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ABSTRACT 

This study studies are error registration algorithm for the maneuvering radar network, which is one of the 
difficult problems of multi-sensor registration. When the maneuvering radar has no orientation bias, 
measurement equations of both attitude bias and measurement bias can be established by using the common 
targets observed by different radars. Based on the equations, the real-time estimation of both attitude bias 
and measurement bias can be obtained with the twofold unscented Kalman filter. The results show that the 
method has a fast convergence rate. When the distance of the sensors is very long, both the absolute 
registration and the relative registration of attitude bias and measurement bias can be implemented. 
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1. INTRODUCTION 

The error registration and compensation technique 
is one of the prerequisites for multi-sensor fusion 
(Dong et al., 2004). Recently, lots of error registration 
algorithms have been proposed, e.g., Real Time Quality 
Control (RTQC) (Farina and Studer, 1986; Burke, 
1996), Neural Network algorithm (Karmiely and 
Hava, 2000), Maximum Likelihood (ML) (Ong, 
2003), Generalized Least Squares (GLS) (Dong et al., 
2004), Joint Estimation algorithm based on filtering 
technique (Yunlong and Guohong, 2005), Least 
Squares (LS) (Mei et al., 2006), Bias estimation using 
targets of opportunity (Kragel et al., 2007) and joint 
registration and tracking (Lian et al., 2011; You et al., 
2013). However, the angle error registration and the 
distance error registration only for stationary sensors 
are considered in the majority of current research. As 
far as the ship borne or airborne platforms are 
considered, the attitude bias and the navigation and 
orientation bias of the kinetic platforms need to be 
further researched. Because of the coupling effect of 
the different types of the biases, the maneuvering 
sensor registration is hard to be implemented, of 
which the research fruit is relatively little. 

When the sensor platform is moving, Crue et al. 
(1992) considers the sensor measurement bias and the 
platform attitude bias simultaneously, but neglects the 
coupling relationship of the two kinds of the biases. 
Crue et al. (1992) implements the relative registration 
of different sensors when the distance between the 
two radars is very close. Bo et al. (2006) discusses the 
joint estimation method of the measurement bias and 
the platform attitude bias based on Kalman filter. 
Because the Taylor series expansion (linearization) is 
used to establish the system model, the estimation 
accuracy will degrade greatly while the system bias 
increases. Bo et al. (2006) proposes a general method 
to estimate system bias of each kind of sensors and 
navigation system based on Nonlinear Least Square. 
In the method the linearization technique is adapted. 
Bo et al. (2006) establishes the joint estimation 
equation of the target state and system bias based on 
the known target track and discusses the observability 
problem of the orientation errors, the measurement 
biases and the emendation biases of 3-D sensors based 
on UKF filter method. 

When 3-D maneuvering radar platform has no 
orientation error, how to implement the absolute 
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registration of the platform attitude bias and the sensor 
measurement bias is researched in this study. The study 
is arranged as follows: The reason of the system error 
of maneuvering platform senor is discussed in detail at 
part two, the effective system estimation model is given 
at part three, the implementation method of bias 
estimation is discussed at part four and the simulation 
and analysis is done at part five. 

1.1. The Influence Analysis of Carrier Platform 
Attitude Bias 

As to the maneuvering radar network, the target 
measurement from the sensor is usually given in the 
carrier coordinate, as shown in Fig. 1 (Crue et al., 
1992). In order to transform all the target 
measurements from the different platforms to an 
uniform coordinate, a transformation of the target 
measurements from the geographic coordinate to the 
carrier coordinate should be done based on the carrier 
platform attitude by (Bo et al., 2006) Equation (1): 

11 12 13 g g

b 21 22 g g

31 32 33 g g

23

A A A X X

r = A A A Y = A Y

A A A Z Z

     
     
     
     
     

 (1) 

 
Where: 
A11 = cos ϑ cos φ 
A12 = sin ϑ cos φ 
A13 = sin φ 
A21 = cos ϑ sin φ sinα-sin ϑ cos α 
A22 = sin ϑ sin φ sin α + cos ϑ cos α 
A23 = cos φ sin α 
A31 = cos ϑ sin φ cos α + sin α sin ϑ 
A32 = sin ϑ sin φ cos α- sin α cos ϑ 
A33 = cos φ cos α 
 

ϑ, φ and α are the carrier platform attitudes, 
respectively express yaw angle, pitch angle and roll 
angle, which are the three angles between the carrier 
coordinate and the geographic coordinate. 

