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Abstract: Problem statement: Traditionally, cryptographic applications designed on hardware 
have always tried to take advantage of the simplicity of implementation functions over GF(p), p = 
2, to reduce costs and improve performance. On the contrast, functions defined over GF(p); p > 2, 
possess far better cryptographic properties than GF(2) functions. Approach: We generalize some 
of the previous results on cryptographic Boolean functions to functions defined over GF(p); p > 2. 
Results: We generalize Siegenthaler’s construction to functions defined over finite field. We 
characterize the linear structures of functions over GF(p) in terms of their Walsh transform values. We 
then investigate the relation between the autocorrelation coefficients of functions over GF(p) and their 
Walsh spectrum. We also derive an upper bound for the dimension of the linear space of the functions 
defined over GF(p). Finally, we present a method to construct a bent function from semi-bent 
functions. Conclusion: Functions defined over GF(p) can achieve better cryptographic bounds than 
GF(2) functions. In this paper we gave a generalization of several of the GF(2) cryptographic 
properties to functions defined over GF(p), where p is an odd prime.  
 
Key words: Finite field, coding theory, cryptography, walsh transform, bent function 

 
INTRODUCTION  

 
 The existence of a tradeoff between the 
cryptographic properties in GF(2) functions has an 
immense consequences on the security of the 
cryptosystem using these functions. For instance, the 
algebraic degree and the correlation immunity order in 
Boolean functions are two important security measures. 
It is well known that a cryptographic function that has a 
high resistance to correlation attacks may have a low 
linear complexity to counter the linear synthesis by the 
Berlekamp-Massey algorithm (Massey, 1969).  
 In the special case where p = 2, the Siegenthaler 
inequality (Siegenthaler, 1984) states that if a function 
f(x) with n variables is a correlation-immune of order m 
then its algebraic degree d≤ n-m. Moreover, if f(x) is an 
m-resilient, m≤ n - 2, then d≤ n-m-1. It is clear from 
the Siegenthaler inequality that we cannot construct a 
function over GF(2) with the maximum order of 
correlation immunity (n-1) and algebraic degree 
higher than 1. On the other hand, when the function 
is defined over GF(p), it is possible to construct an 
(n-1)-correlation immune function with algebraic 
degree greater than 1. For example, 

2
5 5let f (x) : F F→ such that 3

1 2 1 2f (x ,x ) x x= + . Then, 
f(x) is a resilient function of degree 1 and its 
algebraic degree equals 3 (Liu et al., 1998). 

 This example illustrate the fact that functions over 
GF(p) can possess high correlation immunity and high 
algebraic degree. Thus motivated by the better bounds 
these functions can achieve, various cryptographic 
properties have already been extended from GF(2) to 
other finite fields. For example, (Liu et al., 1998) 
presented a series of constructions of correlation-
immune function over finite fields. Later,  (Hu and 
Xiao, 2003) investigated the existence, construction, 
and enumeration of resilient functions. Li and Cusick 
(2005) extended the concept of the Strict Avalanche 
Criterion (SAC) to GF(p) functions. Due to its 
importance in cryptography and coding theory, bent 
function and its properties were generalized in 
(Kumar et al., 1985). 
 The concept of hyper-bent function was extended 
to functions over GF(p) in (Youssef, 2007). A new 
characterization of semi-bent and bent quadratic 
functions on finite fields was given in (Khoo et al., 
2006). The author in (Li, 2008) generalized the 
counting results of rotation symmetric Boolean 
functions to the rotation symmetric polynomials over 
finite fields GF(p). Cusick et al. (2008) gave a lower 
bound on the number of n-variable balanced symmetric 
polynomials over finite fields GF(p). Recently, 
functions defined over GF(p) have been used to propose 
a new a group re-keying protocol based on modular 
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polynomial arithmetic (Sudha et al., 2009). In this 
paper, we generalize some of the previous results on 
cryptographic binary functions to functions defined 
over GF(p), where p is an odd prime. 
 
