b N | INFL(B) s }+ += ∈ ∩ ≠ φ  

 
The termination condition for the above formulas can 

be defined as: 
 

f 1

c cS S +=  

 
where, f is an iteration step such that: 

 
f 1 f

c c cn N : R (n) R (n) R (n)+∀ ∈ = =  

1.2. Components Dependence Graph of MDG-

HDL (CDG) 

The MDG-HDL module is normally a non-halting 

program with several communicating components. Those 

components are executed concurrently. Also, the 

components communicate with other components via 

signals that are shared between them. The fundamental 

definitions that given  for slicing sequential programs can 

be trivially extended to apply slicing techniques on a MDG-

HDL source code. But, dealing with concurrent components 

is not the same as dealing with statement in procedures in 

sequential programs. Every component in MDG-HDL is 

not called explicitly, but is activated by appropriate changes 

in signal values in the inputs outputs sensitivity list of the 

component. These changes may be triggered by other 

components that being executed concurrently. To include 

this inter-components communication, a notion of 

Components Dependency is introduced.  

I introduce in following some definitions for CDG.  

Definition 6 

 Let IN (comp) the set of inputs of component 
(comp), OUT (comp) the set of outputs of component 
(comp) and IOL (comp) be the inputs/outputs list of 
comp. Let ST (Comp) be a set of statements in comp. 

 
IOL(comp) {IN(comp) OUT(comp)}= ∪  

Definition 7 

 Let M be the MDG-HDL model and CDGM be its 

components Dependency Graph. CDGM (Ncomps, E,∑M, 

INcomp, OUTcomp IM, OM), where Ncomps is the set of nodes 

of CDGM, which defines the components in M.E is the 

set of edges of CDGM. ∑M is the signals set in M. IM, OM  

are two sets of particular nodes, where IM⊆∑M is the set 

of primary inputs of M, OM⊆∑M is the set of primary 

outputs of M.  

I treat all MDG-HDL components structures 

including functions and multiplexers as simple 
statements and can get the sets of IOL (comp) for every 
component from their declarations, which are the output 
and input ports, respectively. 

Following I present an illustrative example, a simple 
alarm digital circuit, to explain the idea behind our 
proposed CDG and how it is used to extract a part from 
the MDG-HDL.  Figure 1 demonstrates a simple MDG-
HDL example and Fig. 2 demonstrates its CDG. 
According to Fig. 2, I can explain the definition 7 as 
follows: The set: 
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Fig. 1. MDG-HDL source code 
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Fig. 2. CDG of theMDG-HDL in Fig. 1 

 

compsN {(A _ B),(G _ B),(G _ E),

(G _ G),(G _ F),(G _ C),(G _ D)}

=
 

 
 And the data in the set E are edges; for instance 

{{A_B}→(G_E),{(G_B) →(G_E)} {(G_B) →(G_E)} 
and so forth:   

• ∑M = {(window 1), (window 2), (window 5) 

• (window 6), (door 1), (door 2), (A_out), (B_out) 

• (C_out), (D_out), (E_out), (F_out), (Gout)} 

• INcomp= {(G_A)→{window 1, window 2} 

• OUTcomp = {(G_A)→ {(A_out)} 

• IM = {(window 1), (window 2), (window 5) 

• (window 6), (door 1), (door 2)} 

• OM = {Gout} 
 

1.3. Conditioned Slicing Approaches for MDG-

HDL 

Based on the introduced detentions, we can conclude 

that CDGM can be applied in same way with minor 

modifications to slice MDG-HDL.  

Definition 8 

 Let CFGcomps be a set of control flow graphs of 
MDG-HDL components CFGcomp⊆CFGcomps.  Let C = 
(VTC, STO, IM) is a slicing criteria where, VTc is the 
assign constant variables that will use as a condition for 
slcing in every CFGcomp, STO is the slicing target output.  
VTC ⊆ IM and STO ⊆ OM.  

 A chaining slice on a chaining slicing criterion C = 

(VTC, STO, IM), represented by ChS, is an executable 

subset of M including all the component statements 

which contribute either directly or indirectly to the value 

of  ∑M starting from the STO. In order to apply slicing 

on the MDG-HDL which has concurrent structures, we 

need to extend the original Weiser algorithm based on 

CDGM and CFGcomps. Our proposed method consists of 

three main computing steps: (1) Transforming the slicing 

criteria to conventional slicing criteria. (2) Apply slicing 

on CDGM to find all relevant components and mark each 

reached component as Relevant Components (RC).  RC 

⊆RCS, where RCS is Relevant Components Set. (3) The 

last step is to slice in the set of extracted components 

statements using CFGcomps. 
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Fig. 3. Reduced CDG of the MDG-HDL for output (A_out) 
 

 
 
Fig. 4. MDG-HDL source code 

Following  I am going to discuss the three steps of 

our proposed technique. I make one realistic assumption 

on the MDG-HDL as follows: All the variables defined 

in MDG-HDL have to be declared as inputs and 

outputs. This assumption makes it easy to handle all 

MDG-HDL’s components as simple sequential 

statements. Also, it ensures that our technique will not 

lose generality.  

