
Journal of Computer Science 8 (6): 987-993, 2012
ISSN 1549-3636
© 2012 Science Publications

Corresponding Author: Saravanan, K., Department of Information Technology, Velammal Engineering College,
 Anna University, Chennai, Tamilnadu, 600 080, India Tel: + 91 09976667047

987

Buffer Pocketing and Pre-Checking on Buffer Utilization

1Saravanan, K. and 2R.M. Suresh

1Department of Information Technology,
Velammal Engineering College, Chennai, Tamilnadu, 600 080, India

2Department of Computer Science,
R.M.D. Engineering College, Chennai, Tamilnadu, India

Abstract: Problem statement: In this study, the paper proposes the development of Effective Buffer
Utilization on Adaptive Router with Buffer Pocketing and Pre-Buffer Checking Technique. Network-
on-Chip could be prepared more capable by tricky faster routers. By using improved buffers, superior
number of ports and channels, adaptive routing, all of which acquire key of overheads in hardware
costs. Approach: This technique will improve communication efficiency without increasing the buffer
size with support of input buffer space feedback controller in an input channel. A Buffer-Pocketing
system enables the input channels to use the unused buffer from another channel at runtime that have
not enough buffer space to utilize as per the input flits. The current buffer status in a router could be
updated on each cycle of data flits transmitted to buffer space controller with the help of Router
Monitor Sensor (RMS). Results: Implementation results of the proposed design for a 64-bit 4 input-
buffer router show a reduction of the average packet transmission latency and an increase of the
average transmission flits. The results show that the proposed design can reduce the cycles required
for transmitting a fixed number of packets, when compared to that without buffer stealing.
Conclusion: The study confirmed that the pre-buffer checking and feedback collecting from the router
design take the place of the original design in terms of both throughput and latency. Thus, BS is more
robust in handling hardware overhead ratio.

Key words: Buffer pocketing, adaptive router, buffer space, buffer pool management, RMS

INTRODUCTION

 A basic NoC architecture is composed of routers,
communication links between routers and a Network-
Interface Component (NIC) between each pair of router
and processing element. NoC allows much higher
bandwidth through parallel communication. Each router
can accept at the same time the flits arriving from all of
the input channels by storing them in input buffers. The
input buffers in a router are used to provisionally store
arriving flits that cannot be forwarded directly to
required output channels. The flits in the buffers are
then transmitted through the output channels. All the
above three cases motivate the need for the effective
use of router buffers such that the communication
efficiency of inter link networks can be elevated.
Buffers into a router at design time, buffer stealing
enables the input channels that have insufficient free
buffer space to utilize at runtime the free input buffers
from other input channels. Multiprocessor Systems-On-
Chips (MPSoCs) provide a huge design space
exploration for applications with high computational
demands. MPSoCs are used in applications such as

networking, signal processing and multimedia. Raising
its programmability makes them more flexible,
allowing its use in a wide range of digital systems. In
this way, the MPSoC lifetime increases, reducing the
price for the final consumer. Since the platform
computational power is distributed in several
Processing Elements (PEs), its organization and
message passing have a crucial role in the system
performance. As the number of PEs trends to increase
to dozens in a near future, a scalable interconnection
architecture, such as traditional busses, is not
recommended to be used in such systems. Networks-
on-Chip (NoCs) supports the communication
requirements of modern MPSoCs, due to features as
scalability, QoS support, parallel transactions and
higher aggregated throughput.

MATERIALS AND METHODS

Buffer stealing designs:
Thief buffer: A thief buffer is a buffer that steals the
buffer space of other channels when its free buffer
space is not enough to store incoming flights. For proof

J. Computer Sci., 8 (6): 987-993, 2012

988

of concept, in this study the buffers in the north and
south Input channels are designed as thief buffers.

Victim buffer: A wounded buffer is a buffer whose
free space can be stolen by a thief buffer. Huang and
Hwang (2006) here it needs to record that a stored flit is
from its own input channel or from that of a thief
buffer. For proof of concept, in this work the buffers in
the west and east input channels are designed as
wounded buffers.

Buffer storage unit: A buffer storage unit is the basic
amount of memory space to store a flit. In this study,
here assume the size of a buffer storage unit is 8 bits
and the size of the whole input buffer is 64 bits (8 bits ×
8 buffer storage units).

Adaptive physical channel regulation schemes: In
this study primarily elucidate the three regulatory
schemes used in an APCR Router1.