Preliminaries: We present some definitions and 
algebraic preliminaries required to prove our result. 
 If n

p pF F→ then f can be uniquely expressed in 

the following form: 
 

1 2

p 1 p 1 p 1
i1 i2 in

1 2 n i1i2......in 1 2 n
in 0i 0 i 0

f (x ,x ,...,x ) .... a x x ......x
− − −

== −

=∑∑ ∑  

 
where, ai1i2…in∈Fp. This representation of f is called the 
algebraic normal form of f. The largest i1 + i2 + … in 
with ai1i2…in ≠ 0 is called the algebraic degree of f. The 
function f is called balanced if its output is uniformly 
distributed. 
 
Definition 1:  Let p be a prime and u = ei(2π/p) be the q-th 
root unity in C, where i = 1− . The Walsh transform of 
a function f : n

p pF F→ is defined as follows Eq. 1: 

 

n
p

f (x) W.X

X F

F(w) u −< >

∈

= ∑  (1) 

 
 The autocorrelation function is defined as Eq. 2: 
  

n
p

f (X a ) f (X)

X F

AC( ) u + −

∈

α = ∑  (2) 

 
where, n

pW,a F∈  and <w.x> denotes the dot product 

between w and x, i.e., <w.x>=Pn I 
n

i ij 1
w x

=∑ mod p. 

We will denote by |X| the magnitude of the complex 
number X. Most of the properties of the cryptographic 
functions can be measured using theWalsh transform or 
the autocorrelation function. 
 
Definition 2:  A function n

p pf : F F→ is bent if and 

only if |F (W) = pn/2|for all n
pw F∈ (Kumar et al., 1985). 

 
Definition 3:  A function n

p pf : F F→ is semi-bent if 

and only if the absolute values of its Walsh transform 
are |p (n+1)/2| and 0 that occur with frequency pn−1 and 
pn−pn−1, respectively. 
 
Definition 4:  The derivative of a function f(x) with 
respect to a vector n

pe F∈ is defined as def(X) = f(x+e)-f(x). 

The vector e is called a linear structure of f(x) if def(x) = c 

(constant) for any n
pX F∈ . The set of all linear structures of 

f(x) form a subspace called linear subspace Vn. 
 
Generalization of siegenthaler’s construction: A 
simple and useful method to construct Boolean 
functions is through direct constructions. Direct 
constructions can produce functions that are optimal 
with respect to the designed property. Lots of research 
efforts have been put into these construction techniques 
in GF(2). Thus, it is significant to extend these 
constructions from GF(2) to GF(p). Siegenthaler, 
(1984) proposed a method to construct a Boolean 
function f of order n by combining two functions f1, f2 
of order n-1, such that 

n n
2 2 2 n n 1 n 2f : F F F : (X,x ) (x 1)f (X) x f (x),× → ⊗ ⊗֏ wher

e 1 nX (x ,..., x 1).= −  

 In the following, we generalize the Siegenthaler’s 
construction method to functions over GF(p). We also 
derive some cryptographic properties of the constructed 
functions. 
 Let n 1

1 2 p p pf , f ,......, f : F F− → . Consider a function 

n
p pf : F F→ where 1 2 pf [f f ...f ]= . In other words, f 

denotes the function whose truth table is the 
concatenation of the truth tables of f1,f2,….fp in the 
given order. 
 
