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ABSTRACT 

Weeds are among the most significant and costly environmental threats in Australian agriculture. Weeds 
compete with crop plants for moisture, nutrients and sunlight and can have a detrimental impact on crop 
yields and quality if uncontrolled. The distribution, size, density and species of the weeds are often 
heterogeneous in the cropping land. Instead of uniformly spray the same type of herbicide to the whole farm 
land, selective spray can reduce the herbicide usage therefore can reduce the serious problems of herbicide 
resistance, soil damage and food safety. This study describes a weed mapping method which could be used 
for broadacre no-tillage fallow weed management. The weed maps have the potential to be used as powerful 
herbicide prescription maps for spot spray. The weed mapping is realized by the machine vision 
technologies which including image acquisition, image stitching and photomosaic processing. The sampling 
points are continuous and the interpolation methods are used at the minimum levels. The experiment result 
shows that this weed mapping method can map weed under limited conditions. 
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1. INTRODUCTION 

Weeds often grow in aggregated patches of varying 
size or in stripes along the field borders and along the 
direction of cultivation. It has been recognized widely 
that there are financial and environmental benefits from 
spraying only weed patches, rather than the entire fields 
or by adjusting application rates according to weed 
density (Cepl and Kasal, 2010; Gerhards, 2010; Rew and 
Cousens, 2001; Sharif and Mollick, 2013). Land 
managers should set weed management priorities before 
taking the action of the weed control. The weed control 
plan can be made based on the information of the weeds 
including the location, density, species and size. 

Weed mapping is a valuable tool for optimizing 
resource utilization in the management of weed 
control efforts. 

Weed map can be used as a powerful tool to help 
understanding the distribution of weeds and monitoring 
the spread of established weeds and the effectiveness of 
control programs (Gutjahr and Gerhards, 2010; 
Slaughter et al., 2008). Weed mapping could also be 
used to create a prescription map for a spray operation 
(Greg, 2001). Mapping weed distribution prior to a 
weed control program and then mapping in the 
subsequent years will provide an indication of the 
program’s effectiveness. 

More than half of the Australian cropping area is 
zero-tillage or no-tillage (Edwards et al., 2012) and the 
most commonly used weed control method in no-tillage 
fallow land is to uniformly spray the same type of 
herbicide regardless the spatial population of the weeds 
(Beckie and Tardif, 2012). Using weed mapping method 
to realize site-specific weed manage and selective spray 



Liu, H. et al. / Journal of Computer Science 9 (12): 1803-1821, 2013 

 
1804 Science Publications

 JCS 

in the no-tillage fallow is significant. However the tasks 
of collecting the necessary data and making weed maps 
to meet weed management objectives while remaining 
accurate and cost effective are quite challenging. There 
are many weed mapping methods have been developed 
in the previous researches, however it still lacks a proper 
weed mapping approach which can accurately and 
efficiently map weeds for the weed management in the 
broadacre no-tillage cropping lands.  

The objective of the proposed research is to 
develop a proximal Machine Vision System (MVS) 
for off-season weed mapping in broadacre no-tillage 
fallows. The developed weed maps would provide 
accurate density and distribution information of the 
weeds in the field therefore the weed maps could be 
used for more efficient weed control management at 
reduced herbicide usage. The structure of this study is 
organized as following: Section 2 reviews and 
compares the existing weed mapping methods. Section 
3 introduces the material and methods used in this 
proposed research. The weed mapping methods 
include three aspects which are image acquisition, 
image stitching and photomosaic processing to 
provide the necessary information on the weed maps. 
Section 4 discusses the result of the proposed weed 
mapping method and section 5 presents the conclusion 
and future works of this research.  

1.1. Literature Review of the Weed Mapping 
Methods 

Weed mapping includes two aspects: data 
collection and data processing. Data collection is a 
series of works including taking photos of weeds and 
recording weed species, growing stage and position. 
Data processing involves the works of processing the 
collected data and presenting the processed data in the 
manner of weed maps. 

Traditionally, data collection or called weed sampling 
was done manually, using random sampling techniques 
by a weed expert walking through a field. The experts 
were equipped with cameras and GPS and the weed maps 
were made by inputting the collected data into Geographic 
Information System (GIS). The manual approach is labor 
intensive and expensive therefore the measurements are 
reduced to a minimum which may lead to an over or under 
estimation of weed competition (Horstmeier, 1997; 
Nashiki et al., 2006; Rew and Cousens, 2001). Recently, 
many precise and powerful weed mapping techniques to 

automatically and continuously determine in-field 
variation of weed seedling populations were developed. 
From the view of the data collection platforms, the weed 
mapping methods can be categorized into two types: 
remote weed sensing and ground based weed sensing or 
called proximal weed sensing. 

The remote sensed images can be acquired by 
aircraft, UAV (unmanned aerial vehicle) and satellite 
platforms (Samseemoung et al., 2012; Swanson, 2010; 
Thorp and Tian, 2004). One of the main advantages of 
remote sensing is the speed at which weed infestation 
maps can be generated, while remote sensing have the 
limitation to capture higher resolution image for 
detailed data analysis. The typical weed sensors for 
remote sensing are multi-spectral meters or hyper-
spectral meters and CCD cameras. The resolution of the 
images captured at the different platforms from 
satellites to UAV is 4 to 1 m approximately at the 
altitude of 680 to 1 km. Some smaller size and low 
altitude UAV can grab images at the altitude of 10 to 20 
m with the resolution of 5 to 10 mm (Himstedt et al., 
2012;  Lopez-Granados, 2011; Samseemoung et al., 
2012; Sui et al., 2008). Another disadvantage of remote 
sensing is that the platforms such as satellite or aircraft 
are heavily dependent on the weather conditions (cloud 
cover, atmospheric distortion). The timing window of 
data acquisition and delivery to the end users could be a 
few days or weeks (Lopez-Granados, 2011). 

