
Journal of Computer Science 9 (8): 1079-1085, 2013
ISSN: 1549-3636
© 2013 Science Publications
doi:10.3844/jcssp.2013.1079.1085 Published Online 9 (8) 2013 (http://www.thescipub.com/jcs.toc)

1079 Science Publications

JCS

FUZZY ROUND ROBIN
CPU SCHEDULING ALGORITHM

Bashir Alam

Department of Computer Engineering,
Faculty of Engineering and Technology, Jamia Millia Islamia New Delhi-110025, India

Received 2013-02-11, Revised 2013-06-06; Accepted 2013-07-09

ABSTRACT

One problem in Round Robin CPU Scheduling is that if the time required for the running process is slightly
more than time quantum even by a fraction value, then process gets preempted and context switch occurs.
This causes more waiting time for that process and more overheads due to unnecessary context switch.
Another problem with RR scheduling is the value of time Quantum. If it is too large, RR algorithm
degenerate to FCFS and if it is too short frequent context switches occurs which results into more overheads
which in turn degrade the performance. In this work a Fuzzy Round Robin scheduling algorithm has been
proposed that tries to remove these two problems using fuzzy technique. Simulation has been done to
compare the performance of this algorithm with its non fuzzy counterpart.

Keywords: FIS, Fuzzy Logic, Scheduling, Round Robin

1. INTRODUCTION

When a computer is multiprogrammed, it has
several processes competing for the CPU at the same
time. When more than one process is in the queue of
the processes in ready state and are waiting for CPU
allocation, the operating system must decide which
process to run first and allocate the CPU to that
process. The part of operating system that makes this
choice is called short term scheduler or CPU scheduler.
The algorithm used to make the choice is called
scheduling algorithm. Several scheduling algorithms
exists. Each scheduling algorithms have their own
features and the choice of a particular algorithm may
favour one class of processes over another. For
comparing CPU scheduling algorithms and deciding
which one is the best algorithm, several criteria have
been suggested (Silberschatz et al., 2008). Some of the
criteria include (i) Fairness(i) CPU utilization (iii)
Throughput (iv) Turnaround time (v) Waiting time (vi)
Response time. Sceduling algorithm should try to
(i)maximize CPU utilization and throughput, (ii)to
minimize turnaround time, waiting time and response

time and (iii)to avoid starvation of any process
(Silberschatz et al., 2008; Andrew and Albert, 2006).
Some of the scheduling algorithms are briefly described
below.

 FCFS: In First come First serve scheduling algorithm
the process that request first is scheduled for execution
(Silberschatz et al., 2008; Andrew and Albert, 2006;
Stallings, 2008). SJF: In shortest Job first scheduling
algorithm the process with the minimum burst time is
scheduled for execution (Silberschatz et al., 2008;
Andrew and Albert, 2006). SRTN: In shortest remaining
time next algorithm, a process is scheduled for execution
whose remaining execution time is shortest (Stallings,
2008). Priority: In Priority Scheduling algorithm the
process with highest priority is scheduled for execution
(Silberschatz et al., 2008; Andrew and Albert, 2006;
Stallings, 2008). Multilevel queue scheduling: In this the
ready queue is partitioned into several different queues.
Assignment of processes to one queue permanently are
generally based on some property of the process such as
size of memory, priority of process or type of process.
Queues are free to have their own scheduling algorithm.
Scheduling among the queues, is commonly