Algebraic Normal Form (ANF): Let 

1 2 n 1X (x ,x ,...,x )−=  and x = (x1, x2,…, xn-1, xn), then: 

 

n 1

n 2

n p

f (x x 0) f (X)

f (x x 1) f (X)

f (x x p 1) f (X)

= =

= =

= − =

⋮

 

 
 Then we can write the ANF of f(x) as follows: 
 

p 1

1 n 2
j 1

p 1 p 2

n p n
j 0 j 0
j 0

p 1p

i n
i 1 j 1

j (i 1)

f (X) (p 1)f (X) (x j) (p 1)f (X)

(x j) .... (p 1)f (X) (x j)

(p 1)f (X) (x j)

−

=

− −

= =
≠

−

= =
≠ −

= − − + −

− + + − −

= − −

∏

∏ ∏

∑ ∏

 

 
 Walsh Transform: Let 1 2 n 1w (w ,w ,...,w )−= and w = 

(w1,w2,…,wn-1,wn): 
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1 n

2 n

p n

f (X) f (x x 0)

f (X) f (x x 1)

f (X) f (x x p 1)

= =

= =

= = −

⋮

 

 
 The Walsh transform of the concatenated function 
is given by: 
 

n
p

n

n

f (x)

x F

(x) w.x w.xf1 f 2(x )

x xn 0 x x 1

(x) w.x
p

x x p 1

F(W) u w.x

u u

..... uf .

∈

− −

= =

−< >

= −

= −

= +

+ +

∑

∑ ∑

∑

 

 
 By noting that, n nw.x w.x w x< >=< > + , then: 

 
1 2

p

n

n

w.x w.x
f (x) f (x )wn

x x

f (x ) w.x
n

x

wwn (p 1)
1 2 p

p
w(1 i)

i
j 1

F(w) u u u

..... u (p 1)w u

F (w) u F (w) .... u F (w)

u F (w).

−< > −< >−

−< >

− − −

−

=

= +

+ + − −

= + + +

=

∑ ∑

∑

∑

 

 
Characterization of linear structures of functions 
over GF(p): Direct use of Boolean functions 
possessing linear structure should be avoided in 
cryptographic applications. It has been shown in 
(Evertse, 1988; Hellman et al., 1976; Chaum and 
Evertse, 1986; Josef et al., 2002) that block ciphers 
with linear structure are vulnerable to attacks much 
faster than the exhaustive search. Several studies were 
conducted on the existence of the linear structures in 
several classes of Boolean functions, as in (Dubuc, 
1998) for vectorial functions and for symmetric 
functions (Dawson and Wu, 1997). In the following, we 
study this criterion for functions defined over GF(p). In 
particular, we characterize linear structures of functions 
over GF(p) in terms of their Walsh transform values. 
 
Theorem 1: (Generalization of Theorem 1 in (Dubuc, 
1998)) f(x) has a linear structure n

pe F∈ with a 

corresponding constant c if and only if F(w) = 0 for all 
w such that < w.e >6 ≠ c. 
 
Proof: Since e is a linear structure of f(x), then f(x) = c, 
c ∈ Fp. Let g(x) = f(x + e)-c, then G(w) = F(w): 

n
p

n
p

n
p

f (x e) c c x.w

x F

f (x) c x e .w

x F

f (x) x.w w.e

x F

w.e

G(W) u

u

u

u F(w),

+ − − < >

∈

− −< − > >

∈

−< >+< >

∈

< >

=

=

=

=

∑

∑

∑
 

 
 Thus, e is a linear structure of f(x) if and only if 
f(x) = g(x). which implies that < w . e > -c = 0. 
 We use Theorem 1 to characterize the linear 
structures of semi-bent functions defined over GF(p). 
 
Corollary 1:  For a semi-bent function f(x), e is a linear 
structure with a corresponding constant c if and only if 
F(w) = 0 for all w such that < w . e >6 ≠ c and |F (w)| = 
p(n+1)/2 for all w such that < w . e >= c. 
 
Proof: The absolute value of the Walsh transform of 
the semi-bent function have only two values 0 and 
p(n+1) = 2. Since the number of w that satisfy the 
equation <w. e>6 = c is pn-1(p-1), which it is exactly 
the same number of zeros in the Walsh transform F(w) 
= 0. Hence, there is a one-to-one mapping between the 
Walsh transform and the relation < w . e > ≠ c, i.e., 
F(w) = 0 if and only if <w . e > ≠ c and also |F (w)| = 
p(n+1)/2 if and only if < w . e >= c. 
 