A finer resolution of the sensor, however, is required 
to detect lower density weed population and smaller size 
weed seedling. Therefore, many proximal weed sensing 
method were developed to detect weeds in the near 
range. Tang (2002) developed a MVS to map weeds and 
crops using a 3-CCD camera. The camera was mounted 
at a height of 3.35m with the resolution of 2×2 mm and 
the FOV 1.3×1 m. The images were taken with the 
chemical sprayer moving forward at the speed of 0.6 km 
h−1. Gerhards and Christensen (2003) used three digital 
bi-spectral cold mirror cameras mounted in the front of 
the sprayer to detect and mapping weeds. The images 
were taken every 2 meters when the sprayer was moving 
at a speed of 7-8 km h−1. They built up herbicide treatment 
map based on the collected data and the weed mapping 
also helps to understand weed-crop interactions and 
population dynamics of weed species through more than 
ten years study (Gerhards, 2010; Gerhards et al., 1993; 
Gerhards and Oebel, 2006). A proximal weed mapping 
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system was developed by Sui et al. (2008) to measure 
weed intensity and distribution in a cotton field. The 
system includes WeedSeeker PhD600 sensors (Sui et al., 
2008) and a GPS receiver with the dynamic position 
accuracy of 0.1-0.3 m. The travel speed of the sprayer 
was about 9.7 km h−1 and data were collected every 
second. The weed mapping system was evaluated in a 
commercial cotton field over 2 years and the test result 
showed that this weed mapping system had provided a 
useful tool for weed control project. Wiles (2011) 
developed a software to quantify weed cover in fallow 
fields with digital images. The camera was mounted on 
a vehicle with 1.2 m above the ground to collect images 
with the resolution of 2048×1360 pixels. The driving 
speed was 8-11 km h−1 and images were acquired every 
4s so images represented approximately 1.0 square 
meter and were taken 8 to 6 meters apart. GPS 
coordinates were collected continuously at 2 sec 
intervals while images were collected. A map can be 
generated from 1000 images and 5000 GPS coordinates 
in 30 min. Weed cover was estimated with 90 to 96% 
accuracy for images. Zhang et al. (2012) investigated 
the effects of the weed seasonal variability by ground-
level weed sensing and mapping using hyperspectral 
images in the visible and NIR range (384-410 nm). 
With the image acquisition rate set at 7 frames sec−1 
and moving speed of 36 mm sec−1, the camera was set 
up to have the field of view 2.5 mm (in the travel 
direction) by 108mm (across the seed line) at a height 
of 203 mm. The camera scene was illuminated by a 
controlled light source. The disputed regions by 
various weed species were presented as weed map. 
Silva Junior et al. (2012) developed a machine vision 
system to map the weed density in a 0.8 hectare 
experimental field. They used both colour and near 
infrared cameras with the resolution of 480×640 
pixels and have the field of view 4.9×6.5 m. Images 
were taken every 6.5 m approximately. 

The platforms and the sensors play the important 
role for weed mapping. Table 1 makes a summary of 
the commonly used platforms and sensors for weed 
mapping in the recent researches. The platforms and 
the sensors decide the quality of the data and the 
resolution of the weed map. Resolution directly 
decides the quality of the weed mapping. Studies have 
demonstrated that the potential infestation or target 
area decreases greatly as the resolution becomes finer. 
Wallinga et al. (1998) estimated the herbicide usage 

of an idealized patch sprayer, which could detect and 
spray all units of area containing G. aparine plants. At a 
resolution of 4 m 85% of the field would be sprayed, at 
1 m resolution only 41% would be sprayed, while at 0.5 
m resolution only 26% needed herbicide application.  

Beside the platforms and the sensors, another 
important factor which determines the accuracy of the 
weed mapping is the interval of the sampling points 
and the interpolation methods. No matter what type of 
weed mapping methods, to collect continuous and 
precise data is one of the most challenging issues. In 
most studies, discrete weed mapping was applied in a 
regular sampling grid. The field between the grid 
points may remain unsampled and interpolation 
techniques are used to estimate presence or density at 
the unsampled area. The assumption is made that in the 
broad-scale trends, the widely spaced sampling points 
are continued between sample locations. Interpolation 
methods used for weed mapping include linear 
triangulation, polynomial and kriging interpolation 
(Rew and Cousens, 2001). While the interpolation is a 
tradeoff between the accuracy of the weed map and the 
speed of data collection, the patches of weeds occurring 
between sampling points are often missed and even the 
most advanced mathematical interpolation methods will 
not be able to compensate for this. 