Bashir Alam / Journal of Computer Science 9 (8): 1079-1085, 2013

1080 Science Publications

JCS

implemented as fixed-priority preemptive scheduling.
Every queue has got absolute priority over low priority
queues (Silberschatz et al., 2008). Multilevel feedback-
queue scheduling: This is like multilevel queue
scheduling but allows a process to move between queues
(Silberschatz et al., 2008). Fair share Scheduling: Fair
share scheduler considers the execution history of
processes of a related group, along with the execution
history of each individual process in making decision of
scheduling. Fair- share groups are constructed within the
user community. A fraction of CPU time is allocated to
each group. Scheduling is done on the basis of process
priority, its usage of recent processor and the usages of
recent processor of the group to which the process
belongs. A base priority is assigned to each process. The
process priority drops as the process uses the processor
and as the group to which process belongs uses the
processor (Stallings, 2008). Guaranteed scheduling:-
This algorithm calculates a ratio of actual CPU time a
process had and its entitled CPU time is calculated and
then schedule the process having this lowest ratio
(Andrew and Albert, 2006). Lottery Scheduling: The
basic idea is to give processes lottery tickets for
allocation of CPU time. A lottery ticket is chosen at
random at the time of scheduling decision and the
process holding the ticket gets the CPU (Andrew and
Albert, 2006). HRRN:-In this response ratio is calculated
for each process. The process with the highest response
ratio is scheduled for execution (Stallings, 2008). Fuzzy
HRRN: In this algorithm FIS has been used to improve
the performance of basic Highest Response Ration Next
(HRRN) CPU Scheduling algorithm (Alam et al., 2011).
Fuzzy Fair Share Scheduling: In this CPU Scheduling
algorithm fuzzy logic has been used to improve the
performance of basic fair share scheduling algorithm
(Alam et al., 2009). Round-robin: In this the CPU
scheduler goes around the ready queue allocating the
CPU to each process for a time interval of up to one
time quantum. If the process does not complete its
execution within the time quantum, the process goesto
the end of ready queue and process switch occurs
where state of the running process is put onto stack and
the state of the next process is taken from the stack and
its execution resumes. If the time requirement of the
running process is slightly more than time quantum,
even then process is preempted and context switch
happenss. This causes more waiting time for that
process and more overheads due to unnecessary context

switch. Another problem with RR scheduling is the
value of time Quantum. If it is too large, RR algorithm
degenerate to FCFS and if it is too short frequent
context switches occurs which results into more
overheads which in turn degrade the performance. In
this work an algorithm using fuzzy logic has been
proposed that tries to remove these two problems.

1.1. Fuzzy Inference Systems and Fuzzy Logic

A Fuzzy Inference System (FIS) tries to derive
answers from a knowledgebase by using a fuzzy
inference engine. The inference engine provides the
methodologies for reasoning around the information in
the knowledgebase and results formulations. Fuzzy
logic deals with the concept of partial truth that
denotes the extent to which a proposition is true. In
classical logic everything can be expressed in binary
terms (0 or 1, black or white, yes or no). Fuzzy logic
replaces boolean truth values with the truth’s degree.
Truth’s degree is often employed to capture the
imprecise modes of reasoning that play an essential
role in the human ability to make decisions in
uncertain and imprecise environment. The
membership function of a fuzzy set is analogous to the
indicator function of the classical sets. Curves are
used to express the membership functions. curve
shape defines how each point in the input space is
mapped to a membership value or a truth’s degree
between 0 and 1. Triangular is the most common
shape of a membership function. Other curve shape
like trapezoidal and bell are also used. Uuniverse of
discourse is the input space (Wang, 1997). Fuzzy
Inference Systems (FIS) consists of three stages
namely input, processing and output. In input stage
the inputs, such as deadline, execution time and so on
are mapped to the appropriate membership functions
and truth values. In processing stage each appropriate
rule is invoked each of them generates a result. The
results of the rules are then combined. Finally, in the
output stage the combined result is converted back
into a specific output value (Wang, 1997). The
processing stage, called the inference engine, works
with the help of a collection of logic rules in the form
of IF-THEN statements, where the IF part is called the
“antecedent” and the THEN part is called the
“consequent”. Fuzzy inference systems have several
rules. Knowledgebase stores these rules. An example
of fuzzy IF-THEN rules is: IF Remaining Time is
short then priority is high, in which Remaining Time
and priority are linguistics variables and short and

Bashir Alam / Journal of Computer Science 9 (8): 1079-1085, 2013

1081 Science Publications

JCS

high are linguistics terms. The five steps of a typical a
fuzzy Inference System are as follows:

• Fuzzifying inputs
• Applying fuzzy operators
• Applying implication methods
• Aggregating outputs
• Defuzzifying results

These steps are review quickly below. Fuzzifying
the inputs is the act of determining the degree to which
they belong to each of the appropriate fuzzy sets with
help of membership functions. Once the inputs have
been After fuzzification, the degree of satisfaction to
which each part of the antecedent for each rule is found
out. For rules with antecedent having several parts,
fuzzy operator is applied to obtain one value that
represents the result of the antecedent for that rule. The
output fuzzy set is modified by the implication function
to the degree specified by the antecedent. The results
from each rule in FIS are combined using aggregation
process into a single fuzzy set representing the output
of each rule. The defuzzification process takes the
aggregated output fuzzy set as input and gives a single
crisp value as output (Wang, 1997). There are two
common inference methods (Wang, 1997). The first
one is called Mamdani fuzzy inference method
Mamdani and Assilian (1999) and the second one is
Takagi-Sugeno-Kang, or simply Sugeno, fuzzy
inference method (Sugeno, 1985). These two methods
are the same in many respects. The main difference
between these two methods (Hammam and Georganas,
2008) is that the Sugeno’s output membership functions
are either linear or constant but Mamdani’s inference
expects the output membership functions to be fuzzy
sets. The input and output variables are mapped into
fuzzy sets using appropriate membership functions.
Expert determine shape of the membership function for
each linguistic term. It is very difficult to adjust these
membership functions in an optimal mode. However,
membership functions may be adjusted using some
available techniques (Jang, 1993; Simon, 2002). These
techniques cannot be covered in this study. They can be
further studied in a separate paper.

1.2. Fuzzy Round Robin CPU Scheduling
Algorithm

In Round Robin Scheduling the time quantum is
fixed and then processes are scheduled such that no
process get CPU time more than one time quantum in
one turn. Too Large time quantum increases the response

time of the processes too much which may not be
tolerated in interactive environment. Too small time
quantum causes unnecessarily frequent context switches
leading to more overheads resulting in less throughput.
In this work a method using Fuzzy Logic has been
proposed that decides a value that is neither too large nor
too small such that every process has got reasonable
response time and the throughput of the system is not
decreased due to unnecessarily context switches.

In Round Robin scheduling CPU scheduler goes
around the ready queue allocating the CPU to each
process for a time interval of up to one time quantum.
If the process do not complete its execution within the
time quantum, the process go to the end of ready
queue and process switch occurs where state of the
running process is put onto stack and the state of the
next process is taken from the stack and its execution
is restarted. If the time required for the running
process is slightly more than time quantum even by a
fraction, even then Scheduler prempt the process
resulting into context switch. This causes more
waiting time for that process and more overheads due
to unnecessary context switches. In this work an
algorithm named fuzzy round robin scheduling
algorithm has been proposed that tries to remove these
two problems. This algorithm uses two FIS one for
finding the time quantum value and another for
deciding the preemption.

1.3. FIS for Finding Time Quantum

The Fuzzy Inference System for finding the time
quantum has got two inputs and one output. First input
is N that specifies the number of user/processes in the
system and second input is the average burst time of
the processes in the ready queue. Time Quantum is the
output of the FIS. Block diagram, rules base, surface
view and rule view of the FIS designed are shown
below in Fig. 1, Table 1, Fig. 2 and 3 respectively.
This FIS solves the first problem.