Relation between the autocorrelation function and 
the walsh transform: The autocorrelation is another 
useful criterion in analyzing Boolean functions. It 
measures the probability distribution of the output 
difference of the function for a fixed input difference. 
The autocorrelation coefficient AC( α) measures the 
statistical bias of the output distribution of dαf(x) 
relative to the uniform distribution. In the next, we 
show how the autocorrelation coefficients of functions 
over GF(p) are related to their Walsh spectrum. 
 
Lemma 2: Let f(x) be a function defined over GF(p). 
Then: 
 

n
p

2 w.
n

w F

1
AC( ) F(w) u

p
< α>

∈

α = ∑  

 
Proof: Using the inverse of the Walsh transform in 
equation 1, we get: 
 

n
p

f (x ) w.x
n

w F

1
u F(w)u

p
< >

∈

= ∑  

 
 Thus: 
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n
p

n
p

f (x ) w.(x )
n

w F

w.x w.a
n

w F

1
u F(w)u

p

1
F(w)u u

p

+α < +α >

∈

< > < >

∈

=

=

∑

∑
 

 
 From the definition of the autocorrelation function 
in equation 2, we get: 
 

n n
p p

n n
p p

n n
p p

n
p

f ( x ) w.x w.
n

x F w F

w. f ( x ) w .x
n

w F x F

w. f ( x ) w .x
n

w F x F

w.
n

w F

1
AC( ) u F(w)u u

p

1
F(w)u u u

p

1
F(w)u u u

p

1
F(w)u F * (w),

p

< > < α>

∈ ∈

< α> < >

∈ ∈

< α> − < >

∈ ∈

< α>

∈

α = −

= −

=

=

∑ ∑

∑ ∑

∑ ∑

∑

 

 
where F¤(w) is the complex conjugate of F(w). Then 
we have: 
 

n
p

2 w.
n

w F

1
AC( ) F(w) u

p
< α>

∈

α = ∑  

 
 The following corollary follows directly from the 
definition of the inverse Walsh transform and Lemma 2. 
 
Corollary 2:  Let f(x) be a function defined over GF(p). 
Then Eq. 3: 
 

n
p

2 w.

a F

F(w) AC( )u−< α>

∈

= α∑  (3) 

 
Lemma 3: Let f(x) be a function defined over GF(p). 
Then Eq. 4: 
 

n n
p p

4 n 2

w F F

F(w) p AC ( )
∈ α∈

= α∑ ∑  (4) 

 
Proof: Squaring both sides of the equation in Corollary 
2 we get: 
 

n n
p p

4 .w .w

a F F

F(w) AC( )u AC( )u−<α > −<β >

∈ β∈

= α β∑ ∑  

 
 By taking the summation for both sides for all w 2 
Fn p we get: 
 

n
p

n n n
p p p

n n n
p p p

4

w F

( ).w

w F F F

( ).w

F F w F

F(w)

AC( )AC( )u

AC( )AC( ) u

∈

< −α−β >

∈ α∈ β∈

< −α−β >

α∈ β∈ ∈

= α β

= α β

∑

∑ ∑ ∑

∑ ∑ ∑

 

 By noting that: 
 

n
p

( ).w
n

w F

0
u

p
< −α−β >

∈

α ≠ −β
=  α = −β

∑  

 
 Then we have: 
 

n n
p p

4 n 2

w F F

F(w) p AC ( )
∈ α∈

= α∑ ∑  

 
 We now derive the relation between the Walsh 
spectrum of the semi-bent functions and their 
autocorrelation coefficients. 
 