In summary of the literature review of the weed 
mapping method, there are wide range of weed 
mapping methods have been developed and the type 
of platforms, weed sensors, resolution, sampling speed 
and sampling interval and the interpolation method are 
quite different. The weed mapping methods chosen to 
create the map are often be influenced by the end 
uses, the target species and farming system. There is a 
tradeoff between the accuracy, the speed and the cost 
when choosing the weed mapping method. For the 
weed management of the no-tillage broadacre 
cropping land, it lacks suitable weed mapping 
methods which can accurately and efficiently provide 
weed distribution information in the fields. The gaps 
exist on three aspects. Firstly, it lacks of proper weed 
sensing and data processing methods to distinguish the 
weeds from the no-tillage background. Secondly, the 
sampling speed is too slow to meet the requirements 
of the broadacre farming fields. At last, the resolution 
of the data is not fine enough to provide necessary 
detail information of the weeds. This proposed 
research focuses on fill the gaps in the three aspects. 
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Table 1. Platforms and sensors for weed mapping 
Plat form Speed Sensors type Wave band (nm) Altitude Spatial resolution 
Satellite N/A Multi-spectral 450-900 451-680 km 1.64-4 m 
Plane N/A Hyper-spectral 1.9-300 1.5-3.8 km 1-4 m 
Plane N/A Multi-spectral 400-900 1.3-1.5 km 0.3 m 
UAV N/A Multi-spectral 490-800 0.15 km 0.15 m 
UAV N/A CCD camera 440-700 10 to 20 m 5 to 10 mm 
Ground vehicle 0.6km h−1 CCD camera 440-700 3.35 m  2 mm 
Ground vehicle 8 km h−1 CCD camera 440-700 1 m 1-2 mm 
Ground vehicle 9.7 km h−1 optoelectronic Active light  0.5 to 1 m Non-imaging 
  sensors 700 to 1500   
Ground vehicle 36 mm sec−1 Multi-spectral 380-810 0.5 m 0.31 mm 
Note: 1 to 4: (Himstedt et al., 2012; LOPez-Granados, 2011; Sui et al., 2008), 5: (Samseemoung et al., 2012), 6: (Tang, 2002), 7: 
(Gerhards, 2010), 8: (Sui et al., 2008), 9: (Zhang et al., 2012) 
 

2. MATERIALS AND METHODS 

The objective of the proposed project is to develop a 
proximal Machine Vision System (MVS) for off-season 
weed mapping in broadacre no-tillage fallows. In the no-
tillage cropping land, beside the soil, the background 
also includes plenty of straws, gravels and other dry 
plants. The authors studied most of the proximal weed 
sensing method using machine vision system and the 
result shows that there are no green plant segmentation 
methods, which have been developed in the previous 
researches, are suitable for the detection of green plants 
in the no-tillage farming environment under the natural 
sun light conditions. A new green plant image 
segmentation method called Hue-NIR-R method has 
been developed by the authors in the previous works. 
Hue-NIR-R method uses the combination of the indices 
of hue in HSI colour space, red in RGB colour space and 
near infrared to separate the green plants from the 
background and the experiments shows that this method 
is more suitable for the no-tillage background. For the 
detail information of the Hue-NIR-R method for green 
plant segmentation, the readers can refer the publication 
of Liu et al. (2013). At the current stage, the specific 
objectives include three aspects: (1) Develop an image 
acquisition method which is suitable for the broadacre 
cropping land with no-tillage background and different 
sunlight conditions. The speed of the image acquisition 
should be quick enough to meet the requirements of the 
broadcare cropping land. (2) Develop an image stitching 
method to stitch the collected images to high resolution 
photomosaic which can give overall view of the cropping 
lands. (3) Develop an image analytical method to process 
and analyse the high resolution photomosaic and present 
the necessary information of weed on the weed map. 
This section presents the weed mapping methods of the 
three aspects in detail.  

2.1. Image Acquisition 

In the previous works of Liu et al. (2013), the cold 
mirror system was used as weed sensor for image 
acquisition. With the purpose of making the MVS work 
reliably in the natural farming environment, the cold 
mirror system was replaced by the JAI AD-130GE 
camera. AD-130GE is a prism-based 2-CCD progressive 
area scan camera capable of simultaneously capturing 
visible and near-infrared light spectrums through the 
same optical path using two individual channels (Fig. 
1). The first channel has a Bayer mosaic colour image 
that captures visible light at 400 to 700 nm, while the 
second channel has a monochrome sensor for capturing 
near infrared light at 750 to 1000 nm. The images 
from the two channels are pairwise registered. The 
camera can capture images at the rate of 31 frames per 
second with the full resolution of 1296 (h) ×966 (v). 
The lens LM4NC3 is a wide angle lens with the angle 
of view 64.5×49.2 degree. The focal length is 4 mm 
and the iris range is 1.8 to 16. In natural outdoor 
lighting conditions, direct sunlight could cause plant 
leaves with glaring surfaces thus causing saturated 
pixels (Tang, 2002). A polarizing filter was used to 
reduce part of the glare. The AD-130GE camera and a 
notebook were connected to a Gigbit switch through 
the Ethernet cables. JAI SDK software combined with 
Matlab 2012b image acquisition tool box were used 
for data collection (Fig. 2). 

