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Abstract: Problem statement: In this study, the paper proposes the development of Effective Buffer 
Utilization on Adaptive Router with Buffer Pocketing and Pre-Buffer Checking Technique. Network-
on-Chip could be prepared more capable by tricky faster routers. By using improved buffers, superior 
number of ports and channels, adaptive routing, all of which acquire key of overheads in hardware 
costs. Approach: This technique will improve communication efficiency without increasing the buffer 
size with support of input buffer space feedback controller in an input channel. A Buffer-Pocketing 
system enables the input channels to use the unused buffer from another channel at runtime that have 
not enough buffer space to utilize as per the input flits. The current buffer status in a router could be 
updated on each cycle of data flits transmitted to buffer space controller with the help of Router 
Monitor Sensor (RMS). Results: Implementation results of the proposed design for a 64-bit 4 input-
buffer router show a reduction of the average packet transmission latency and an increase of the 
average transmission flits. The results show that the proposed design can reduce the cycles required 
for transmitting a fixed number of packets, when compared to that without buffer stealing. 
Conclusion: The study confirmed that the pre-buffer checking and feedback collecting from the router 
design take the place of the original design in terms of both throughput and latency. Thus, BS is more 
robust in handling hardware overhead ratio. 
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INTRODUCTION 

 
 A basic NoC architecture is composed of routers, 
communication links between routers and a Network-
Interface Component (NIC) between each pair of router 
and processing element. NoC allows much higher 
bandwidth through parallel communication. Each router 
can accept at the same time the flits arriving from all of 
the input channels by storing them in input buffers. The 
input buffers in a router are used to provisionally store 
arriving flits that cannot be forwarded directly to 
required output channels. The flits in the buffers are 
then transmitted through the output channels. All the 
above three cases motivate the need for the effective 
use of router buffers such that the communication 
efficiency of inter link networks can be elevated. 
Buffers into a router at design time, buffer stealing 
enables the input channels that have insufficient free 
buffer space to utilize at runtime the free input buffers 
from other input channels. Multiprocessor Systems-On-
Chips (MPSoCs) provide a huge design space 
exploration for applications with high computational 
demands. MPSoCs are used in applications such as 

networking, signal processing and multimedia. Raising 
its programmability makes them more flexible, 
allowing its use in a wide range of digital systems. In 
this way, the MPSoC lifetime increases, reducing the 
price for the final consumer. Since the platform 
computational power is distributed in several 
Processing Elements (PEs), its organization and 
message passing have a crucial role in the system 
performance. As the number of PEs trends to increase 
to dozens in a near future, a scalable interconnection 
architecture, such as traditional busses, is not 
recommended to be used in such systems. Networks-
on-Chip (NoCs) supports the communication 
requirements of modern MPSoCs, due to features as 
scalability, QoS support, parallel transactions and 
higher aggregated throughput. 
 

MATERIALS AND METHODS 
 
Buffer stealing designs: 
Thief buffer: A thief buffer is a buffer that steals the 
buffer space of other channels when its free buffer 
space is not enough to store incoming flights. For proof 



J. Computer Sci., 8 (6): 987-993, 2012 
 

988 

of concept, in this study the buffers in the north and 
south Input channels are designed as thief buffers. 
 
Victim buffer: A wounded buffer is a buffer whose 
free space can be stolen by a thief buffer. Huang and 
Hwang (2006) here it needs to record that a stored flit is 
from its own input channel or from that of a thief 
buffer. For proof of concept, in this work the buffers in 
the west and east input channels are designed as 
wounded buffers.  
 
Buffer storage unit: A buffer storage unit is the basic 
amount of memory space to store a flit. In this study, 
here assume the size of a buffer storage unit is 8 bits 
and the size of the whole input buffer is 64 bits (8 bits × 
8 buffer storage units). 
 
Adaptive physical channel regulation schemes: In 
this study primarily elucidate the three regulatory 
schemes used in an APCR Router1. 
 
Monopolizing: Similar to a common router, 
monopolizing allows only one Virtual Channels (VC) 
to use the total bandwidth of the output channel every 
cycle. In a generic router design, the fleet size is usually 
the same as the pH its size. A VC can fully use the 
whole bandwidth of the output channel. However, in an 
APCR router design the flit size is smaller than the pH 
its size. In other words, potentially multiple flits can be 
in the same channel on currently. Considering this 
characteristic, an APCR router allows a virtual channel 
to transmit multiple flits in the same cycle. There is one 
restriction on this situation. Wormhole flow control 
allows different packets stored in a VC without 
interleaving and the basic routing unit is a packet not a 
flit. Therefore, a virtual channel is not allowed to 
transmit as many flits as it has.  
 