Theorem 4: Let f(x) be a semi-bent function defined 
over GF(p). Then Eq. 5: 
 

n
p

n 2 2
max

F

p F (w) AC ( )
α∈

= α∑  (5) 

 
Proof: Since f(x) is a semi-bent function, the Walsh 
transform contains the values Fmax (w) = p(n+1)/2 and 
occurs pn−1 times while 0 occurs (pn- pn−1) times. We 
refer throughout the rest of this paper to the value 
p(n+1)/2 as Fmax(w). Thus: 
 

n
p

4 n 1 4 3n 1
max

w F

F(w) p F (w) p− +

∈

= =∑  

 
 Substituting in Lemma 3, we get: 
 

n
p

n
p

n 2 3n 1

F

2 2n 1

F

n 2
max

p AC ( ) p

AC ( ) p

p F (w)

+

α∈

+

α∈

α =

α =

=

∑

∑  

 
 Walsh spectrum of GF(p) functions with linear 
structure We derive the upper bound of the dimension 
of the linear space of the functions defined over GF(p).  
 
Theorem 5: (Generalization of theorem 3 in (Canteaut 
et al., 2000)) Let f(x) be a function defined over GF(p) 
with n variables. Then, the dimension k of the linear 
space Vn is such that k ≤ 1. 
 
Proof: 
 

n
p

2 2 2

v vF

AC ( ) AC ( ) AC ( )
α∈ α∉α∈

α = α + α∑ ∑ ∑  

 
 If f(x) has a linear space of dimension k, then: 
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n
p

2 k 2n 2 2n k

vF

AC ( ) p p AC ( ) p +

α∉α∈

α = + α ≥∑ ∑  

 
 Substituting in Theorem 4 we get: 
 

n 2 2n k
maxp F (w) p +≥  

 
 Thus: 
 

2 n k

2
maxF (w) p

+

≥  

 

 For a semi-bent function max

n 1
F (w) p

2

+= , then: 

 
n 1 n k

p p ,
2 2

+ +≥  

 
which implies that k ≤ 1. 
 
Construction of bent functions from semi-bent 
functions with linear structure: Bent functions 
achieve the best possible nonlinearity. Accordingly, 
they provide good confusion properties, and they are 
perfect in resisting differential cryptanalysis (Biham 
and Shamir, 1991) and by definition linear 
cryptanalysis (Matsui, 1994). Their major flaw is that 
they are not balanced. Another useful class of functions 
which achieve high nonlinearity is semi-bent functions. 
These functions also possess good cryptographic 
characteristics, and some of them are balanced. Bent 
and semi-bent functions over GF(p), p > 2, can exist in 
even and odd dimensions. It is possible to construct 
bent functions with (n+1) variables from semi-bent 
function with n variables, and similarly, construct semi-
bent functions with n variables from bent functions with 
(n + 1) variables. Here, we focus on constructing bent 
functions with n+1 variables from semi-bent functions 
with n variables. 
 The following lemmas are needed to simplify the 
proof of Theorem 9. 
 
Lemma 6: Let g(x) = f(x)-<x.e>. If e is a linear 
structure for f(x) with a corresponding constant c, then 
g(x) has e as a linear structure with the corresponding 
constant c- < e . e >. 
 
Proof: If f(x + e) - f(x) = c and g(x) = f(x)- < x . e > 
then: 
 

g(x e) g(x)

f (x e) (x e).e f (x) x.e

f (x e) x.e e.e f (x) x.e

f (x e) f (x) e.e

c e.e

+ −
= + − < + > − + < >
= + − < > − < > − + < >
= + − − < >
= − < >

 

Lemma 7: If g(x) = f(x)- < x . e > then G(w) = F(w + e). 
 
Proof: 
 

n
p

n
p

n
p

f (x) x.e x.w

x F

f (x) [ x.e x.w ]

x F

x.(w e)

x F

G(w) u

u

uf (x)

F(w e)

−< >−< >

∈

− < >+< >

∈

−< + >

∈

=

=

=

= +

∑

∑

∑
 

 
Lemma 8: If f(x) has linear structures a and b with 
corresponding constants c1 and c2, respectively. Then e 
= (e1, e2,…, en) = a b is a linear structure for f(x) with a 
corresponding constants c1-c2, where ei = ai-bi mod p, 
1≤i≤n. 
 