Monopolizing: Similar to a common router,
monopolizing allows only one Virtual Channels (VC)
to use the total bandwidth of the output channel every
cycle. In a generic router design, the fleet size is usually
the same as the pH its size. A VC can fully use the
whole bandwidth of the output channel. However, in an
APCR router design the flit size is smaller than the pH
its size. In other words, potentially multiple flits can be
in the same channel on currently. Considering this
characteristic, an APCR router allows a virtual channel
to transmit multiple flits in the same cycle. There is one
restriction on this situation. Wormhole flow control
allows different packets stored in a VC without
interleaving and the basic routing unit is a packet not a
flit. Therefore, a virtual channel is not allowed to
transmit as many flits as it has.

Fair-sharing: Considering the incompetent channel
utilization scenario described above, the paper proposes
fair-sharing. VCs rather share the output channel
resources. To achieve fair-sharing, a wide physical
channel needs to be separated into quite a few small
parts, called sub-channels. This study reserves a
different sub-channel for VCs of the same input port.
VCs of different input ports share sub-channels.
Assuming that a physical channel is divided into four
sub-channels and each input port have four VCs, then
each VC of the same input port can have one sub-
channel of its own.

Buffer space updating: The design of buffer status in a
router might update for each cycle in data flits for
transmission in a router by a buffer stealing. From
those kinds of buffer status, input channel will check

the buffer status then decide to end amount of flits to
route of transmission.

Channel-stealing: To further improve the operation of
wide channels, the paper proposes channel-stealing,
which is built upon fair sharing. Different from fair-
sharing, if a Virtual Channel (VC) finally has no flit to
be sent, its sub-channel will be stolen by other VCs.
Here the stealing occurs in two ways. One is stealing
from VCs belonging to the same input port and the
other is stealing from VCs of different input ports
which have the same output direction. Channel-stealing
explores the channel income carefully. It optimizes the
arbitration of output channels by using the buffer
occupancy information from each VC and finally
increases the network throughput. By consideration of
VC2 and VC3 have no flits to be sent. VC0 and VC1
can steal the sub-channel assigned to VC2 and VC3 and
send more than one flit. There are two options: Either
VC0 and VC1 send two flits each or VC0 sends one flit
while VC1 sends three flits.

Related works: The design methodology and key
research problems of NoCs. In exact, a large buffer size
reduces the average packet latency in NoC; however,
larger buffer size also increases the overall NoC area.
To increase buffer use, some buffer sharing methods
(Liu and Delgado-Frias, 2007; Lai et al., 2008;
Hashimoto et al., 2005) were proposed for Virtual
Channels (VC) in a router design. The performance
improvement achieved by the buffer sharing methods
in VC routers is limited, because the control
complexity of VC design incurs huge overheads in
terms of additional hardware resources and power
encumbrances. For example, virtual channel buffers
require up to nearly 50% of area and account for 64%
of leakage power in a router implemented under the 70
nm CMOS technology.
 Chen and Peh (2003) proposed the shifting in the
interconnection architecture from busses to NoCs,
modern MPSoCs need to jointly manage computation
and communication resources to ensure QoS to specific
flows. The abstraction of the communication or the
computation architectures to higher abstraction levels
(e.g., Through an API), hides the hardware complexity,
allowing the system programmer to explore the design
space in an efficient way. The Tilera MPSoC consists
of an 8×8 grid of tiles connected by five overlapped 2D
mesh NoCs (iMesh). To take advantage of the whole
bandwidth afforded by the on-chip integration of
multiple mesh networks, Tilera provides a C-based
user-level API library called iLib. There are two broad
categories of communication in iLib: socket-like
channels for streaming algorithms and an MPI-like

