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Abstract: Problem statement: This study discusses the implementation of advanced logistic belief 
Neural Network for robot arms control. Approach: Given the desired trajectory of the end-effectors in 
space, the logistic function is used to compute the conditional probability of the neurons being active 
in response to its induced field. The computations of conditional probabilities are performed under two 
different null conditions. (1) for all vectors not belonging to the parent of element node i and node j. 
(2) for node i greater than node j, which follows from the fact that the network is acyclic. Results: The 
test results proved the merit of the proposed method due to the fact that the robot arms move in the 
expected desired trajectory position within the allocated time set for each action. 
Conclusion/Recommendation: Our future work will be to improve this method for its use in the 
industrial robot arms. 
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INTRODUCTION 

 
 Artificial Neural Network (ANN) has emerged 
over the years and has made remarkable contribution to 
the advancement of various fields of endeavor and can 
be defined as a distributed computing system composed 
of a number of individual processing element operation 
largely in parallel. Interconnected according to same 
specific architecture and having the capability to self-
modify connection strengths and processing element 
parameters. It can function at all to do useful things by 
being incorporated into systems containing more or less 
conventional elements so that they can solve real world 
problems economically. Rabelo and Avula (1991) used 
two different artificial neural networks systems 
associated with the prototype of a scheme which uses 
the integration of artificial neural networks and 
knowledge-based systems for motion control of a 2D 
arm robot. The system involved a plan generated by the 
higher order element which includes the kind of desired 
trajectory to follow. Velagic et al. (2010) introduced a 
recurrent neural network for controlling the mobile 
robot with nonholonomic constraints. The network is 
trained online uses back propagation optimization 
algorithm with an adaptive learning rate which is very 
effective for real-time control requirements. Klly et al. 
(1996) presented a Neuro-fuzzy control for planning the 
trajectory of a three link robot arm in the presence of an 
obstacle. The robot arm operates in two dimensions in 
an environment containing a randomly placed obstacle 

and goal of which the controller should determine a 
series of joint angle that move the end-effector from a 
given starting position to a desired final position 
without colliding with the obstacle. Massera et al. 
(2006) proposed an evolutionary technique for 
developing a neural network based controller for 
anthromorphic robot arm with four Degrees of Freedom 
(4-DOF). In the authors proposed method, the neural 
controller consists of a feed forward neural network 
with three sensory neurons directly connected to 4 
motor neurons of which are updated on the basis of a 
standard logistic function. The genotype of evolving 
individuals encodes the connection weights of the 
neural controller. So where the neural network does 
come from? 
 The Artificial Neural Network is inspired by 
Human brain (highly information-processing system) 
that performs the formidable task of storing a 
continuous flood of sensory information received from 
the environment. From the deluge of trivia, it must 
extract vital information, act upon it and files it away in 
long memory in which large numbers of cells that 
individual functions faster, perfectly and collectively 
performs tasks that even the largest computer at our 
disposal today cannot be able to match. The following 
is the brief description of the human brain the neural 
network drives. The human nervous system can be 
viewed as a three-stage system shown in the block 
diagram of Fig. 1.  
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Fig. 1: Overview of human nervous system representation 
 
 Central to the system is the brain represented by 
the neural nerve, which continually receives 
information, perceives it and makes appropriate 
decisions. Two sets of arrows are shown in the figure. 
Those pointing from stimulus to response (blue) 
indicate the forward transmission of the information-
bearing signals through the system. Those pointing 
from effectors to receptors (red) indicate the presence 
of feedback in the system. The receptors convert stimuli 
from the human body (internal stimulus) or external 
environmental (external stimulus) into electrical 
impulses that convey information to the neural nerve 
(brain). The effectors convert electrical impulses 
generated by the neural network in discernible response 
as a system outputs. But the various Artificial Neural 
Networks that are currently in fashion differ in their 
ability to make accurate distinctions, their ability to 
learn new things without erasing the previous 
information that has been learned and they're efficient 
(Tavoosi et al., 2011). In this study the implementation 
of advanced logistic belief Neural Network for robot 
arms control is discussed. Given the desired trajectory 
of the end-effector in space, the logistic function is used 
to compute the conditional probability of the neurons 
being active in response to its induced field. 
 

