
Journal of Computer Science 8 (6): 822-827, 2012
ISSN 1549-3636
© 2012 Science Publications

Corresponding Author: Sudhakar, P., Department of ECE, Faculty of Information and Communication Engineering,
 Anna University, Chennai, India

822

Automatic Specification Evaluator for Effective Migration

Sudhakar, P. and P. Sakthivel

Depatrment of ECE, Faculty of Information and Communication Engineering,
Anna University, Chennai, India

Abstract: Problem statement: Software Reengineering is an effective technique for reuse the older
application in the new environment. Nowadays, Reengineering techniques are increasing in spite of
many difficulties and issues arise when the older application is converted to newer one. So there is a
need to enhance the new system to satisfy the user requirements and quality aspects. Approach: For
this enhancement of new system, we propose a method namely Automatic Specification Evaluator
(ASE) where the interference and their effects on the new system were identified by their attributes
and modify the interference if necessary. The accuracy of the migration was further increased by
reimplementation of the same method. Results: After the proposed ASE method, the system
interference was reduced and the efficiency of the new system was improved. In many migration
situations, ASE produces the target system with zero interference. Conclusion: Our proposed method
gives a good performance in the new system and hence the new system can adopt the properties of the
legacy system and also satisfies the user requirements.

Key words: Software reengineering, interference, LOC, ASE, recursive ASE

INTRODUCTION

 The main aim of the Software Reengineering (SR)
is reusability. Legacy system is the one where the
system is not supported and compatible with the new,
modern environment. So, there is a need to migrate
older system to a new system which is otherwise known
as Forward Engineering. When the components
migrated to new platform, there are several challenges
such as the assembling of new application with their
requirements is extremely tedious. Consequently,
adaptation and integration does not perform effectively
when the SR technique is directly implemented. Due to
these constraints, it is not possible to implement the
direct reengineering technique in the older system. All
the converted systems need some structured
arrangement to implement the new system to overcome
the various issues. Nowadays, reengineering techniques
are widely needed for services like web technologies,
business and enterprise technologies. In organizations,
legacy systems are valuable where each and every
module plays a vital role. Direct implementation of SR
in this legacy system leads to several problems. The
entire software products constantly changes because of
update and regularities measures. Because of these
change factors in a system, the new system should not
adopt the legacy system requirements and peculiarities.
To implement a reengineering technique for an
organization it needs enormous data and schedules.
Apart from these, the method and size also constantly

changes in real time situations. There are some critical
information and structures which is very difficult to
migrate from legacy system. There are some similarities
and distinct between the new one and old ones. So
maintaining the balance between the old and new
system is difficult. Despite of many methods, there is
no perfect and accurate method of bug free migration.
So we propose a method namely Automatic
Specification Evaluator (ASE) for enhancing the
migrated new system considering the efficiency and
accuracy as migration factors. As the name implies, this
ASE method directly retrieves the specification of a
legacy system from the new system and evaluates the
specification for various modules in the proposed
approach. This method also didn’t give accurate results
but it is easy to access and give efficient results in
target system compared to direct reengineering. This
method improves the quality of migrated system by
reducing the various defects in migrated system.
 When we convert the legacy system to new one,
the primary problem evolved is interferences. There are
several reasons for interferences as one of them is
changes of updating between legacy and new system.
While reengineering changes takes place in the new
system and these modifications affect the new system
behavior semantically and also in other system
measures. These changes are indicated as interferences.
Our proposed approach will reduce these interferences
and enhance the new system performance behavior.

J. Computer Sci., 8 (6): 822-827, 2012

823

Fig. 1: Mechanism of proposed ASE

 The data and some functions didn’t compatible
with each other and so they get overlapped with each
other. This overlapping introduces some serious defects
in reengineering such as loss of data, security measures.
Our proposed method identifies the various
interferences also reduces them smartly and the
resultant system is referred as new target system. In this
study, we introduce some metrics to ensure the quality
of new system performance. ASE method evaluates the
specification in the low level by introducing some
granules in the new system and gives some breakpoints
in the new system too. In general, a system has many
attributes and peculiarities. To evaluate the migration
efficiency, we check these attributes whether they are
correct as of the legacy system. Our ASE method easily
obtains these data without complications. Further the
categorization as positive and negative enhancement of
this method as well as the target system. To get a fine
process we also iterate the process. The below Fig. 1
gives the overview of the proposed process.
 When the legacy system is converted to new
system using any reengineering technique then it
undergoes our proposed ASE process and finally we will
get the desired accurate new system as the target system.
ASE takes place prior to the execution of the new system
which is an added advantage of the proposed system.
This ASE process is operated in all environments and
also suited to integrate in any SR technique. It is quite
easy to simulate this ASE as a tool by using packages
that includes these functions as libraries.