1.4. Slicing the CDGM and CFGcomps 

The slicing criterion that we use in our proposed 

technique differs from the usual sequential slicing 

criterion. Our proposed slicing criterion does not include 

the statements where the criterion variables are defined 

and where the backward slicing started. Consequently, 

we have to transform our criterion into conventional 

form. To do so, we need first to specify  STO and then 

search through the CDGM  to find the set of components 

nodes and mark it as relevant RCS, where RCS = 

{comp|comp∈Ncomps) AND STO∈∑M}. Once all the 

RCS are found, we need to deal with every comp 

included in RCS individually based on its CFGcomp and 

search in its If-Then-Else statements. We slice away the 

statement where the condition value of VTC is not true. 

As a result of the slicing process, all the signals between 

components, the number components including flip flops 

will be reduced.  

The method used to find comps based on CFGcomps is 

a breadth first searching algorithm.  It first marks all the 

nodes which have out edges pointing to the criterion 

component node comp. The set of nodes found in this 

step is represented by Precomp. Then, for every comp in 

Precomp, repeat the same process. The termination 

conditions are: (a) when reach primary inputs. (b) When 

reach previous reached component. (c) When reach 

conditioned signals. Figure 3 and 4 show the result after 

applying the slicing process on the abovemetnioed example. 

1.5. Slicing for Efficient MDG-MC (CS-MDG) 

Even though MDG-HDL slicing approaches have 

different application such debugging and fixing big 

MDG-HDL source code, our main aim to proposed this 

approaches is to tackle the state space explosion problem 

of MDG-MC that big MDG-HDL may cause. Therefore, 

following we are going to explain how to utilize these 

approaches to address the state explosion problem. 

Basically, in MDG-MC, digital designs under 

verification are modeled by Abstract descriptions of 

State Machines (ASMs), where both sets of states and 

relations are encoded by MDGs. The specification 
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language called LMDG is used to express the properties to be 

verified in the MDG-MC. The approach to model checking 

is to build automatically additional ASMs that represent the 

property to be verified, connect the two ASMs to construct 

one ASM and then check a simpler property (flag) on the 

composite machine.  I am not going to go in detail in this 

issue since it has been explained in detail in pervious MDG 

research papers. What I want to emphasize that this 

composite circuit is simply an MDG-HDL code and we can 

apply our proposed approaches on it with minor 

modification on the slicing criteria such that:  

 

antce MC (V ,flag, I )=  

 

Figure 5 shows the structure of the MDG-MC, which 

includes the following modules: 

• MDG based model (MDG-HDL) 

• Desired property which is the specification being 

checked (In the LMDG specification language).( the 

form of property A((Next_let_formula) U 

(Next_let_formula) is not consider in our proposed 

technique) 

• Apl_parser (which takes the input files, the MDG 

based model and the desired property, to construct a 

composite circuit. This is done as follows 

• The property P is transferred into a simplified 

property (circuit). For example, the property 

AG(apl_formula) is transferred into a simplified 

property AG (flag = 1) 

• The simplified property (circuit) is plugged with the 

original model M. This is what we call a composite 

circuit 

• Property checking step is to verifies the property 

validation and return (fail/pass) as a result 

1.6. Illustrative Example 

Figure 6 shows an example of a composite circuit. 

The highlighted part of the circuit is the part that 

represents ASM of the property: 

 

( )

( )

AG(LET(v reg2)IN x 0 & &reg1 0

X(reg2 finc(v)) )

= == == →

==
 

 

While the other part is the part that represents the 

circuit needs be verified (the model M).  So, it clear that 

dealing with the code describing this circuit is just 

basically dealing with normal MDG-HDL. We need only 

to consider that the slicing target output is defined as 

(flag) and the VTC is defined as Vantce in this case. Figure 

7 demonstrate the CFGCM of the composite circuit, where 

CM means composite model. Figure 8 shows the 

reduced CDGCM. 

1.7. MDG-HDL Slicing Algorithm 

 Basically, the MDG-HDL algorithm obtains the 

MDG-HDL source code and the slicing criteria as inputs, 

then iterates over all the criterion variables to compute 

the slice. The concluding slice for the criterion is the 

union of all the slices for the criterion variables. As 

we mentioned before, the termination condition is 

when slicing in CDGM reached all the relevant 

components. Figure 9 shows the schematic diagram 

of our proposed techniques. Figure 10 shows our 

MDG-HDL slicing algorithm.  