J. Computer Sci., 8 (6): 987-993, 2012

989

message passing for ad hoc messaging. ILib provides
several channel APIs, each optimized for a different
communication needs such as low latency and high
throughput. Through several communication primitives,
it lets the programmer to use the best communication
interface for the application being developed.
 Several previous NOC designs have been proposed
to explore the abundant channel resources. Work by
(Hausman et al., 1990) looks at multiple flits sharing a
channel. In their network, there are two kinds of flits,
short and long. The sharing condition is simple: if two
short flits are routed to the same output port, they can
simultaneously traverse the crossbar and output
channel. For long flits, no sharing is applied. One
concern about this design is that to support two kinds of
flit sizes in the same network, the flow control can be
challenging. Since a flit is the basic flow control unit,
providing two kinds of flits will also make the credit
management complicated. Hoskote et al. (2007)
Introduces the concept, Spatial Division Multiplexing
(SDM), into the NOC design. The results show that
SDM is a more interesting approach than Time Division
Multiplexing (TDM), due to the high complexity and
power needed by buffers to store the TDM
configuration for each clock cycle.
 Howard et al. (2010) here the study discusses
several prior works studying directory protocol
optimizations. Mukherjee and Hill propose using
prediction to accelerate directory coherence protocols
using a predictor based on a Pap-style branch predictor.
They predict the upcoming coherence actions based on
the recent history of coherence requests. The Memory
Sharing Predictor improves on the accuracy of
coherence predictors by limiting predictions to memory
requests (reads, stores and upgrades) rather than all
coherence messages (acknowledgment and invalidations
are eliminated). Gratz et al. (2006; 2008) here they
proposed the remote access latency can be reduced by
having the directory initiate these coherence requests
speculatively. Circuit-switched coherence focuses on
predicting who will source the data for a given request to
accelerate that transfer via a circuit-switched connection.

Proposed scheme: The proposed buffer pocketing
design was implemented at the cycle-accurate level.
This study analyzed several situations to illustrate the
advantages and overheads of the proposed buffer-
pocket design. The paper uses burst traffic patterns
which represent different traffic loads to compare the
proposed design with the original buffer design. Buffer
management will maintain the buffer level of router and
require buffer size for next data during the packet
transmission time. Here, boost traffic refers to a
periodic data transmission that exhibits a very high data

signaling rate for very short transmission durations,
which are interrupted by fixed idle time intervals.

Router monitoring sensor: RMS is included in our
proposed method, for monitoring the each process
handling by the router. This sensor has an information
about the buffer usage in an ongoing process then
produce a status of buffer in a router for the next packet
transmission. This will update the buffer status to the
input buffer control for managing the input buffer to
router on each cycle.

Input buffer control: Input buffer control used in the
input session of router to manage the flow of input
packets to the router. This control will reduce the traffic
flow in a router and will increase router efficiency.
Buffer control placed in between a router and router
input channel for easy flow management process. It
gets updated information from the RMS about the
buffer status of the router on ongoing process.

Buffer steals: Adding extra buffers into a router at
design time, buffer stealing enables the input Channels
that have unsatisfactory free buffer space to make use
of at runtime the free input buffers from other input
channels. Buffer steal process will take place while any
one of the input channels require an extra buffer to
manage the data flow in the router.

Implementation algorithm:
Step 1: Input to the router channels sufficient storage

size
Step2: Set input channel value to buffer control
 If (buffer required > buffer empty)
 Stop the process
 Else
 Send buffer to router input channel
Step 3: Router has to get an input channel for
 If input channel not having enough buffer
 Search a used buffer and steal buffer
 Else
 Pass packet to output channel
 Repeat step3 until packet send to the destination
Step 4: Buffer sensing have get update Buffer in Router
Step 5: Update buffer control buffer variable with

buffer status
Step 6: Repeat step 1-5 until packet send to Destination

 Liu and Delgado-Frias (2007) describe a
hierarchical QoS model for managing multimedia
applications running on an MPSoC. The target
application is a MPEG-4 shape-texture decoder that is
fully object based, using arbitrary object shapes. The
work considers a class of QoS systems that relies on
predicting the execution times of the application at run-

J. Computer Sci., 8 (6): 987-993, 2012

990

time, while also taking into account the data
dependencies. The architecture of the proposed QoS
concept is based on two negotiating managers, instead
of a conventional single resource manager (Fig. 1). The
buffer stealing is processed with the unused memory
during the runtime for the better usage to get
transmission efficiency if the buffer size exceeds the
limit the buffer fragment will triggered for the buffer
usage of additional part. Router Monitor Sensor (RMS)
will get updated information about the router buffer at
runtime with the time interval and then this information
could be updated in the input buffer controller for
preventing the buffer traffic in router.