Related work: Many existing research works elaborate
how new system or process is extracted from older
ones. For reusing the existing application, there are
several approaches have been proposed. Most of the
applications take a complete legacy system and
transform into the new one. Moreover these approaches
act as a functionality to convert a legacy system into

new one. Some work gives about the model checking
process of the migration. There are few works also
available to enhance the reengineering technique. Some
of the literatures are discussed and reviewed here.
 Stilkerich et al. (2011) discussed about how to
combine isolated legacy components with the mixed
mode operation.
 Jain et al. (2011) propose a method to extract
information from legacy C++ source code and making a
new system without making a new system.
 Hwang et al. (2009) focused on improving
reusability and extensibility to legacy system and
proposed an automated approach to migrating legacy
systems.
 Chen et al. (2010) developed a method to class
diagram and sequence diagram from the Java binary
byte code.
 Gowthaman et al. (2005) discussed various
demerits and limitations of the current reengineering
techniques. They also identified a method how to
convert the legacy source code to model driven
architecture.
 Nagy et al. (2011) gave a method to technology
development and functionality for effective
Reengineering of Legacy systems.
 Meng et al. (2011) introduced a method for
efficient migrating of legacy system to web
applications.
 Zhang et al. (2006) made an attempt for the
analysis of extracting reusable object oriented legacy
code segments from their legacy programs through
wrappers.
 Zahi et al. (2009) discussed about the business
process retrieval from the legacy information system
through functional analysis of stable components of the
legacy system.

MATERIALS AND METHODS

 The proposed ASE process and their steps are
summarized in the Fig. 2. During the operation of this
ASE process, it ensures the legacy system and target
system memory locations as the execution of the
proposed ASE takes place directly to the memory
location. It is easy to setup the desired location of
execution as of the user criteria. The tools for garbage
collection is optional to delete the no longer required
memory areas also they help for common errors. It is
possible to break the proposed ASE in any modules as
it is a linear and conquer approach.
 When the new system obtained from any
reengineering technique, the first step is to retrieve the
attributes of those systems. When the new system is
simple, then it is easy to obtain the attributes by means
of manual process like debugging.

J. Computer Sci., 8 (6): 822-827, 2012

824

Fig. 2: Process of AS

Fig. 3: Mechanism of Recursive ASE

 If it is of large scale having enormous data, then
the several tools and metrics are available to retrieve
the attributes of the new system. Each and every action
of the old system procedures and components are
referred as attributes. (Example of attributes is
statements, operations) Moreover these attributes are
the main components of the legacy system. We have to
ensure that all the available components are
reengineered to the new system. We apply any slicing
algorithm or any checking tools for a reengineering
process. By obtaining these attributes, we are able to
detect the interferences in the new system. There are
few methods available to identify the interferences in
the old system but this proposed method ASE with SR
is a promising approach. For detecting the interferences
in a system first we analyze the attributes thoroughly.
We have to spend sufficient time to analyze the
attributes. By doing so it is easy to find the changes and
redundancy in the new system. When identifying the
redundancy, take the necessary action to modify such as
deletion and conversion of new process. After the
modification, we should derive and generate a model
system so as to perform the migration. Once the model is
generated, allow the model system to undergo and check
design cases with positive and negative cases inbuilt with
ASE. The methods like dependency graph or any efficient
measurement metrics is required to design the positive and
negative cases. When the new system falls under the
positive case, then execute this system as target system if it
satisfied the user requirements.

 ASE process removes the interference from the
new system but still there are some redundancy remains
in the target system. This situation arises because of
overlapping and inter-dependencies of system
components. When we apply our proposed ASE method
again to the system, we further reduce this interference
as much as possible. In many cases, the ASE gives the
redundant free new system. The mechanism of
recursive ASE is given in Fig. 3.
 Comparing to the direct reengineering methods,
implementation of this ASE is quite time consuming.
But when we consider some large scale process and
systems, the manual debugging and other corrective
measures should take enormous time to complete the
debugging process successfully. In this connection, the
proposed ASE is an automated task and it will complete
the process successfully with minimum time when
comparing to manual debugging.

RESULTS

 Our proposed ASE is experimented where CPP
considered as Legacy and JAVA as a new system. So,
we retrieve a JAVA program from a CPP program. The
average errors predicted from various Legacy CPP
programs before ASE is 0.58 which is reduced by ASE.
For our experiment, we took many programs in CPP
and ASE generates 18% of program as negative cases
which also efficiently removed after implementing ASE.
There are various issues arise when the source code is
converted to JAVA. Before implementation of this
method, the importance of older CPP program was
considered and new JAVA functionalities so as to recover
the program without loss and corrective measures.
 The summarized results are discussed in Table 1
and 2, Fig. 4 and 5. Consider the following CPP
program where it undergoes reengineering program
with ASE approach:

#include<iostream.h>
 #include<conio.h>
 int mul(int p,int q,int r);
 int mul1(int p,int q);
 int main()
 {
 int s,w;
 cout<<”s=”<<mul(2,3,5)<<”\n”;
 cout<<”w=”<<mul1(3,2);
 }
 int mul(int p,int q,int r);
 {
 int s;
 s=p*q*r;

J. Computer Sci., 8 (6): 822-827, 2012

825

 }
 int mul1(int p,int q);
 {
 int w;
 w=p*q;
 }

Program P1: Function Overloading

Table 1: Retrieving of attributes
Legacy CPP Derived attributes Recovered in JAVA
Data A1
Methods A2
Statements A3
If….else - Not available
Switch - Not available
Operators A4
Data structures - Not available

Table 2: Raw collection of conducted experiments
Programs LOC Non ASE ASE Time Removal rate
 (Mins)
P1 1800 158 56 7 3.248
P2 925 89 22 4 2.563
P3 1306 103 28 6.3 3.005
P4 982 76 11 2.1 2.632
P5 489 37 2 0.56 1.115

Fig. 4: New JAVA Program

Fig. 5: Execution of JAVA program

 For the above program, the derived and the
recovery properties from the respected legacy program
is shown in the Table 1. The program considered here is
based on the function overloading conceept.
 Table 1 gives the attribute satisfaction between
CPP and JAVA. For a CPP program, ASE
automatically retrieves all the Attributes named as A1,
A2, A3 and A4. The different attributes identified in the
program P1 are Data, Methods, Statements, Conditional
statements such as if…else, switch, Operators and Data
structures used in the CPP program. Table 1 concludes
that the retrieved attributes of CPP are migrated
completely. In attribute retrieval module, the attributes
are identified successfully and the interference removal
module is the next module of our proposed ASE
approach. Consider the following CPP legacy code
from the above P1:

int mul (int p, int q, int r);
int mul1 (int p, int q);

 The above code undergoes some slicing algorithms
and reengineering technique and produces a equivalent
JAVA program which is given below.
 The outcome of the above JAVA program is
evaluated as follows:

p= 2;
p=3;
q=4;
q=2;
r=5;
s=p*q*r;
w=p*q;

 When we execute the above JAVA program it will
display the error result as follows.
 To overcome the above errors, the second module of
our work is implemented. Although the grammar is
checked by the slicing algorithm there are some
complicated tasks. When we analyze the migrating
snippets, there are various issues and requires attention
for further process. In the above transformed code, the
variables p and q affect the value of s and which leads to
interference. In the legacy CPP, the function overloading
takes place to evaluate the result of s. But the target
system i.e., JAVA doesn’t support the overloading
concepts and will affect the computation. It takes both
the values resulting overlapping of each other by
overlapping of these two values (for p 2, 3 and for q 2, 5)
for a single variable. To overcome this error, we apply
our ASE method. When our proposed ASE is applied to
the above snippet, then the above code is modified as:

p=2;
q=3;
 r=5;
s=p*q*r;

J. Computer Sci., 8 (6): 822-827, 2012

826

Fig. 6: Successful Execution after ASE

Fig. 7: Non ASE Vs ASE

Fig. 8: ASE Vs Recursive ASE

 After evaluates this snippets it evaluates other data
as follows:

P=3;
q=2;
w-p*q;

 For this process the execution process is given in
Fig. 6.
 By using our ASE the computation of s is done by
two separate modules. In migration, the modification
takes place automatically by deleting the snippet q: =4
in the first module and vice versa. After the
modification, ASE generates the model case for user
requirements satisfaction to avoid the abrupt migration.
When the forthcoming code comes under positive case
then it is ready for execution as the target system. We
repeat the experiments for various programs.

Fig. 9: Efficiency of ASE Method

Table 2 gives the raw collection of the conducted
experiments and the results are discussed below.
 We took various CPP programs with many
attributes and constraints where the corresponding
Lines of Code (LOC) of programs is estimated. The
interferences are computed without ASE is denoted in
the third column. Programs numbered as P1….P5. After
applying the ASE method, the interference is reduced in
the migration system. The time required for evaluation
of this process is given in the next column. Finally the
interference removal rate also computed for several
programs. The below Fig. 7 shows the results of the
experiments of ASE.
 For the various programs P1....P5, the interference
is computed with and without ASE and the above graph
concludes that the ASE eradicates the interference
compared to direct reengineering obtained from legacy
system. The interference is very much reduced in the
obtained output and hence it yields an improved new
system. The added advantage of our work is after
getting the resultant of the method, again gives this
process as input to ASE. By doing this recursive
process will give the bug free target system. While
doing this recurrent process, we must ensure that the
peculiarities of the original system doesn’t modify in
the target system. The Fig. 8 gives the results of
recursive ASE process.