Fig. 1. FIS for Finding Time Quantum (FISTQ)

Bashir Alam / Journal of Computer Science 9 (8): 1079-1085, 2013

1082 Science Publications

JCS

Fig. 2. Surface View of FIS for Finding Time Quantum

Fig. 3. Rule View of FIS for Finding Time Quantum

Fig. 4. FIS for Preemption (FISRR)

Bashir Alam / Journal of Computer Science 9 (8): 1079-1085, 2013

1083 Science Publications

JCS

 Inputs and outputs membership functions are given
below:

Membership Function for N
 Type: - Triangular,
 Range: - 1 - 10,
 Low: - [0, 2, 4],
Medium: - [3, 5.5, 8] and
 High: - [7, 8. 5, 10]

Membership Function for Average Burst Time
Type: - Triangular,
 Range: - 0 – 10,
Low: - [-4, 0, 4],
Medium: - [3, 5, 7]
High:- [6, 10, 16]

Membership Function for Time Quantum
Type: - Triangular,
Range: - 1 - 5,
Low: - [0, 1, 2],
Medium: - [1, 2.5, 4] and
High: - [3, 5, 7]

1.4. FIS for Deciding Preemption

The main problem in Round Robin Scheduling is
that the process is preempted on the expiry of time
quantum even if the process needs a few fraction of
time quantum to complete its execution. The
unnecessary overheads and waiting time may be
reduced if the process is given time slightly more than
the time quantum so that it may complete its execution
in that turn itself. The time required for any process is
not very clear and fuzzy logic is suitable for vague
thing. So, Fuzzy logic may be used to delay the
preemption of the process. A fuzzy Inference system
with two inputs and one output has been designed.
Laxity and N, the number of Ready Processes are
inputs and Preemption Status is the output. Block
diagram, rules base, surface view and rule view of the
FIS designed for deciding premption are shown above
in Fig. 4, Table 2, Fig. 5 and 6 respectively. This FIS
solves the second problem.

The membership functions for these fuzzy variables
are given below:

Membership Function for N
Type- Triangular,
Range: 1-10,
Low- [0, 2, 4],

Medium- [3, 5.5, 8] and
High- [7, 8.5, 10]

Membership Function for Laxity
Type- Triangular,
Range: 0-TQ,
Low- [0, TQ/4, 3/8TQ],
Medium- [3/8TQ, TQ/2, 5/8TQ] and
High- [5/8TQ, 3/4TQ, TQ]

Membership Function for Preemption status
Type- Triangular,
Range: 0-1,
No Preempt- [0, 0.3, 0.6] and
Preempt- [0.5, 0.75, 1.0]

1.5. Proposed Fuzzy Round Robin CPU
Scheduling Algorithm

Proposed Fuzzy Round Robin Scheduling Algorithm
is described below:

Step1: Select the first process p in the ready queue for

execution and remove it from the ready list.
Step2: Find ABT, the average burst time of the processes
Step3: Give N, the number of users and ABT to the FIS

for Time Quantum.
Step4: Take output of FIS as the time quantum and load

it into the interval timer
Step5: Start execution of process P on the CPU
Step6: If P initiates an I/O operation or completes its

execution, go to step 1 to schedule another
process for execution.

Step7:
• When a timer interrupt occurs, do not preempt the

process but start another counter to measure laxity/
relaxation given to the process

• If process completes go to step 1 to schedule another
process for execution

• Give Laxity and N, the number of ready processes to
the input of FIS for deciding Preemption and take its
output as preemption status

• If preemption status is greater than or equal to 0.5,
preempt the process and put it at the end of the ready
queue and go to step 1 to schedule another process
for execution

 Else

 If process completes, go to step 1 to schedule
another process for execution.

Bashir Alam / Journal of Computer Science 9 (8): 1079-1085, 2013

1084 Science Publications

JCS

Fig. 5. Rule view of FIS for Preemption

Fig. 6. Surface view of FIS for Preemption

Table 1. Rule Base of FIS for Finding Time Quantum
S.No. N ABT Time Quantum

1 Low Low Low
2. Low medium Medium
3. Low High High
4. Medium Low Medium
5. Medium medium Medium
6. Medium High Medium
7. High Low Low
8. High medium Low
9. High High Medium

Table 2. Rule base for FIS for Deciding Preemption
S.No. Laxity No of processes Preemption Status
1 Low Low No Preemption
2. Low Medium No Preemption
3. Low High No Preemption
4. Medium Low No Preemption
5. Medium Medium No Preemption
6. Medium High Preemption
7. High Low Preemption
8. High Medium Preemption
9. High High Preemption

1.6. Performance

For comparing the performance of Round Robin CPU
scheduling algorithm with Fuzzy Round Robin CPU
Scheduling algorithm, we did simulation on 1000
processes in groups of ten each.