RESULTS

 The Central Buffer (CB) design outperforms the
Buffer Stealing (BS) design. From these two buffer
usage , one might conclude that the CB design is better
in reducing buffer congestion and thus enhancing the
router throughput However, the CB design suffers from
serious hardware resource overhead and performance
overhead. Table 1 shows the synthesis result of various
buffer designs corresponding to frequency and
hardware overhead. Table 1: Various buffer designs
with Frequency and hardware overhead.
 Results for different buffer designs, shows that the
hardware overhead of the CB design is very large
(almost an additional amount of 215% resources
required) than the conventional buffer design. Thus the
CB design is not a cost-efficient implementation.
However, the proposed buffer pocketing method only
incurs a hardware resource overhead of 22% compared
to the conventional buffer design.
 To compare the benefit to overhead ratio for
different buffer designs, the paper computes the
throughput to hardware overhead ratio (flit
(#)/hardware overhead (%)), as shown in and the ratio
of latency to hardware overhead ((1/latency (# of
cycles))/hardware overhead (%)), this study observe
that with buffer pocketing a router exhibits an
enhancement of maximum 35% in throughput to
hardware overhead ratio than the original buffer design.
However, with the faster output period of the buffer, the
buffer congestion does not occur frequently and thus
the Buffer Stealing (BS) mechanisms do not need to
steal the free buffer space of other input channel.

Table 1: Synthesis result of various buffers
Buffer design Frequency Hardware overhead (%)
Buffer pocketing 203.442 22.00
Auxiliary buffer 174.000 43.00
Central buffer 142.511 215.48

 As shown in Fig. 2, the study finds that the average
increase in the number of flits output from the North
input buffer is almost the same, irrespective of whether
the traffic loads on the East and West buffers are as
heavy as or lighter than that on the North and South
buffers or even negligible. Due to buffer stealing, the
maximum throughput increase is 50% and average
throughput increase is 29% compared to that of the
extended buffer. This maximum average throughput is
achieved when I: O = 3:7, which shows that buffer
stealing is more effective when there is an appreciable
difference in input and output ratio (medium
congestion). It becomes less effective when there is
little difference in the I/O ratio or when there is very
heavy congestion.

Fig. 1: Architecture of the proposed method

Fig. 2: Average increment of flits

J. Computer Sci., 8 (6): 987-993, 2012

991

Fig. 3: Congestion tolerance rate in throughput reduction

Fig. 4: Average increment of flits in the 1350 cycle’s

period

 Figure 3 illustrates the growth in latency for
transmitting flits via a router for an increasing output
period. This study observes that with buffer stealing a
router exhibits an average growth of 30% in latency,
while the extended buffer design shows an average
growth of 35%. Also note that the trend of latent growth
in BS design is tardy than that for the extended buffer
design. A slower latency growth is achieved by buffer
stealing because of the reduced average waiting time for
each flit. Also note how the reduced growth in latency is
achieved by buffer stealing irrespective of the traffic load
on the East and West buffers.
 Figure 4 The number of flits that can be
received by a router in a fixed duration of
1350 cycles. For the fairness of comparison, the
Central Buffer (CB) allows the sharing among three
entire buffers (200 bits) since the thief buffer in BS
design has its local buffer and two victim buffers to
be used. From Fig. 7, it shows that the central
buffer is able to receive more flits than our BS
design.

Fig. 5: Cycles reduction for receiving 30 flits

Fig. 6: Throughput to hardware overhead ratio

Because the thief buffer in BS can share the free space in
victim buffers; however, the victim buffers cannot share
the free spaces in the other victim buffer and thief buffer.
 Figure 5 shows the number of cycles required to
receive a fixed number of 300 flits by the BS design
and the CB design. The CB design outperforms the BS
design. From the above two experiments, one might
conclude that the CB design is better in reducing buffer
congestion and thus enhancing the router throughput
and reducing the flit waiting time. However, the CB
design suffers from serious hardware resource overhead
and performance overhead. Table 1 shows the synthesis
results for different buffer designs, where this study
proposes that the hardware overhead of the CB design
is very large (almost an additional amount of 220%
resources required) than the conventional buffer design.
Thus the CB design is not a cost-efficient
implementation. However, the proposed buffer stealing
method only incurs a hardware resource overhead of
25% compared to the conventional buffer design.
 This study Fig. 6 observe that with buffer stealing a
router exhibits an enhancement of maximum 32% in
throughput to hardware overhead ratio than the original
buffer design. However, with the faster output period of
the buffer. The buffer congestion does not occur
frequently and thus the BS mechanism does not need to
steal the free buffer space of other input channel.

J. Computer Sci., 8 (6): 987-993, 2012

992

Fig. 7: Latency to hardware overhead ratio

 Similar situations can be found in the ratio of
latency to hardware overhead shown in Fig. 7. Based on
the above experimental results, the paper can conclude
that the proposed buffer stealing method can enhance
router performance at smaller hardware overhead.