The images were collected on 20 May, 2013 and 01 
Aug, 2013 in Roseworthy test field in South Australia and 
both of the days were sunny. The camera was mounted on 
a frame which was fixed on the top of a vehicle as shown 
in Fig. 2 left. The height of the camera was place at 2.35m 
and lens was orthotropic to the ground. The field of Field 
Of View (FOV) was 2965×2151 mm and the pixel 
resolution was 2.29×2.23 mm. 
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Fig. 1. JAI AD-130 camera spectrum response (JAI, 2012) 
 

 
 

 
 

Fig. 2. AD-13GE mounted on the frame and the FOV 
 

The parameters need to be adjusted during image 
acquisition are focus and exposure time. Focus need to 
be adjusted manually before the starting of the image 
acquisition. AD-130GE supports the exposure time 
from 11.49 us to 31760us and it support auto exposure 
functions. For the purpose of check the image 

response to different exposure time and iris, the 
exposure time was adjusted manually during image 
acquisition depending on the weather condition. 
However the parameters would be automatically 
adjustable once the research scheme is fully 
developed. 
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The image acquisition speed was set to 5 and 10 
frames sec−1 at different tests. For the purpose of image 
stitching, it needs approximately half of the adjacent 
frames to be overlapped from each other therefore the 
maximum image acquisition speed at 10 Hz is 38.7 km 
h−1. The vehicle was driven at the speed of 5, 10 and 30 
km h−1 to test the image quality. At 30 km h−1 the image 
quality decreases slightly with blur. The captured visible 
videos and near infrared videos were saved on hard disk 
in uncompressed AVI format for further processing.  

2.2. Image Processing to Make Weed Maps 

2.2.1. Introduction of Image Registration and 
Image Stitching 

Tang (2002) and Tang and Tian (2008) developed a 
MVS to measure the plant spacing uniformity by using 
the image stitching method and this method indicate 
the possibility that image stitching method could be 
used for mapping weeds in an accurate way. There are 
wide image stitching methods developed in the recent 
years and it is necessary to make an introduction of 
the image stitching technology. However this topic is 
too big to be covered in this study therefore this study 
provides only a brief review of the image registration 
and image stitching technologies. 

Using the image stitching technologies, images can 
be ‘stitched’ into a seamless photomosaic which can be 
used to produce digital maps, satellite photos and 
beautiful ultra wide angle panoramas. Based on the 
review, the procedures of the image stitching algorithm 
are summarized to five steps: (1) Feature detection and 
description; Salient and distinctive objects (closed-
boundary regions, edges, contours, line intersections, 
corners) are manually or automatically detected. The 
information of the neighbourhood of the detected feature 
points are described as the form of descriptors which 
make the feature points distinctive from each other. (2) 
Feature matching; the pairwise correspondence between 
the two set of points using the descriptors of the features 
will be determined in this step. (3) Image transform 
model estimation; The type and parameters of the so-
called mapping functions, aligning the target image with 
the reference image, are estimated. The parameters of the 
mapping functions are computed by means of the 
established feature correspondence in step 2. (4) Image 
transformation; the reference image and target image are 
transformed into a same coordinate by the means of the 
mapping functions. (5) Image interpolation and image 
blending; the values of the pixels in the stitched image are 

estimated by using the value of the pixels in the reference 
image and target image. 

Image registration is the core task of image stitching 
algorithm and it covers 1 to 4 steps of image stitching 
algorithm. Image registration is a method of aligning two 
images into the same coordinate system, so that the 
aligned images can be directly compared, combined and 
analysed. Image data may be multiple photographs, data 
from different sensors, from different times, or from 
different viewpoints. One of the images is referred to as 
the reference image or the base image and another image 
is referred to as the target image or the sensed image 
(Brown, 1992; Goshtasby, 2005). 

Image registration algorithms can be classified into 
feature-based and area-based (Goshtasby, 2005). Feature-
based methods establish a correspondence between a 
number of salient features such as closed-boundary 
regions, edges, contours, line intersections, corners. 
Knowing the correspondence between a number of 
salient features in images, a transformation is then 
determined to map the target image to the reference 
images, thereby establishing point by point 
correspondence between the reference and target images 
(Goshtasby, 2005; Myronenko and Song, 2010). Feature-
based matching methods are typically applied when the 
local structural information is more significant than the 
information carried by the image intensities. They allow 
registering images of completely different nature and can 
handle complex between-image distortions. The common 
drawback of the feature-based methods is that the 
respective features might be hard to detect or unstable in 
time. The crucial point of all feature-based matching 
methods is to have discriminative and robust feature 
descriptors that are invariant to all assumed differences 
between the images. Area-based methods, sometimes 
called correlation-like methods or template matching, do 
not need the step of feature detection. Instead of extracting 
the salient features, these methods merge the feature 
detection and matching processes. The correspondences 
are calculated using a predefined window or even the 
whole image. The classical region-based methods, like 
cross-correlation or the Fourier transform, are based on 
matching of image intensities (Fan, 2011). From the 
geometric point of view, only shift and small rotation 
between the images are allowed when using area-based 
methods. Feature-based methods are often used in 
applications where the images contain enough details that 
are distinctive and easy to be detected. However, if the 
image is not rich in detail, or the detail is unsharp and hard 
to be detected, one may resort to area-based algorithms.  
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In this proposed research, because feature-based 
image registration is more robust to image rotation and 
distortion and the images used have distinctive features, 
the feature-based image registration is selected for the 
image stitching algorithm. Bay et al. (2008) presented a 
novel scale and rotation-invariant detector and descriptor 
called SURF (Speeded-Up Robust Features). SURF 
method is of combination of feature detection and feature 
description. SURF can distinguish invariant features 
from images that can be used to perform reliable 
matching between different views of an object or scene 
and it outperform the previous feature detection and 
feature description methods including phase-based local 
features (Carneiro and Jepson, 2003) and SIFT (Lowe, 
2004; Mikolajczyk and Schmid, 2005).  