 

 
 

Fig. 1. The transform relationship between the carrier coordinate and geographic coordinate 
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If sensor carrier is the stationary platform, the attitude 
bias is usually considered to be zero. Here, the 
influence of the transform relationship on the senor bias 
estimation has nothing more than a calculation burden 
of coordinate transformation. But for mobile carrier 
platform such as airplane, vessel and there are always 
some errors in measuring the attitude of the carrier by 
the inertial navigation system, platform compass and. 
Suppose the errors of yaw angle, pitch angle and roll 
angle can be expressed as Equation (2): 
 

∆ = ε + δ

∆ = ε + δ

∆ = ε + δ

ϑ ϑ

φ φ

α α

 ϑ
 φ
 α

 (2) 

 
where, εϑ, εφ and εα are expressed as stationary biases, 
δϑ, δφ and δα are denoted as random biases, which follow 
the zero-mean gauss distribution. 

1.2. System Model 

Assume there is no orientation errors, the geographic 
coordinates of radar 1 and radar 2 are respectively 
supposed to be P1(L1, λ1, H1) and P2 (L2, λ2, H2). 

1.3. The System Bias State Equation 

Suppose yaw angle bias, pitch angle bias, roll 
angle bias, the distance bias, azimuth angle bias and 
elevation angle bias of radar 1 and radar 2 are 
respectively expressed as 

1ϑε , 
1φε , 

1αε , 
r1

ε , 
a1

ε , 
e1

ε , 

2ϑε , 
2φ

ε , 
2αε , 

r2
ε , 

a2
ε  and 

e2
ε . The state equation is 

established as Equation (3): 
 

( ) ( ) ( )s s sX k +1 =f X k + V k    (3) 

 
where, f (.) is the error state transfer equation. Vε(k) is 
the course noise random vector which follows the zero-
mean gauss distribution and Qε(k) is its covariance. Xε(k) 
is the state vector of all the stationary biases at time k, 
which is defined as: 
 

'

e2 2r a e r a1 1 1 1 1 1 2 2 2 2
X (k) , , , , , , , , , , ,ε φϑ φ α ϑ α

 ε ε ε ε ε ε ε ε ε ε ε ε  
≜  

 
1.4. The Measurement Equation 

The attitude random error and measurement random 
error provided by radar 1 are expressed as (

1ϑδ ,
1φδ ,

1αδ ) 

and (
r1

δ ,
a1

δ ,
e1

δ ), the attitude angle random error and 

measurement random error provided by radar 2 are 
expressed as (

2ϑδ ,
2φ

δ ,
2αδ ) and (

r2
δ ,

a2
δ ,

e2
δ ). Suppose 

a common target measurement of radar 1 and 2 are 
respectively Z1(r1, a1, e1) and Z2(r2, a2, e2) (the local 
cartesian coordinate). The true target position in the 
ECEF coordinate, of which the origin is the earth 
core, is Xt(xt, yt, zt). So the corresponding relationship 
between the measurement of radar 1 and the true 
target position is given by Equation (4): 

 
'

t 1 1 S T1 1
X = T A X + P  (4) 

 
where, A1 is the circumgyration transformation matrix 
of attitude angle error of radar 1 given by Equation 
(1). T1 is the circumgyration transformation matrix 
which transforms the target position from the local 
cartesian coordinate (radar 1) to the ECEF coordinate. 

T1
P  is the position of radar 1 in the ECEF coordinate; 

S1
X  

is obtained by removing the measurement error from a 
measurement of radar 1 and transforming the 
measurement to the rectangular coordinate, which is 
given by Equation (5): 

 

( ) ( ) ( )
( ) ( ) ( )

( ) ( )

1
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1

1
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r - ε - δ cos e -ε - δ sin -ε - δ

r - ε - δ cos e -ε - δ cos -ε - δ
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h (Z , , )

 
  

 α
 
 

= α 
 
 
  

= ε δ

 (5) 

 
where, h1(.) is defined as the measurement transform 
function from the polar coordinate to the rectangular 
coordinate; 

Z1
ε  and 

Z1
δ  are respectively the 

measurement bias vector and random error vector of 
radar 1. 