We assumed random burst time of processes and
their inter arrivals time are random. 10ms is assumed
to be the Max burst time of a process. Throughput and
average waiting time of the processes in a group was
computed and then average was taken over all groups
to give average throughput and average waiting time.
The column chart given in Fig. 7 given above
compares the performance of the proposed algorithm
with its counterpart.

Bashir Alam / Journal of Computer Science 9 (8): 1079-1085, 2013

1085 Science Publications

JCS

Fig. 7. Performance comparison of Fuzzy RR CPU scheduling and RR CPU scheduling

The average waiting time of Fuzzy Round Robin
Scheduling is found to be lesser than the same for non
fuzzy counterpart. The average throughput of Fuzzy
Round Robin Scheduling is found to be more than the
same for non fuzzy counterpart.

2. CONCLUSION

 In this study two FIS has been constructed one for
deciding the value of time quantum and another for
deciding the preemption. The proposed algorithm using
these has been presented. The rule base and
membership functions may be fine tuned further to give
much better performance

3. REFERENCES

Alam, B., M.N. Doja and R. Biswas, 2009. Improving
the performance of Fair Share Scheduling algorithm
using Fuzzy logic. Proceedings of the International
Conference on Advances in Computing,
Communication and Control, Jan. 23-24, ACM
Press, Mumbai, Maharashtra, India, pp: 567-570.
DOI: 10.1145/1523103.1523216

Alam, B., M.N. Doja and R. Biswas, 2011. Fuzzy HRRN
CPU Scheduling Algorithm. Int. J. Comput. Sci.
Inform. Sec., 9: 120-124.

Andrew, S.T. and S.W. Albert, 2006. Operating Systems:
Design and Implementation. 3rd Edn., Pearson
Prentice Hall, Upper Saddle River, N.J., ISBN-10:
0131429388, pp: 1054.

Hammam, A. and N.D. Georganas, 2008. A comparison
of Mamdani and Sugeno fuzzy inference systems for
evaluating the quality of experience of Hapto-
Audio-Visual applications. Proceedings of the IEEE
International Workshop on Haptic Audio visual
Environments and Games, Oct. 18-19, IEEE Xplore
Press, Ottawa, Ont., pp: 87-92. DOI:
10.1109/HAVE.2008.4685304

Jang, J.S.R., 1993. ANFIS: Adaptive-network-based
fuzzy inference system. IEEE Trans. Syst. Man
Cybernet., 23: 665-685. DOI: 10.1109/21.256541

Mamdani, E.H. and S. Assilian, 1999. An experiment in
linguistic synthesis with a fuzzy logic controller. Int.
J. Human-Comp. Stud., 51: 135-147. DOI:
10.1006/ijhc.1973.0303

Silberschatz, A., P.B. Galvin and G. Gagne, 2008.
Operating System Concepts. 8th Edn., Wiley, ISBN-
10: 0470128720, pp: 992.

Simon, D., 2002. Training fuzzy systems with the
extended Kalman filter. Fuzzy Sets Syst., 132: 189-
199. DOI: 10.1016/S0165-0114(01)00241-X

Stallings, W., 2008. Operating Systems: Internals and
Design Principles. 6th Edn., Prentice Hall, Harlow,
ISBN-10: 6014226184, pp: 822.

Sugeno, M., 1985. Industrial Applications of Fuzzy
Control. 3rd Edn., North-Holland, Amsterdam,
ISBN-10: 0444878297, pp: 269.

Wang, L.X., 1997. A Course in Fuzzy Systems and
Control. 1st Edn., Prentice Hall PTR, Upper Saddle
River, ISBN-10: 0135408822, pp: 424.