Fair-sharing: Considering the incompetent channel 
utilization scenario described above, the paper proposes 
fair-sharing. VCs rather share the output channel 
resources. To achieve fair-sharing, a wide physical 
channel needs to be separated into quite a few small 
parts, called sub-channels. This study reserves a 
different sub-channel for VCs of the same input port. 
VCs of different input ports share sub-channels. 
Assuming that a physical channel is divided into four 
sub-channels and each input port have four VCs, then 
each VC of the same input port can have one sub-
channel of its own. 
 
Buffer space updating: The design of buffer status in a 
router might update for each cycle in data flits for 
transmission in a router by a buffer stealing. From 
those kinds of buffer status, input channel will check 

the buffer status then decide to end amount of flits to 
route of transmission. 
 
Channel-stealing: To further improve the operation of 
wide channels, the paper proposes channel-stealing, 
which is built upon fair sharing. Different from fair-
sharing, if a Virtual Channel (VC) finally has no flit to 
be sent, its sub-channel will be stolen by other VCs. 
Here the stealing occurs in two ways. One is stealing 
from VCs belonging to the same input port and the 
other is stealing from VCs of different input ports 
which have the same output direction. Channel-stealing 
explores the channel income carefully. It optimizes the 
arbitration of output channels by using the buffer 
occupancy information from each VC and finally 
increases the network throughput. By consideration of 
VC2 and VC3 have no flits to be sent. VC0 and VC1 
can steal the sub-channel assigned to VC2 and VC3 and 
send more than one flit. There are two options: Either 
VC0 and VC1 send two flits each or VC0 sends one flit 
while VC1 sends three flits. 
 
Related works: The design methodology and key 
research problems of NoCs. In exact, a large buffer size 
reduces the average packet latency in NoC; however, 
larger buffer size also increases the overall NoC area. 
To increase buffer use, some buffer sharing methods 
(Liu and Delgado-Frias, 2007; Lai et al., 2008; 
Hashimoto et al., 2005) were proposed for Virtual 
Channels (VC) in a router design. The performance 
improvement achieved by the buffer sharing methods 
in VC routers is limited, because the control 
complexity of VC design incurs huge overheads in 
terms of additional hardware resources and power 
encumbrances. For example, virtual channel buffers 
require up to nearly 50% of area and account for 64% 
of leakage power in a router implemented under the 70 
nm CMOS technology. 
 Chen and Peh (2003) proposed the shifting in the 
interconnection architecture from busses to NoCs, 
modern MPSoCs need to jointly manage computation 
and communication resources to ensure QoS to specific 
flows. The abstraction of the communication or the 
computation architectures to higher abstraction levels 
(e.g., Through an API), hides the hardware complexity, 
allowing the system programmer to explore the design 
space in an efficient way. The Tilera MPSoC consists 
of an 8×8 grid of tiles connected by five overlapped 2D 
mesh NoCs (iMesh). To take advantage of the whole 
bandwidth afforded by the on-chip integration of 
multiple mesh networks, Tilera provides a C-based 
user-level API library called iLib. There are two broad 
categories of communication in iLib: socket-like 
channels for streaming algorithms and an MPI-like 
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message passing for ad hoc messaging. ILib provides 
several channel APIs, each optimized for a different 
communication needs such as low latency and high 
throughput. Through several communication primitives, 
it lets the programmer to use the best communication 
interface for the application being developed. 
 Several previous NOC designs have been proposed 
to explore the abundant channel resources. Work by 
(Hausman et al., 1990) looks at multiple flits sharing a 
channel. In their network, there are two kinds of flits, 
short and long. The sharing condition is simple: if two 
short flits are routed to the same output port, they can 
simultaneously traverse the crossbar and output 
channel. For long flits, no sharing is applied. One 
concern about this design is that to support two kinds of 
flit sizes in the same network, the flow control can be 
challenging. Since a flit is the basic flow control unit, 
providing two kinds of flits will also make the credit 
management complicated. Hoskote et al. (2007) 
Introduces the concept, Spatial Division Multiplexing 
(SDM), into the NOC design. The results show that 
SDM is a more interesting approach than Time Division 
Multiplexing (TDM), due to the high complexity and 
power needed by buffers to store the TDM 
configuration for each clock cycle. 
 Howard et al. (2010) here the study discusses 
several prior works studying directory protocol 
optimizations. Mukherjee and Hill propose using 
prediction to accelerate directory coherence protocols 
using a predictor based on a Pap-style branch predictor. 
They predict the upcoming coherence actions based on 
the recent history of coherence requests. The Memory 
Sharing Predictor improves on the accuracy of 
coherence predictors by limiting predictions to memory 
requests (reads, stores and upgrades) rather than all 
coherence messages (acknowledgment and invalidations 
are eliminated). Gratz et al. (2006; 2008) here they 
proposed the remote access latency can be reduced by 
having the directory initiate these coherence requests 
speculatively. Circuit-switched coherence focuses on 
predicting who will source the data for a given request to 
accelerate that transfer via a circuit-switched connection. 
 