With the matched feature points in the reference 
image and target image, the image transformation model, 
which defines how the target image is transformed to 
align with the reference image, can be built up. The 
image transformation model is defined by a mapping 
function which can be simply expressed as a matrix 
multiplication (Dubrofsky, 2009). The mapping function 
of affine transformation, which is one of the most 
common image transformation types, can be defined as: 
 

11 12 13

21 22 23

x ' a a a x

y' a a a y

1 0 0 1 1

=  

 
Where: 
 

11 12 13

21 22 23

a a a

a a a = T

0 0 1

 

 
where, (x’, y’) is the position of the pixels in the 
reference image and (x, y) is the position of the pixels in 
the target image. The 3×3 matrix T is a parameter which 
defines the type of the mapping function. Now the 
problem of image model estimation is broken down to 
find the image transform parameter T. 

There are many techniques are available that can 
estimate the transform model based on the matched 
points on two images such as minimum spanning trees 
(Zahn, 1974) and convex hull edges (Goshtasby and 
Stockman, 1985). Goshtasby (1986) develop a mapping 
method which is outperforming the previous works by 
dividing the images into triangular regions then a linear 
mapping function is obtained by registering each pair of 

corresponding triangular regions in the images. 
However, not all the matched points can be used for the 
model estimation because local descriptor matching may 
produces false matches. The Random Sample Consensus 
Algorithm (RANSAC) proposed by Fischler and Bolles 
(1981) is a general parameter estimation approach 
designed to cope with a large proportion of outliers in the 
input data. RANSAC is capable of interpreting and 
smoothing data containing a significant percentage of 
gross errors and is thus ideally suited for applications in 
automated image registration based on the data provided 
by error-prone feature detectors. Iteratively, RANSAC 
picks a random subset of matches from the putative 
match list and a transform model can be built up based 
on the matches. Then, the transform model is tested 
against all the other correspondences in the putative 
match list. Correspondences that fit the model are 
considered as hypothetical inliers. Those that do not fit 
are considered as hypothetical outliers. After a fixed 
number of iterations, the model with highest number of 
hypothetical inliers is selected. A disadvantage of 
RANSAC is that it may require many iterations before it 
can find a correct hypothesis (Bhattacharya and 
Gavrilova, 2012). Torr and Zisserman (2000) developed 
a new robust estimator called Maximum Likelihood 
Estimation Sample Consensus (MLESAC) which is a 
generalization of the RANSAC estimator. It adopts the 
same sampling strategy as RANSAC to generate 
putative solutions, but chooses the solution that 
maximizes the likelihood rather than just the number of 
inliers. It is demonstrated that the method gives the 
results equal or superior to those of the previous 
approaches. The MLESAC is selected as the image 
transform model estimation method in the automatic 
image stitching algorithm. The MLESAC can find the 
image transformation parameter T. With the matrix T, 
the target image and the reference image can be 
transformed into a same coordinate. 

2.3. Automatic Image Stitching of Colour 
Images and Binary Images 

Section 3.2.2 introduces the algorithm of the 
automatic image stitching of the colour images and the 
binary images. The Matlab 2012b image processing tool 
box and 2013a computer vision tool box are used for 
image processing. The saved video frames of visible 
images and near infrared images were further processed 
to make the photomosaic. When images are taken with 
wide-angle lenses, it is often necessary to model lens 
distortions such as radial distortion. This kind of 
distortion can be rectified by the corresponding 
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rectifying functions (Woods et al., 1993). LM4NC3 lens 
has the in-built function that eliminates the fish eye 
distortion and the distortion is less than 5%. By 
observation of the images, it is found that this distortion 
can be ignored. 

The developed algorithm can automatically stitch 
both of the colour images and the near infrared images 
into two high resolution photomosaic. The procedure of 
the image stitching algorithm including 6 steps described 
as below and the flow chart of the image stitching 
algorithm is shown in Fig. 3.  

Step 1: Feature Detection and Description 

The first frame in the visible video is selected as 
the reference image and the next frame as the target 
image. SURF method was applied to both of the 
reference image and target image to find the feature 
points. Maltlab detect SURF Feature and extract 
Features are two functions to implement the SURF 
method. The function returns the feature descriptors 
which are vectors with the length of 64. The 
descriptors include all the information including the 
position, direction and neighbourhood intensity 
information of the detected features. 

The feature point searching in the reference image is 
limited in a predefined region which is at the top of the 
reference image and the size of the region is the size a 
single video frame. This has two advantages. Firstly, the 
predefined region is the maximum possible overlap region 
and all the matched feature points in the reference image 
should be located in this region. Instead of searching the 
feature points in the whole reference image, just to search 
the feature points inside the predefined region makes the 
feature points meaningful. From another aspect, all the 
computation of the feature searching is limited in the 
predefined area which is a constant size therefore it can 
reduce the computation time. 

Step 2: Feature Matching 

This step is to find the putatively matched points of 
the reference image and the target image. Euclidean 
distance matching is a popular point matching method 
for image registration. Euclidean matching method finds 
the Euclidean distance between the two N dimension 
feature point vectors and the sum of all such distances 
for a given pair of images gives the overall image 
proximity measure. The lower the sum, the greater is the 
image match (Chew et al., 1997). 