1.8. A Case Study 

Now we are going to use the same example in Fig. 6 

with some modifications such as defining the entire 

signal in the circuit in Boolean level. The reason for that 

is to compare our work with previous work in  (Hou and 

Cerny, 2000). 
 

 
 
Fig. 5. MDG-MC 
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Fig. 6. Illustrative example 
 

 
 

Fig. 7. CDGCM of circuit in Fig. 5 
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Fig. 8. Reduced CDGCM of circuit in Fig. 6 
 

 

 
 

Fig. 9. Schematic diagram of slicing techniques 
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Table 1. Experimental results by using MDG-MC 

   Without reduction  Iterative reduction  Slicing technique 

 Reg  ----------------------------------------- -------------------------------- ---------------------------------------- 

 --------------------- State Time Mem State Time Mem State Time Mem 

P No Width vars (sec) (MB) vars (sec) (MB) vars (sec) (MB) 

P1 2 8 20 2.42 2.05 11 2.410 1.72 11 0.87 1.56 

 212 28 3.17 2.87 15 3.730 2.41 15 0.93 1.64 

 216 36 4.73 3.94 19 5.600 3.24 19 1.16 1.73 

 220 N.T N.T N.T 23 10.500 4.77 23 1.86 1.96 

 228 N.T N.T N.T 31 19.600 8.54 31 2.14 2.11 

 1228 N.T N.T N.T 31 3863.600 517.80 31 2.14 2.11 

P2 2 8 20 1.77 1.9 4 1.860 1.36 4 0.16 0.98 

 212 28 2.58 2.59 4 2.320 1.80 4 0.16 0.98 

 216 36 3.66 2.46 4 3.220 2.30 4 0.16 0.98 

 220 N.T N.T N.T 4 5.270 3.19 4 0.16 0.98 

 228 N.T N.T N.T 4 11.510 5.81 4 0.16 0.98 

 1228 N.T N.T N.T 4 4006.600 507.30 4 0.16 0.98 

 

 
 

Fig. 10. Conditioned slicing algorithm 
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The structure of the circuit is somewhat familiar in 

data processing circuits. The suitable context (such as set 

of memory data, registers) is selected based on the 

control signals, then dealing out with the selected context 

and modified context is stored in the same memory 

element. This circuit is also used somewhat in 

telecommunication circuits in which channel or link 

number select the matching registers to be updated. The 

structure of this circuit can be simply extended and 

modified to build larger circuit by adding more registers 

and increasing the size of the registers.  

In our care, we have defined all the signals in the 

circuit in Boolean level. The registers are represented as 

number of bits and every bit is treated as one Boolean 

signal. The properties to be verified are as follows: 
 

• P1: if x = 0, Reg1= 0 and the value of Reg2 = 0 in th 

current clock cycle, then the value of Reg2 will be 1 

in the next clock cycle 

• P2: if x = 0, Reg1 = 0 and the value of Reg2[0] = 0 

in th current clock cycle, then the value of Reg2[0] = 

0  will be 1 in the next clock cycle 

 

The two properties were verified on the model with 

different register numbers and registers sizes. We 

compare our result with previous research work results. 

Table 1 illustrates our experimental results by using 

MDG-MC. Base on the results we can conclude that our 

proposed technique has considerably improve the 

efficiency of MDG-MC. The (N.T) in the table stand for 

Not Terminate. 

2. CONCLUSION 

To alleviate the state explosion problem in the MDG 

model checking tool, we have proposed a reduction 

techniques called SS_MDG and CS-MDG. The goal of 

our technique is to construct a reduced MDG-HDL 

source code using the Composite Circuit Dependency 

Graph (CDGM) and CFGcomps. 

Our technique consists of two phases:  In the first 

phase of the reduction based on Static Slicing (SS-MDG), 

our technique extracts the relevant components that affect 

the flag using the CDGM. Then, in the second phase, the 

reduction that is based on the Conditioned Slicing (CS-

MDG) is applied using the information in the property 

antecedent and CFGcompsCFGcomps to reduce the 

components’ statements and eliminate the irrelevant 

statements where the condition Vantce is not true.  

We have presented the essential foundation of how to 
use slicing techniques to extract a part of MDG-HDL.  
The technique was successfully implemented as a 
prototype tool and effectively used for improving 
verification of design in MDG-HDL. 

Our analyses have shown that the proposed reduction 
technique resulted in significantly improved the 
performance of the MDG model checker. 

In the future, we aim to apply our technique to more 

complex hardware designs in order to identify its 

strengths and limits.  
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