Proposed scheme: The proposed buffer pocketing 
design was implemented at the cycle-accurate level. 
This study analyzed several situations to illustrate the 
advantages and overheads of the proposed buffer-
pocket design. The paper uses burst traffic patterns 
which represent different traffic loads to compare the 
proposed design with the original buffer design. Buffer 
management will maintain the buffer level of router and 
require buffer size for next data during the packet 
transmission time. Here, boost traffic refers to a 
periodic data transmission that exhibits a very high data 

signaling rate for very short transmission durations, 
which are interrupted by fixed idle time intervals. 
 
Router monitoring sensor: RMS is included in our 
proposed method, for monitoring the each process 
handling by the router. This sensor has an information 
about the buffer usage in an ongoing process then 
produce a status of buffer in a router for the next packet 
transmission. This will update the buffer status to the 
input buffer control for managing the input buffer to 
router on each cycle. 
 
Input buffer control: Input buffer control used in the 
input session of router to manage the flow of input 
packets to the router. This control will reduce the traffic 
flow in a router and will increase router efficiency. 
Buffer control placed in between a router and router 
input channel for easy flow management process. It 
gets updated information from the RMS about the 
buffer status of the router on ongoing process. 
 
Buffer steals: Adding extra buffers into a router at 
design time, buffer stealing enables the input Channels 
that have unsatisfactory free buffer space to make use 
of at runtime the free input buffers from other input 
channels. Buffer steal process will take place while any 
one of the input channels require an extra buffer to 
manage the data flow in the router.  
 
Implementation algorithm: 
Step 1: Input to the router channels sufficient storage 

size 
Step2: Set input channel value to buffer control  
 If (buffer required > buffer empty) 
  Stop the process 
 Else 
  Send buffer to router input channel 
Step 3: Router has to get an input channel for 
 If input channel not having enough buffer 
  Search a used buffer and steal buffer 
 Else 
  Pass packet to output channel 
 Repeat step3 until packet send to the destination  
Step 4: Buffer sensing have get update Buffer in Router 
Step 5: Update buffer control buffer variable with 

buffer status  
Step 6: Repeat step 1-5 until packet send to Destination 
 
  Liu and Delgado-Frias (2007) describe a 
hierarchical QoS model for managing multimedia 
applications running on an MPSoC. The target 
application is a MPEG-4 shape-texture decoder that is 
fully object based, using arbitrary object shapes. The 
work considers a class of QoS systems that relies on 
predicting the execution times of the application at run-
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time, while also taking into account the data 
dependencies. The architecture of the proposed QoS 
concept is based on two negotiating managers, instead 
of a conventional single resource manager (Fig. 1). The 
buffer stealing is processed with the unused memory 
during the runtime for the better usage to get 
transmission efficiency if the buffer size exceeds the 
limit the buffer fragment will triggered for the buffer 
usage of additional part. Router Monitor Sensor (RMS) 
will get updated information about the router buffer at 
runtime with the time interval and then this information 
could be updated in the input buffer controller for 
preventing the buffer traffic in router. 
 

RESULTS 
 
 The Central Buffer (CB) design outperforms the 
Buffer Stealing (BS) design. From these two buffer 
usage , one might conclude that the CB design is better 
in reducing buffer congestion and thus enhancing the 
router throughput However, the CB design suffers from 
serious hardware resource overhead and performance 
overhead. Table 1 shows the synthesis result of various 
buffer designs corresponding to frequency and 
hardware overhead. Table 1: Various buffer designs 
with Frequency and hardware overhead. 
 Results for different buffer designs, shows that the 
hardware overhead of the CB design is very large 
(almost an additional amount of 215% resources 
required) than the conventional buffer design. Thus the 
CB design is not a cost-efficient implementation. 
However, the proposed buffer pocketing method only 
incurs a hardware resource overhead of 22% compared 
to the conventional buffer design. 
  To compare the benefit to overhead ratio for 
different buffer designs, the paper computes the 
throughput to hardware overhead ratio (flit 
(#)/hardware overhead (%)), as shown in and the ratio 
of latency to hardware overhead ((1/latency (# of 
cycles))/hardware overhead (%)), this study observe 
that with buffer pocketing a router exhibits an 
enhancement of maximum 35% in throughput to 
hardware overhead ratio than the original buffer design. 
However, with the faster output period of the buffer, the 
buffer congestion does not occur frequently and thus 
the Buffer Stealing (BS) mechanisms do not need to 
steal the free buffer space of other input channel. 
 