DISCUSSION

 When the interference and other abrupt errors are
overcome by modifying the new system and so the
efficiency and quality are also increased in the target
system with our proposed ASE method which is
discussed in below graph.
 The above graph concludes that the efficiency is
very much increased when the ASE is implemented in
the new system. It is easily verified that the target
system will get with requirements and functionalities of
legacy system. Interference Removal Efficiency (IRE)
is calculated as a percentage of the interferences
identified and corrected inside ASE process with
respect to the total interference in the complete target

J. Computer Sci., 8 (6): 822-827, 2012

827

system. The Fig. 9 concludes that ASE improves the
efficiency of the migrated system.

CONCLUSION

 This method gives a methodology how to reuse the
components of the Legacy system effectively with
reengineering technique. In our experience, this method
works very well in all environments. This ASE method
identifies the interferences from the new system. It also
identifies the syntactic errors from a program whether a
new system is a programming language. This method is
very sophisticated where the older functionality doesn’t
change and make easy for the complex transformations
also. This approach is further enhanced by embedding
the method directly to the reengineering process. There
are some issues have to be discussed such as time.
Although it is an automated process, it occupies
significant time which is managed in further work.
Future work may need some semantic and syntactic
analysis on the target system. There is no doubt that this
process gives a great help to deliver the new process
efficiency. The static method libraries are
recommended to reduce a time of running a new
system. The experimental results conclude that the ASE
is correct, effective and suited for high level,
complicated large scale systems.

REFERENCES

Chen, L., J. Wang, M. Xu and Z. Zeng, 2010.

Reengineering of java legacy system based on
aspect-oriented programming. Proceedings of the
2nd International Workshop on Education
Technology and Computer Science, Mar. 6-7,
IEEE Xplore Press, Wuhan, pp: 220-223.
DOI: 10.1109/ETCS.2010.298

Gowthaman, K., K. Mustafa and R.A. Khan, 2005.
Reengineering legacy source code to model driven
architecture. Proceedings of the 4th Annual ACIS
International Conference on Computer and
Information Science, (CIS’ 05), IEEE Xplore
Press, pp: 262-267. DOI: 10.1109/ICIS.2005.108

Hwang, K.S., J.F. Cui and H.S. Chae, 2009. An
automated approach to componentization of java
source code. Proceedings of the Ninth IEEE
International Conference on Computer and
Information Technology, Oct. 11-14, IEEE Xplore
Press, Xiamen, pp: 205-210.
DOI: 10.1109/CIT.2009.19

Jain, A., S. Soner, A.S. Rathore and A. Tripathi, 2011.
An approach for extracting business rules from
legacy C++ code. Proceedings of the 3rd
International Conference on Electronics Computer
Technology (ICECT), Apr. 8-10, IEEE Xplore
Press, Kanyakumari, pp: 90-93.
DOI: 10.1109/ICECTECH.2011.5941963

Meng, X., J. Shi, X. Liu, H. Liu and L. Wang, 2011.
Legacy application migration to cloud. Proceedings
of the IEEE International Conference on Cloud
Computing (CLOUD), Jul. 4-9, IEEE Xplore Press,
Washington, DC., pp: 750-751. 2011. IEEE.
DOI: 10.1109/CLOUD.2011.56

Nagy, C., L. Vidacs, R. Ferenc, T. Gyimothy and F.
Kocsis et al., 2011. Solutions for reverse
engineering 4GL applications, recovering the
design of a logistical wholesale system.
Proceedings of the 15th European Conference on
Software Maintenance and Reengineering
(CSMR), Mar. 1-4, IEEE Xplore Press, Oldenburg,
pp: 343-346. DOI: 10.1109/CSMR.2011.66

Stilkerich, M., J. Schedel, P. Ulbrich, W. Schroder-
Preikschat and D. Lohmann, 2011. Escaping the
bonds of the legacy: Step-wise migration to a type-
safe language in safety-critical embedded systems.
Proceedings of the 14th IEEE International
Symposium on Object/Component/Service-
Oriented Real-Time Distributed Computing
(ISORC), Mar. 28-31, IEEE Xplore Press, Newport
Beach, CA., pp: 163-170. DOI:
10.1109/ISORC.2011.29

Zahi, A., A. Sarhan, Formalized model of stable
reengineering information system functional
elements (business processes). J. Comput. Sci., 5:
915-921. DOI: 10.3844/jcssp.2009.915.921

Zhang, Z., H. Yanf and W.C. Chu, 2006. Extracting
reusable object-oriented legacy code segments with
combined formal concept analysis and slicing
techniques for service integration. Proceedings of
the 6th International Conference on Quality
Software, Oct. 27-28, IEEE Xplore Press, Beijing,
pp: 385-392. DOI: 10.1109/QSIC.2006.29