MATERIALS AND METHODS 
 
Literature review: The neural networks are one of the 
most control system used in the control engineering due 
to its efficiency and it is about to take the first place 
over the so far well-known control system, such as PID 
control, fuzzy logic, fuzzy control or genetic algorithm. 
The number of control topics involving neural network 
is so huge that someone can spend one week even one 
month reading books, articles without finding the best 
control method that fits his system. In spite of the 
number of the articles in the open literature, there has 
been so far no attempt to apply the belief logistic 
network to control the robot arm. But as far as it 
concerns robot arm control using neural networks, 
Raffaele and Stefano (Bianco and Nolfi, 2004) have 

chosen the evolving neural network controller for a 
robotic arm that grasp objects on the basis of tactile 
sensors. By their method each individual in the neural 
controller is controlled by the fully connected neural 
network with 15 sensory neurons and 9 motor neurons. 
Neurons are updated by the logistic function. The 
sensory neurons encode the angular position of the nine 
Degrees of Freedom (9-DoF) of the joints and the state 
of the six contact sensors located in the arm and in the 
fingers. The motor neurons control actuators of 9 
corresponding joints. The output of the neurons in 
normalized within the range of the movement of the 
corresponding joint. Oyama et al. (2005) applied the 
inverse kinematics learning for robotic arms by the 
modular neural network system. Their proposed method 
consists of a number of experts, with each expert 
approximates a continuous region of the inverse 
function. The forward model in the system 
approximates the forward kinematics of the robot arm 
and the performance index of each expert is the 
predicted end-effector. Position and orientation error 
are calculated by using the forward model. The expert 
selector chooses one approximate expert by using the 
expected performance of the experts. At this stage the 
system can learn a precise inverse kinematics model of 
the robot arm with equal or more degrees of freedom 
than that of its end-effector. However there are still 
some robot arm with few degrees of freedom that the 
system cannot lean at the present stage and to overcome 
this problem they adopted a modified Gauss-Newton 
method for finding the least-squares solution. Bouganis 
and Shanahan (2010) introduce a training spiking 
neural network to control a 4-DoF robotic arm based on 
spike training-dependent plasticity. The proposed 
neural network consists of spiking neurons which are 
organized into seven input layers and four outputs 
which used a population of 1200 neurons in each input 
layer and a population of 800 neurons for each output 
layer. Four of the input layers encode the information 
that is given by proprioception and the firing pattern at 
each one of them indicates the angle of the respective 
joint. The four joints of interest are located at the 
shoulder (roll, pitch and yaw) and the elbow of the arm. 
The network encodes these angles after discretizing 
them into bins with five degree resolution. The 
remaining three input layers represent the spatial 
direction that the end-effector should move at the next 
time step, with each layer encoding the projection of the 
3D directional vector to one of the world axes. 
 
The target robot system: The robot used in this 
experiment shown in Fig. 2 is a prestige robot with a 
rugged wheeled Wi-Fi equipped with two gripping 
arms that optionally provide the robot with one wrist-
mounted Complementary Metal-Oxide Semiconductor 
(CMOS) camera installed on its right arm. 
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Fig. 2: Multi-DOF gripping arm robot 
 

 
 
Fig. 3: Direct logistic belief neural network 
 

 
 
Fig. 4: Sigmoid function f (v) 
 
Combining mobility and a new ability to grasp and 
manipulate, the robot offers users broad versatility in its 
application. The wheels-based platform consists of 12V 
DC motors with integrated 800 counts per cycle optical 
encoder, yielding a top speed of 0.75ms-1. The robot is 
light as it weighs only 4kg with a capability to carry a 
maximum payload of 15 kg. Concerning the sensor 
types, the robot comes with ultrasonic range sensors 
and infrared range sensors including two-way audio 
capability. These range sensors are for environment 
detection and collision avoidance, while the two-way 
audio is for communication between the robot and the 
user. The collision avoidance and the sensing may not 
be corrected by information acquired from the only 
vision, therefore three ultrasonic sensors, with one 
located at the middle front bottom, one in the left front 
bottom hand side and one on the right front bottom 

hand side of the robot are integrated. The middle front 
sensor is used for detecting obstacle, while those on 
each side are used for assisting the six infrared sensors 
of which one is located at the middle front upper just 
above the middle front bottom of the ultrasonic sensor, 
one in the upper front left, one in the upper front right, 
one in the rear middle, one in the rear left and one in the 
rear right of the robot respectively. Two quadrature 
encoders are also integrated in the robot, where the left 
one uses the channel-1 and the right one uses the 
channel-2. DC servomotor is used to steer and driving 
of the prestige robot. 
 