Table 1: Synthesis result of various buffers 
Buffer design Frequency Hardware overhead (%) 
Buffer pocketing  203.442 22.00 
Auxiliary buffer 174.000 43.00 
Central buffer  142.511 215.48 

 As shown in Fig. 2, the study finds that the average 
increase in the number of flits output from the North 
input buffer is almost the same, irrespective of whether 
the traffic loads on the East and West buffers are as 
heavy as or lighter than that on the North and South 
buffers or even negligible. Due to buffer stealing, the 
maximum throughput increase is 50% and average 
throughput increase is 29% compared to that of the 
extended buffer. This maximum average throughput is 
achieved when I: O = 3:7, which shows that buffer 
stealing is more effective when there is an appreciable 
difference in input and output ratio (medium 
congestion). It becomes less effective when there is 
little difference in the I/O ratio or when there is very 
heavy congestion. 
 

 
 
Fig. 1: Architecture of the proposed method 
 

 
 
Fig. 2: Average increment of flits 
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Fig. 3: Congestion tolerance rate in throughput reduction 
 

 
 
Fig. 4: Average increment of flits in the 1350 cycle’s 

period 
 
 Figure 3 illustrates the growth in latency for 
transmitting flits via a router for an increasing output 
period. This study observes that with buffer stealing a 
router exhibits an average growth of 30% in latency, 
while the extended buffer design shows an average 
growth of 35%. Also note that the trend of latent growth 
in BS design is tardy than that for the extended buffer 
design. A slower latency growth is achieved by buffer 
stealing because of the reduced average waiting time for 
each flit. Also note how the reduced growth in latency is 
achieved by buffer stealing irrespective of the traffic load 
on the East and West buffers. 
 Figure 4 The  number  of  flits   that  can  be  
received  by a    router   in   a   fixed   duration  of 
1350   cycles. For the fairness of comparison, the 
Central Buffer (CB) allows the sharing among three 
entire buffers (200 bits) since the thief buffer in BS 
design has its  local buffer and two victim buffers to 
be used.  From  Fig. 7,  it shows that the central 
buffer is  able  to  receive  more  flits  than  our  BS  
design. 

 
 
Fig. 5: Cycles reduction for receiving 30 flits 
 

 
 
Fig. 6: Throughput to hardware overhead ratio 
 
Because the thief buffer in BS can share the free space in 
victim buffers; however, the victim buffers cannot share 
the free spaces in the other victim buffer and thief buffer. 
 Figure 5 shows the number of cycles required to 
receive a fixed number of 300 flits by the BS design 
and the CB design. The CB design outperforms the BS 
design. From the above two experiments, one might 
conclude that the CB design is better in reducing buffer 
congestion and thus enhancing the router throughput 
and reducing the flit waiting time. However, the CB 
design suffers from serious hardware resource overhead 
and performance overhead. Table 1 shows the synthesis 
results for different buffer designs, where this study 
proposes that the hardware overhead of the CB design 
is very large (almost an additional amount of 220% 
resources required) than the conventional buffer design. 
Thus the CB design is not a cost-efficient 
implementation. However, the proposed buffer stealing 
method only incurs a hardware resource overhead of 
25% compared to the conventional buffer design. 
 This study Fig. 6 observe that with buffer stealing a 
router exhibits an enhancement of maximum 32% in 
throughput to hardware overhead ratio than the original 
buffer design. However, with the faster output period of 
the buffer. The buffer congestion does not occur 
frequently and thus the BS mechanism does not need to 
steal the free buffer space of other input channel. 
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Fig. 7: Latency to hardware overhead ratio 
 
 Similar situations can be found in the ratio of 
latency to hardware overhead shown in Fig. 7. Based on 
the above experimental results, the paper can conclude 
that the proposed buffer stealing method can enhance 
router performance at smaller hardware overhead. 
 

DISCUSSION 
 
 The Central Buffer (CB) design outperforms the 
Buffer Stealing (BS) design. From these two buffer 
usage, one might conclude that the CB design is better 
in reducing buffer congestion and thus enhancing the 
router throughput. This study observes that with buffer 
stealing a router exhibits an enhancement of maximum 
32% in throughput to hardware overhead ratio than the 
original buffer design. However, with the faster output 
period of the buffer. The buffer congestion does not 
occur frequently and thus the BS mechanism does not 
need to steal the free buffer space of other input channel. 
 

CONCLUSION 
 
 In this study the paper discussed a buffer pocketing 
method with RMS that can steal the free buffers in the 
low-load channels to support the channels which 
require more buffers than others for storing large 
amount of packets during the runtime. Our practical 
verified with different cyclic data pocket transferring 
through input channel and input buffer controller. Our 
results show that the proposed design can reduce the 
cycles required for transmitting a fixed number of 
packets, when compared to that without buffer stealing. 
The experiments show that the pre-buffer checking and 
feedback collecting from the router design take the 
place of the original design in terms of both throughput 

and latency. Thus, BS is more robust in handling 
hardware overhead ratio. Future work will consist of 
the support for dynamically reconfigurable system. 
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