DISCUSSION

 The Central Buffer (CB) design outperforms the
Buffer Stealing (BS) design. From these two buffer
usage, one might conclude that the CB design is better
in reducing buffer congestion and thus enhancing the
router throughput. This study observes that with buffer
stealing a router exhibits an enhancement of maximum
32% in throughput to hardware overhead ratio than the
original buffer design. However, with the faster output
period of the buffer. The buffer congestion does not
occur frequently and thus the BS mechanism does not
need to steal the free buffer space of other input channel.

CONCLUSION

 In this study the paper discussed a buffer pocketing
method with RMS that can steal the free buffers in the
low-load channels to support the channels which
require more buffers than others for storing large
amount of packets during the runtime. Our practical
verified with different cyclic data pocket transferring
through input channel and input buffer controller. Our
results show that the proposed design can reduce the
cycles required for transmitting a fixed number of
packets, when compared to that without buffer stealing.
The experiments show that the pre-buffer checking and
feedback collecting from the router design take the
place of the original design in terms of both throughput

and latency. Thus, BS is more robust in handling
hardware overhead ratio. Future work will consist of
the support for dynamically reconfigurable system.

REFERENCES

Chen, X. And L.S. Peh, 2003. Leakage power modeling

and optimization in interconnection networks.
Proceedings of the International Symposium on
Low Power Electronics and Design, Aug. 25-27,
ACM, Korea, pp: 90-95. DOI:
10.1145/871506.871531

Gratz, P., B. Grot and S.W. Keckler, 2008. Regional
congestion awareness of load balance in networks-
on-chip. Proceedings of the 14th International
Symposium on High-Performance Computer
Architecture, Feb. 16-20, IEEE Xplore Press, Salt
Lake City, pp: 203-214. DOI:
10.1109/HPCA.2008.4658640

Gratz, P., C. Kim, R. McDonald, S.W. Keckler and D.
Burger, 2006. Implementation and evaluation of
on-chip network architectures. Proceedings of the
International Conference on Computer Design,
Oct. 1-4, IEEE Xplore Press, San Jose, pp: 477-
484. DOI: 10.1109/ICCD.2006.4380859

Hashimoto, M., T. Yamamoto and H. Onodera, 2005.
Statistical analysis of clock skew variation in H-
tree structure. Proceedings of the 6th International
Symposium on Quality of Electronic Design, Mar.
21-23, IEEE Xplore Press, DOI:
10.1109/ISQED.2005.114

Hausman, K., G. Gaudenzi, J. Mosley and S. Tempest,
1990. US patent 4978927-programmable voltage
controlled ring oscillator.

Hoskote, Y., S. Vangal, A. Singh, N. Barker and S.
Barker, 2007. A 5-GHz mesh interconnect for a
teraflops processor. IEEE Micro, 27: 51-61. DOI:
10.1109/MM.2007.4378783

Howard, J., S. Dighe, Y. Hoskote, S. Vangal and D.
Finan et al., 2010. A 48-Core IA-32 message-
passing processor with DVFS in 45nm CMOS.
Proceedings of the International Solid State
Circuits Conference IEEE, Feb. 7-11, IEEE Xplore
Press, San Francisco, pp: 108-109. DOI:
10.1109/ISSCC.2010.5434077

Huang, P.T. and W. Hwang, 2006. 2-level FIFO
architecture design for switch fabrics in network-
on-chip. Proceedings of the International
Symposium on Circuits and Systems, May 21-24,
IEEE Xplore Press, Island of Kos, pp: 4863-4866.
DOI: 10.1109/ISCAS.2006.1693720

J. Computer Sci., 8 (6): 987-993, 2012

993

Lai, M., Z. Wang, L. Gao, H. Lu and K. Dai, 2008.
Dynamically-allocated virtual channel architecture
with congestion awareness for on-chip routers.
Proceedings of the 45th Annual Design
Automation Conference, Jun. 08-13, ACM, USA.,
pp: 630-633. DOI: 10.1145/1391469.1391630

Liu, J. And J.G. Delgado-Frias, 2007. A DAMQ shared
buffer scheme for network-on-chip. Proceedings of
the 5th IASTED International Conference on
Circuits, Signals and Systems, Jul. 2-4, ACTA
Press, Canada, pp: 53-58.