Methodology: Robot arms, also known as robot 
manipulator are mechanical structures designed to carry 
loads from one point to another. They are commonly 
used in the industry in which the majors’ applications 
are welding spray printing, palletizing and assembly. To 
perform such action a robust control system is required 
and one of the most robust controls is the neural network. 
Fig. 3 shows the multilayer network used.  
 The neural network can be used to model the input-
output behavior of general and specific classes of the 
system, without detailed mathematical models. In other 
words, the neural network is universal approximators to 
the behavior of systems. This suggests that they can be 
used to approximate inverse kinematics without 
actually performing the matrix inversions associated 
with inverse kinematics. The inverse kinematics are 
defined as the computation of the joint coordinates that 
result in a desired special position of the end-effector 
(Zacharie, 2011). Given a desired trajectory of the end-
effector in space, the goal of this control system is to 
compute the torques and forces at the joints needed to 
move the manipulator (arm) through this trajectory. The 
acyclic property of the neural network makes it easy to 
perform probabilistic computations as the neural 
network uses logistic function. Equation 1 is the logistic 
function used to compute the conditional probability of 
the neurons being active in response to its induced field: 
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k vary between - ∞ and + ∞ as illustrated in Fig. 4. 
 By differentiating Eq. 1, the need for the partition 
function Z has been eliminated. First, we have chosen 
the vector V consisting of the variable 
v , v ,v va a a a1 2 3 n

⋅ ⋅ ⋅ ⋅ ⋅ ⋅  that denote the behavior of the 

logistic belief network comprising N stochastic neurons. 
The parents of element of node i and node j in the 
vector V are defined by Eq. 3: 
 

{ }Pa (v ) v , v ,v va1 a2 a3i aj 1≤ ⋅⋅⋅ ⋅ ⋅ ⋅ −   (3)  

 
where, { }a1 a2 a3 ajv , v ,v v⋅ ⋅ ⋅ ⋅ ⋅ ⋅  is the smallest subset of the 

vector that excites nodes for which the conditional 
probability is Eq. 4: 
 
P (X x / Pa(v ) )j j i=   (4)  

 
 As there is a direct link from node i and node j. An 
important of the logistic belief network is its ability to 
exhibit the conditional dependencies of the underlying 
probabilistic model to the input data, with the 
probability that the neuron is active being defined by 
the logistic function where wji is the synaptic weight 
from neuron i to neuron j. The computations of 
conditional probabilities are performed under two 
different null conditions: 
 
• wji = 0 for all vi not belonging to pa(vi), which 

follows from the definition of a parent 
• wji = 0 for node i > node j, which follows from the 

fact that the network is acyclic 
 
 As the system has five degrees of freedom, we 
have computed five desired joint positions for each 
instant of time, where the increment between these 
instants depends on the sampling rate of the arm 
movement. The sampling rate must be fast enough to 
compare to the highest frequencies present to avoid 
aliasing. To do so we used the sampling rate of five to 
ten times higher frequencies present in the system. 
 The sequence of operation of this system is as 
follows: 
 
• The initial state of the system is known and the 

desired endpoint trajectory in Cartesian coordinates 
(KT) is computed and sampled at the desired 
update frequency (1/T). The index K is a counter 
for the sampling times 

• The Computation unit computes the corresponding 
desired joint angle θ(kT) 

• The desired joint angles are used as inputs for each 
of the five actuator servos that compute the actual 
joint position at each interval 

 
 
Fig. 5: Logistic Belief Neural Net Control System 
 
The architecture of the joint position control system is 
shown in Fig. 5.  
 