If X t is transformed to the true measurement polar 
coordinate of radar 2, the corresponding relation between 
the measurements from radar 2 and the true target 
positions is Equation (6): 

 

( )2 2 2 2 t T Z Z2 2 2
Z = h A T ' X - P +ε + δ 

  
 (6) 
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where, A2 is the circumgyration transformation matrix 
of attitude angle error of radar 2 given by (1). T2 is the 
circumgyration transformation matrix which 
transforms the target position from the local cartesian 
coordinate (radar 2) to the ECEF coordinate. 

T2
P  is the 

position of radar 2 in the ECEF coordinate. 
Z2
ε  and 

Z2
δ  

are respectively the measurement bias vector and 
random error vector of radar 2. h2(•) is defined as the 
measurement transform function from the rectangular 
coordinate to the polar coordinate, as follows 
Equation (7): 
 

( ) ( )
2 2 2

2

2 2 2

x y z

xh X arctan y

zarctan
x y z

 
 
 + +
 
 
 
 

  
   + +   

≜  (7) 

 
where, X(x, y, z) expresses the 3-D coordinate value of 
the target in the rectangular coordinate. 

Based on (4) and (6), the system bias measurement 
equation at time k is established as: 
 

( ) ( ) ( )
( ) ( ) ( ) ( ) ( )( )
( ) ( ) ( ) ( )

2 2 2 2

1 1 1 1 Z1 Z1

T T z z1 2 2 2

Z k h {A k T ' k

T k A ' k h Z k , k , k

P k P k k k }

=

 ε δ

+ − + ε + δ

i  (8) 

 
Equation (8) can be further simplified as Equation (9): 

 

( ) ( ) ( ) ( ) ( ) ( )( ) ( )2 1 z Z1 2 1 2
Z k h X k ,Z k , k , k , k kε ε ε= δ δ δ + δ  (9) 

 
where, ( )

1
kεδ  and ( )

2
kεδ  express the attitude angle 

random error vectors of radar 1 and radar 2 respectively. 

1.5. The Bias Estimation Method 

The measurement equation defined by (9) is a 
complex nonlinear equation. If the extended Kalman 
filter is applied, the linearization error is so large that 
the estimation result can’t meet the accuracy 
requirement. This part will discuss how to obtain the 
efficient bias estimation by using the Unscented 
Kalman Filter. 

Suppose the state estimation vector and the state 
covariance are ̂X ε (k) and (k) Pε respectively at time k, 

then x2n 1+ (nx is the dimension of system state vector) 

sampling point ξi (k|k) and their corresponding weight 
i W can be computed with the Unscented Transform 
method in (Julier and Uhlmann, 2000). According to 
(3), the one-step prediction of all the sampling points 
can be obtained by Equation (10): 
 

( ) ( )i ik 1 k f k k ξ + = ξ   (10) 

 
With the one-step prediction of sampling point 

ξi(k+1|k) and its weight Wi, the predicted error state 
estimation and the predicted covariance can be 
obtained as Equation (11): 
 

( ) ( )
nx2

i i
i 0

X̂ k 1 k W k 1 kε
=

+ = ξ +∑  (11) 

 
And Equation (12): 
 

( ) ( )

( ) ( )
nx2

i i i
i 0

P k 1 k Q k

W X k 1 k X ' k 1 k

ε ε

=

+ =

+ ∆ + ∆ +∑
 (12) 

 
Where: 
 

( )i i
ˆX k 1| k (k 1| k) X (k 1| k)ε∆ + = ξ + − +  

 
The random measurement error is usually 

independent of the nonlinear equation. However, the 
random measurement error in (9) is different from the 
observation models in the other references, which is 
not independent of the nonlinear equation. The 
conventional Unscented Kalman Filter can’t deal with 
this problem. 

Define 
'

z1 2 2
(k) (k), (k), (k)ε ε ε

 δ δ δ δ  
≜ as a new error 

vector, where Rε is its error covariance. Based on 
unscented transform, 2mx +1 (mx is the dimension of 
vector δε (k)) sampling points for δε (k) is done. 
Suppose δεj (k+1) and Ej express the sampling points 
and their weight respectively. The calculation equations 
in detail are as follows. 