Let the first feature point in the target image be DT1 
and the number k feature point in the reference image be 

DRk, where k = 1,2, 3…n, n is the total number of 
feature points of the reference image. The task is to find 
the DRk which matches to DT1. Each feature point has a 
corresponding descriptor which is a 64 dimension vector, 
therefore the descriptor of DT1 can be presented as 
DT1(1), DT1(2)…DT1(64) and the descriptor of DRk can 
be presented as DRk(1), DRk(2)…DRk(64). The 
Euclidean distance E of DT1 and DRk is: 
 

64
2

1 k

i 1

E (DT (i) DR (i))
=

= −∑  

 
where, k = 1,2…n is the number of the feature points. 

If the number k feature point of the reference image 
returns the minimum value of E, the number k feature 
point of the reference image matches to the first feature 
point of the target image. Use the same method to find 
all the putatively matched feature points of the reference 
image and target the image.  

Step 3: Image Transform Model Estimation 

Image transform model estimation is realized by 
the estimate Geometric Transform function of Matlab. 
This function is an integration of the image mapping 
method developed by Goshtasby (1986) and image 
transform model estimation method developed by 
Zisserman and Hartley (2003). The function returns a 
transformation structure TFORM which is the 
parameter defines the mapping function of the 
reference image and target image. Fig. 4 shows an 
example the putatively matched point in step 2 and the 
inliers after image transform model estimation.  

Step 4: Image Transformation  

Once the image transformation model has been built 
up, the target image can be transformed to the coordinate 
of the reference image by using the imtransform 
function. Imtransform function can transform the image 
to a new coordinate according to the transformation 
structure TFORM. First of all, the imtransform function 
in Matlab and the TFORM structure are used to 
transform the target image to the coordinate of the 
reference image. Now the two images are in the same 
coordinate while the pixels of target image may outside 
the coordinate of the reference image (Fig. 5a). A new 
coordinate which can hold both of the reference image 
and the target image is built up and the reference image 
and target image are transformed into the new ordinate 
as shown in Fig. 5b. 
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Fig. 3. Flow chart of the image stitching algorithm 
 

 
 

Fig. 4. Outliners and inliers of image transformation estimation 
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 (a) (b) 
 

Fig. 5. Transform the images into the same coordinate 
 
Step 5: Image Interpolation and Image Blending 

In short, the image interpolation and image blend 
decide how the colour or grey level is presented in the 
stitched photomosaic and these technologies are usually 
used to remove the artificial seams in the stitched 
photomosaic. There are many image interpolation and 
image blending technologies available and depending on 
their complexity, the more accurate the more 
computation they need (SpecTIR, 2013). 

The purpose of the image stitching algorithm in this 
proposed research is to make a high resolution 
photomosaic which can be further processed to present 
the information of the weeds, hence the pixle’s 
geometrical position in the stitched photomosaic is 
critical while the visible seams in the photomosaic do not 
affect the accuracy of the weed map. In this algorithm, 
the intensity value of the pixels in the overlapping 
regions is the value of the pixel of the reference image. 
Even though this algorithm could leave visible seams on 
the stitched photomosaic, it is computation efficient and 
keeps the original information of the videos.  

Step 6: Stitch Binary Images  

One of the new features of the developed image 
stitching algorithm is that it can automatically and 
simultaneously stitch both of the colour im.age and the 
binary image. The developed algorithm can generate two 
high resolution photomosaic, one is colour photomosaic and 
another is binary photomosaic. These two photomosaic is 
used interactively to compute and present the information of 
the weeds and this will be introduced in 3.2.3. 

Firstly, the reference image and the target image are 
processed to generate two binary images using the Hue-
NIR-R green plant segmentation method which has been 

developed by Liu et al. (2013) in the previous works. With 
the TFROM structure which has been calculated using the 
colour images, the same method can be applied to stitch 
two binary images together and the stitched binary 
photomosaic matches the colour photomosaic pairwise. 

After this, the two colour images and the two 
corresponding binary images obtained from the Hue-
NIR-R green plant segmentation method are stitched. For 
stitching the next video frame, the stitched images are 
used as new reference images and the next frames are 
new targets images. This procedure is run in a loop until 
all frames are stitched. At last, one high resolution colour 
photomosaic and one high resolution binary photomosaic 
is stitched and saved in .png format for further process. 

2.4. Photomosaic Processing to Present the 
Weed Distribution 

The stitched colour photomosaic and binary 
photomosaic provide a convenient way for image 
processing, analysing and representation. The image 
processing and analysing are implemented in the binary 
photomosaic and the results are presented in the colour 
photomosaic. The weed are presented as white regions in 
the binary photomosaic therefore the weed mapping task 
is to find all the position of the white regions in the 
binary photomosaic and show the relative information in 
the colour photomosaic. The photomosaic processing 
methods all depend on the user’s requirements and the 
specific conditions of the farming fields. The detailed 
processing methods are not covered in this study, while 
as an example, section 4.3 discusses the photomosaic 
processing method to make the weed maps. The whole 
procedure of the photomosaic processing work can be 
summarized as the Fig. 6. 
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Fig. 6. The procedures of processing the photomosaic to 

generate weed maps 
 

3. RESULTS AND DISCUSSION 

3.1. Evaluation of Image Segmentation Algorithm 

The algorithm of image segmentation has been 
developed in the previous work by Liu et al. (2013). This 
image segmentation method is compared with other three 
methods which have been widely used in the existing 
researches, they are: (1) NDVI method using NDVI index. 
This method has been widely used for remote green plant 
sensing (Gonzoearth, 2011); (2) NIR-R method using the 
index NIR-R which is the intensity of red subtracted from 
the intensity of near infrared. This method was used by 
Gerhards and Christensen (2003) to successfully map the 
weeds; (3) Hue method using the index of Hue, which was 
used by Golzarian (2009) for no-tillage wheat crop 
monitoring. Six sample images (Table 2) are chosen to 
present different background and sunlight environments. 
All the image segmentation methods use the Otsu’s 
method (Otsu, 1979) to automatically find the threshold 
and generate the binary images. 