RESULTS 
 
Experimental results: The proposed Logistic Belief 
Neural Network (LBNN) has been tested on a robot 
with a rugged wheeled WI-fi equipped with two 
gripped arms that optimally provide the robot with one 
wrist-mounted complementary metal-oxide semi-
conductor camera installed on its right arm. Each arm 
has five degrees of freedom and the LBNN used is a 
multilayer network, which contains an input-layer, 
output-layer and a hidden-layer unit. The input layers 
are presented to the network and the network outputs 
are compared to the desired actual or outputs 
corresponding to the inputs. To determine how to 
allocate the error not just to the weights in the output 
layer, but to those in the hidden layer as well, we used 
the update rule back-propagation algorithm: 
 

z ( y )ydw z eTij j jiii i T iα∆ = = − =′ α ′   (5)  

 
Where: 
zi =  is the output of the jth units in the hidden layer. 
α = is the learning rate. 
T’ = is the derivative of the function T(x).  
 
 Figure 6 and 7 are the plot results of each arm. During 
the training stage, a set of configurations of the arms is 
selected as initial position where the generator sends motor 
commands to the range of [-60°, 60°] at each joint and 
their  effect  on  the special position of the end-effectors 
are  computed   based   on  the   conditional   probability.  
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Fig. 6: Robot left arm movement at 20° 
 

 
 
Fig. 7: Robot right arm movement at 25° 
 

 
 
Fig. 8: Robot left arm movement at 20° without error 

 
 
Fig. 9: Robot left and right arm movement at 30° 
 

  
 
Fig. 10: Robot left and right arm movement at 35° 
 
Two objects were placed on the left and the right side 
of each robot arm at 20° for left robot arm and 25° for 
the right arm. On the command go, both arms move at 
the same time towards each object then returned back to 
the initial position as expected and the data results were 
analyzed. The results show a small propagation error 
from the output layer of the left robot arm (Fig. 6). To 
propagate the error from the output layer back to 
weights in the hidden layer we used the chain rule 
differentiation by substituting the weighted inputs sums 
for the terms zi of Eq. 5.  
 The resulting expression is Eq. 6: 
 

n
2

j j,i i iij i
i 1

T' (w e T ' )xw
=

∆ = α ∑   (6) 

 
 And the test has been repeated three times at 20° of 
which the test result is shown in Fig. 8 where the error in 
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the output layer has been eliminated. The test has been 
repeated for 30°, 35°, 40°, 45°, 50°, 55°, -15°, -20°, -30° 
and -33° respectively of which the Fig. 9 and 10 illustrated 
the right and left movement results at 30° and 35°. 
 

DISCUSSION 
 
 The use of the Logistic Belief Neural Network has 
given us a new powerful control method to be used in 
many systems. Not only to control all mobile robot 
systems including speed, arms or industrial robot arms 
but also in other fields such as communication, network 
security control. What makes the LBNN powerful is 
that with the probability condition under two null 
conditions, it is easy to define and find the input that 
fits the system. But at this stage it is too early to claim 
the success of the present system as there are still some 
efforts to do to improve the way the propagation of the 
error from the output layer back to weights in the 
hidden layer without using the chain rule differentiation. 
Although the result we obtained prove the robustness of 
the method. To compare the present method to other 
existing methods used in robotic arm control, we have 
looked at (Vaezi and Nekoule, 2011) that proposed the 
adaptive control of a robot arm based neural network 
which is a combination of two controllers. The adaptive 
control and neural network and it were based on 
nonlinear autoregressive moving average where the 
simulation result was not convincing compared to our 
method. In the simulation test there was not the arm 
reaction to the go command but only the neural network 
training output, while in (Simmons and Demiris, 2005) the 
result is somewhat good and not so far from our results. 
 

CONCLUSION 
 
 In this study, we have presented the logistic belief 
neural network algorithm to control five degrees of 
freedom of the robot arm. The proposed algorithm has 
been tested on a robot with a rugged wheeled WI-fi 
equipped with two gripped arms that optimally provide 
the robot with one wrist-mounted complementary 
metal-oxide semi-conductor camera installed on its arm. 
The neural network consists of 600 and the acyclic 
property of the neural network makes it easy to perform 
probabilistic computations. The desired robot arm 
joint angles are used as inputs to the each of the five 
actuator servos that compute the actual joint position at 
each interval. The experimental evaluation test has been 
performed 12 times and validated the proposed 
algorithm. Our future work is to add extra neurons to 
the hidden layer unit and make the arm grasp objects at 
a specific location. 
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