Assume the one-step prediction of each sampling 
point ξi (k+1|k) as the center. Another equation could be 
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obtained by applying all the sampling points of δε (k) in 
measurement (9): 
 

( ) ( ) ( )( )ij i jk 1 k h k 1 k , k 1ες + = ξ + δ +  (13) 

 
Consequently, the predicted measurement and 

covariance corresponding to ξi (k+1|k) can be obtained as: 
 

( ) ( )
2

i j ij
j 0

mx

k 1 k E k 1 k
=

ς + = ς +∑  (14) 

 
And: 
 

( ) ( )
i

mx2
'

j ij ij
j 0

P E k 1 k k 1 kς
=

= ∆ς + ∆ς +∑  (15) 

 
Where: 
 

( )ij ij ik 1| k (k 1| k) (k 1| k)∆ς + = ς + − ς +  

 
Equation 13-15 apply the theory of Unscented 

Transform, implement the accurate transfer of the 
measurement random error with the spread of the 
measurement function (9) and calculate the first rank 
and the second rank statistic characteristics of the 
random vector, namely the predicted measurement 
mean and its covariance. If the background follows 
Gauss distribution, the precision of the mean and the 
covariance from Unscented Transform can get to the 
second rank and the process in detail is referred in 
(You et al., 2005). 

Based on (14) and (15), the predicted measurement 
and the corresponding covariance can be obtained 
according to the follow formula Equation (16 and 17): 
 

( ) ( )
2

i i
i 0

nx

Ẑ k 1 k W k 1 k
=

+ = ς +∑  (16) 

 

( )i
i 0

2nx
'

zz i i iz2
P R W P Z Z

=
ς= + + ∆ ∆∑  (17) 

 
where, 

z2
R is the covariance of measurement random 

error of radar 2 Equation (18): 
 

( ) ( )i i
ˆZ k 1 k Z k k∆ = ς + − +  (18) 

Similarly, the interactive covariance between the 
measurement vector and the bias vector can be gotten by 
Equation (19): 
 

( )xz i i i
i 0

2nx

P W X k 1 k Z'
=

= ∆ + ∆∑  (19) 

 
Finally, the bias estimation state update and 

covariance are respectively Equation (20 and 21): 
 

( ) ( ) ( ) ( ) ( )( )ˆ ˆX k 1 X k 1 k K k 1 Z k 1 Z k 1 kε ε+ = + + + + − +  (20) 

 
And: 

 
( ) ( ) ( ) ( )zzP k 1 P k 1 k K k 1 P K ' k 1ε ε+ = + − + +  (21) 

 
where, K(k + 1) = Pxz P

-1
zz. 

1.6. Simulation Analysis 

The simulation results when sensors are far away 
from each other. 

Assume that radar 1 is located at (120.000, 30.200, 
100m) and radar 2 is located at (120.500, 30.000, 0m). 
The sample interval of radar is one second. Every kind of 
errors is stationary errors, which are shown as Table 1.  

Suppose there are two observable targets in the 
surveillance area. The initialization states of the two 
targets in the ECEF coordinate are supposed to be (in 
meters) X1 = [-2800000; 50; 4800000; 85; 3120000; 0] 
and X2 = [-2780000; 100; 4750000; -150; 3220000; 0]. 

Figure 2-5 are the RMS curves of the attitude bias 
estimation and the measurement bias estimation of 
radar 1 and radar 2, obtained by Monte Carlo 
simulations with 20 runs. The length of each run is 
120. In all simulations, the initialization state of 
estimation is supposed to be 0. According to the 
simulation results, bias estimation almost converges 
after 20 steps. The biggest error of all the angle bias 
estimations is roll angle bias estimation, which is up 
to 52.1%; the smallest error is yaw angle bias 
estimation, which is merely 7.1%. What is more, the 
distance bias of radar 2 is up to 91.8%. The reason is 
that the influence of angle bias to the radar detection 
is relatively big. The distance bias of radar is 
relatively small and is easily submerged by the other 
biases, which can influence the precision of the 
estimation error (The distance bias of radar 1 is 
merely 18.4%). 
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Fig. 2. The attitude bias RMS of radar 1 

 

 
 

Fig. 3. The attitude bias RMS of radar 2 
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Fig. 4. The angle bias RMS of radar 1 and 2 

 

 
 

Fig. 5. The range bias RMS of radar 1 and 2 
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Fig. 6. The target 1 trajectory 
 

 
 

Fig. 7. The target 2 trajectory 
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Fig. 8. Track coordinates in xy-plane 
 

 
 