The segmented results are compared using both the 
visual perception and the type error estimation. The error 
types used are defined as type 1 error and type 2 error 
and this error evaluation method has been used for citrus 
and crop detection (Golzarian, 2009; Li et al., 2011; 
2012). Type 1 error is defined as the probability of the 
background pixels being classified as the weeds. Type 2 
error is defined as the probability of the weeds being 
excluded as the background pixels. The total error is the 
weighted sum by the foreground and background 
respectively. The automatic segmented images are 

compared with the manually processed images template 
and the result is show in Fig. 7-9. The manually 
processed template is a weak tool for the evaluation of 
the error, however the primary error can still be 
quantified in the dominant type error. 

The type 1 error of Hue-NIR-R method is less than 5% 
which outperforms the other methods. The type 2 error of 
the Hue-NIR-R method is less or equals the other three 
methods. In the images with the uniform sunlight 
condition (image 1 to image 5), the total error of the Hue-
NIR-R method is less than 10% which outperforms the 
other methods. For the image 6, all the methods have 
higher total error because part of the image has shadow. 
The partial shadow significantly decreases the image 
quality due to that the shadow area in the image lacks of 
proper exposure. The objects in the shadow have no 
information for the image segmentation which causes the 
errors. Some specific algorithm could resolve the problem 
of the partial shadow (Golchin et al., 2013), however with 
the consideration of the computation time, using artificial 
illumination which can provide uniform light density in 
the field of view of the camera is more feasible. 

3.2. Evaluation of the Image Stitching Algorithm 

Image stitching algorithm plays the most important role 
of this weed mapping method. The imaging stitching 
algorithm uses feature-based image registration method 
therefore the number of the matched feature points 
determine the reliability of the weed mapping. To check if 
the algorithms can detect enough feature points, 200 images 
are selected as sample images and the images are separated 
into four groups to present four different types of 
conditions. Each group include 50 images which are 
sequenced video frames. The background of the first group 
is soil (includes less dry plants), the second group is soil and 
gravels, the third group is dry straws and the last group is 
dry straws and shade. The 4 groups of image are stitched 
into 4 photomosaic and the number of the putative matched 
feature points after feature matching and the number of 
inliers after image transform model estimation are recorded 
and the results are shown in Fig. 10 and 11. 

Figure 10 shows that for each stitching, there are 
4000 to 10000 putatively matched feature points can be 
found and Fig. 11 shows that after image transform 
model estimation there are less than 90 inliers left. The 
image transformation model estimation needs the 
minimum 3 inliers therefore if the inliers less than 3 the 
image cannot be stitched. This curve can explain the 
testing result. In the testing, the first two group images 
(red and green curve) can be stitched properly while the 
last two group images (yellow and blue curve) failed. 
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Table 2. Sample images for the evaluation of the image segmentation methods 

   
Image 1: Weather: Sunny  Image 2: Weather: Sunny Image 3: Weather: Sunny 
background: Soil in brown, Background: soil in brown and dark, Background:  
few dry weeds few dry weeds soil and gravels 

   
Image 4: Weather: Sunny Image 5: Weather: Sunny Image 6: Weather: Sunny 
Background: Soil Background: Soil Background: Soil in brawn colour, 
and dry straws in brawn and dark colour part of the image have shadow  

 

 
 

Fig. 7. Type 1 error 
 

 
 

Fig. 8. Type 2 error 
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Fig. 9. Total error 
 

 
 

Fig. 10. The number of the putatively matched feature points 
 

 
 

Fig. 11. The number of the inliers after image transformation estimation
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Since enough putatively matched feature points can 
be found in all the four types of images, one of the 
possible reasons could cause ill image transform model 
is the distribution of the feature points in the images 
(Yan et al., 2006). Good feature points should scatter 
evenly on the whole image while if the feature points 
gather to clusters in certain regions of the image, it could 
lost accuracy for image transform model estimation. In 
order to observe the distribution of the feature points, 
four images are randomly selected from the four types of 
groups and the inliers are marked by different colour to 
show the distribution the inliers (Fig. 12).  

Figure 12 shows that if the images have the 
background of soil with few dry plants and gravels, the 
inliers scatter evenly in the whole images and this 
contribute to the higher possibility of the right image 
transform models. While if the background has many 
straws, instead of scattering evenly, the inliers tend to 
gather together alone the lines which are the rows of the 
straws. The clustered feature points could create a wrong 
image transformation model and the reference image and 
the targe image could not be registered.  

In summary of the experiment result, SURF method 
can detect enough putatively matched feature points in 
the images captured in the natural fallow environment 
under different background and sunlight conditions. 
Based on these putatively matched feature points, the 
image could be stitched properly under limited 
conditions. If the number of the inliers after the image 
transform model estimation is less than 3 or the 
distribution of the inliers is uneven, the images could not 
be stitched properly. Under this condition, the region 
based image registration method could resolve this 
problem and this will be studied in the further work.  