Proof: Let f(x+e1)-f(x) = c1 and f(x+e2)-f(x) = c2. Then 
f(x+e1)-f(x+e1) = c1-c2 and f(x + (e1+ e2))-f(x) = c1-c2, 
which implies (e1- e2) is a linear structure with a 
corresponding constant c1-c2. 
From the above lemma, it follows that if e is a linear 
structure for f(x), then a e, a 2 Fp is also a linear 
structure for f(x), where a e denotes the vector whose 
coordinates are obtained by multiplying the individual 
coordinates of e by a mod p.  
 
Theorem 9: Let f(x) be a semi-bent function defined 
over GF(p) with non trivial linear structures e1,e2,…, ep-

1. Then: 
 

1 2

p 1

[f (x) f (x) x . e f (x) x . e ...

... f (x) x . e ]−

− < > − < >

− < >
 

 
 Is n + 1 bent function if <ei . ei>6= 0, for all i = 
1,….,p-1. 
 
Proof: Since f(x) has linear structures e1, e2,…., ep-1 
with corresponding constants c1….,cp-1; respectively, 
then from Lemmas 6 and 7, the function f(x)- < x-ei >, 
1 ≤ I ≤p-1; will have a linear structure ei with a 
corresponding constant ci-<ei.ei> and Walsh transform 
F(w + ei). 
 From Corollary 1, we have: 
 

1 1 2 2

p 1 p 1

(n 1)/2
1 1 2 2

p 1 p 1

F(w) 0 w . e c , w . e c ,

..., w . e c

F(w) p w . e c , w . e c ,

..., w . e c

− −

+

− −

= ⇔ < >≠ < >≠

< >≠

= ⇔< >= < >=

< >=

 

 
 By noting that <(w+ei).ei> = <w.ei>+<ei.ei> where 
1 ≤  I ≤ p - 1, then: 



J. Computer Sci., 8 (6): 809-814, 2012 
 

814 

1 1 1 1

1 1 1

(n 1)/2
1 1 1 1

1 1 1

2 2 2 2

2 2 2

(n 1)/2
2 2 2 2

2 2 2

p 1 p 1 p 1 p 1

p 1 p 1

F(w e ) 0 w . e e . e

c e . e

F(w e ) p w.e e .e

c e .e

F(w e ) 0 w.e e .e

c e .e

F(w e ) p w.e e .e

c e .e

F(w e ) 0 w.e e .e

c e .e

+

+

− − − −

− −

+ = ⇔< > + < >

≠ − < >

+ = ⇔< > + < >

= − < >

+ = ⇔< > + < >

≠ − < >

+ = ⇔ < > + < >

= − < >

+ = ⇔ < > + < >

≠ − <

⋮

p 1

(n 1)/2
p 1 p 1

p 1 p 1 p 1 p 1 p 1

F(w e ) p w.e

e .e c e .e

−

+
− −

− − − − −

>

+ = < > +

< >= − < >

 

 
 Thus, if < w. e1 >= c1 then then |F(w) | = p(n+1)/2,F 
(F(w+e2)) = 0, F(w+ep-1). Consequently, if one of the 
|F(w)|F(w+e1),|F(w+e2)|,…,F(w+ep-1) equals p(n+1)/2 the 
others equal zero, which implies that F(w) corresponds 
to the Walsh transform of an n + 1 bent function. 
 

CONCLUSION 
 
 Functions defined over GF(p) can achieve better 
cryptographic bounds than GF(2) functions. Thus, In 
this paper we gave a generalization of several of the 
GF(2) cryptographic properties to functions defined 
over GF(p), where p is an odd prime. 
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