Fig. 9. Range bias estimatesn 
 
Table 1. The parameter setting of radar error 

 Radar 1 Radar 2 

Attitude bias (10; 20; -10) (-10; 10; 1.50) 
Measurement bias (100m; -0.50; 10) (50m; 10; -20) 
Attitude random error (0.10; 0.20; 0.10) (0.20; 0.10; 0.10) 
Measurement random error (10m; 0.10; 0.10) (10m; 0.10; 0.10 

Figure 6 and 7 show the true target tracks, the radar 
measurements tracks and the registered measurements 
tracks, which are generated in real-time in the local 
Cartesian coordinates of radar 1. In order to 
compensating the biases, the present bias estimation is 
directly used. As to Fig. 6 and 7, the measurement tracks 
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can be effectively modified with the error compensation 
of the bias estimations to the sensors even before all the 
bias estimation converges wholly. This example also 
illustrates the estimation accuracy of range bias has little 
influence on the registration result. 

The simulation results when sensors are close to 
each other. 

A further performance analysis of this algorithm is 
done with the simulation environment in (Helmick and 
Rice, 1993) which is denoted as Helmick’s algorithm. 
The parameters of the sensors are same with that in 
Helmick’s algorithm. 

Because only the track distribution figures of the 
targets are shown and the movement parameters of the 
targets are not given in detail in Helmick’s algorithm, the 
simulation movement parameters of the targets in this 
study is almost consistent with that in Helmick’s 
algorithm, which is shown in Fig. 8. 

Figure 9-13 are the RMS curves of the relative 
bias estimations by the algorithm in this study and 
Helmick’s algorithm with twenty Monte Carlo 
simulations, where the calculation of the relative bias 
estimations is consistent with that in Helmick’s 
algorithm and εr = 

1r r2
−ε ε , εθ = 

a a2 1
ε − ε  + 

1 2ϑ ϑε − ε , 

εη = 
1 2

−φ φε ε , εψ = 
1 2α αε − ε , εζ = 

e e2 1
−ε ε . 

Figure 9-13 have shown that the estimation 
precision of the algorithm in this study is much better 
than that of the algorithm in reference Helmick’s 
algorithm. This is mainly because a lot of linearization 
is applied in Helmick’s algorithm, which could bring 
the calculation errors. 

The absolute estimations of the biases with the 
algorithm in this study at the 200th sampling point 
(namely the 100th sec) are shown as follows: 

 

r1 a e1 1

1 1 1

r a e2 2 2

2 2 2

204.9m, 0.35 , 0.70

0.35 , 1.17 , 1.18

229.0m, 1.64 , 0.79

1.64 , 0.78 0.87

ϑ φ α

ϑ φ α

ε ε = − ° ε = − °

ε = ° ε = ° ε = − °

ε = ε = ° ε = °

ε = − ° ε = − °ε = °

 

 
The simulation results above have shown that the bias 

estimations are almost consistent with their true values 
except for the distance bias estimation when the 
distances among the sensors are small. So the algorithm 
in this study can also implement the absolute registration 
of the biases except for the distance bias when the 
distances among the sensors are small. 

 

 
 

Fig. 10. Azimuth bias estimates 
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Fig. 11. Elevation bias estimates 
 

 
 

Fig. 12. Pitch bias estimates 
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Fig. 13. Roll bias estimates 

 
In the process of simulation, if the values of each 

kind of random measurement errors and the true target 
trajectories are changed, the results show that the RMS 
of bias estimations will be affected. This conclusion is in 
line with the conclusion of the past literatures. 

In order to estimate all the biases, there are more than 
two observable targets in the common surveillance area 
and the targets must be located in two different quadrants 
(Barsholm, 2001). It is easily known that the proposed 
method can’t guarantee the independent observability of 
some biases when the conditions as follows are met 
(Topland et al., 2007): 

 
• The distance between two radars is very close 

(namely T’2T1≈I) and the attitude bias of two radars 
are same approximately 

• The azimuth bias is equivalent to its carrier yaw bias 
approximately 

• The elevation bias is equivalent to its carrier pitch 
bias approximately 

• In such situations, the joint estimation of bias 
parameter should be done to guarantee the accuracy 
of bias estimation 

2. CONCLUSION 

This study presented a study of the registration 
algorithm for mobile 3-D radars with no location error. In 
the study, a modified unscented Kalman filter is proposed 
in order to estimate the radar attitude and measurement 
bias in real time. At last some numerical examples are 
used to demonstrate the main advantages and features of 
the algorithm. An important problem left unresolved is to 
estimate three dimensional location errors. 
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