3.3. Discussion of the Photomosaic Processing to 
Make the Weed Maps  

This section discusses the photomosaic processing to 
make the weed maps. There are many types of weed 
maps and the information shown on the weed maps all 
depend on the user’s requirements and the specific 
conditions of the farming fields. Just as an example, this 
section discusses three kinds of information presented as 
three layers on the weed maps and they are: layer 1: 
Binary weed map, layer 2: Colour weed map and layer 3: 
Weed density map (Fig. 13). 

At first, a Cartesian coordinate is established with the 
origin at the top left corner of the photomosaic. In this 
Cartesian coordinate, the unit of the distance changed 
from pixels to meter. The binary photomosaic and the 

colour photomosaic can be processed to make three 
layers of the weed maps. Layer 1 is the binary weed map 
which gives the clearest information of the weeds (white 
pixels) against the background (black pixels). Layer 2 is 
the colour weed map which provides the true scenario of 
the cropping land in colour images. By the processing of 
the binary photomosaic, many detail information of the 
weed can be found such as the boundaries and the 
centroids of the weeds and these important information 
can be shown in the colour photomosaic. Layer 2 
provides users a convenient way to check the detected 
weeds in the colour photomosaic. Layer 3 is the weed 
density map which shows the density of the ‘green’ in 
each grid with a certain size. The example shown in Fig. 
13 has the grids with the size of 23×23 cm which is close 
to the range of spraying of the herbicide nozzle. Layer 3 
gives uses a clear view of the weed density distribution in 
the field and it could be used as a powerful tool for 
making the weed control plans. Layer 3 also could be used 
as an herbicide prescription map for spot spray action if 
the GPS position of each grid is available. 

Use the method described in section 3.2.2, all the videos 
can be processed to corresponding photomosaic and the 
whole map of the cropping land can be built up. When 
doing the image acquisition, it is difficult to drive the 
vehicle alone a very straight line and this could cause errors 
between the rows in the weed maps. The adjacent rows 
could have overlaps or gaps and this could cause over count 
the weeds or missing the weeds (Fig. 14). The best method 
to avoid this type of error is to control the route of the image 
acquisition and makes the route as straight as possible. If the 
error cannot be ignored, the interpolation methods can be 
applied to estimate the weed density in the missing areas. In 
this specific case of this research, the missing area is at 
minimum level hence it is ignored. 

The accuracy of the weed map should be evaluated 
from two aspects. The first aspect is the accuracy of the 
information of the individual weed, such as the size and 
shape. The second aspect is the accuracy of the position 
of the weeds. The error of the shape and size of the 
weeds should be evaluated using the same method 
described in 4.1 while due to the difficulty of making a 
standard template for checking the type 1 and type 2 
error, this method is not feasible in this specific case. A 
weak evaluation method is used by human expert’s 
visual perception. A sample video was selected with the 
background of soil, few dry plant and gravels and 100 
frames was stitched to map the weeds in 45 m long 
fallow. The stitched photomosaic is checked with the 
original video frames by expert’s visual perception. 
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 (a) (b) 
 

   
 (c) (d) 
 
Fig. 12. The distribution of the feature points in different images (a) Background is soil (include less dry plants) (b) Background 

includes soil and gravels (c) Background is straws (d) Background includes straws and shade 
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Fig. 13. weed map with different layers 
 

 
 

Fig. 14. Errors between the rows 
 
The photomosaic can provide the density and shape 
information of the weeds with some acceptable errors. 
The errors occur at some of the overlap area of the 
photomosaic where pixels of the weeds cannot be 
registered properly and this changes the shape of the 
weeds. The error could up to 5 to 10 pixels. In the image 
processing, the regions smaller than 3 by 3 pixels are 
considered as noise and are removed therefore the weeds 
smaller than 3 x 3 pixels, which is 6.9 by 6.9 mm in real 
field, cannot be detected. To check the accuracy of the 
position of the weeds, first of all, the Cartesian 
coordinate of the photomosaic needs to be transformed to 
the geographical coordinate and then the position of the 
weeds in the geographical coordinate should be checked 
with the true GPS data collected in the fields. The 
transformation of Cartesian coordinate to geographical 
coordinate is the future work which needs to be done at 
the next stage and is not covered in this study. 

4. CONCLUSION 

This study introduces and discusses a proximal weed 
mapping method based on the machine vision 
technologies. Most of the current weed mapping systems 

use discrete sampling and interpolation method to make 
weed maps and the accuracy of the weed maps are quite 
different depending on the weed sensors, sampling and 
data processing methods. The objective of this proposed 
research is to develop a weed mapping method which 
could map weeds in an accurate and efficient manner for 
the weed control in broadacre no-tillage fallows. The 
developed weed mapping method includes three aspects: 
(1) image acquisition; (2) automatic image stitching of 
colour images and binary images; (3) photomosaic 
processing to present the information of weeds. The 
main feature of this weed mapping method is that the 
image stitching algorithm can provide the continuous 
information of the weed in the field and interpolation 
method is used at the minimum level or not necessary. 
The relative position of the weeds is calculated in the 
stitched photomosaic. Compared with the normal weed 
mapping methods which totally depend on the GPS to 
record the position of the sampling point, this mapping 
method provides a more accurate way to present the 
position of the weeds. Another contribution of this 
weed mapping method is that it has the potential to be 
used for the measurement of the plant spacing 
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uniformity where the accuracy of the distance is critical 
(Tang and Tian, 2008). 
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