
Journal of Computer Science 8 (1): 68-75, 2012
ISSN 1549-3636
© 2012 Science Publications

Corresponding Author: Sudhakar Gummadi, Department of Computer Science and Engineering, Arulmigu Kalasalingam
 College of Engineering, Anand Nagar, Krishnankoil-626 126, Virudhunagar District, Tamil Nadu,
 India Tell: +91-4563-289129

68

Effective Utilization of Multicore

Processor for Unified Threat Management Functions

Sudhakar Gummadi and Radhakrishnan Shanmugasundaram
Department of Computer Science and Engineering
Arulmigu Kalasalingam College of Engineering

Anand Nagar, Krishnankoil-626190
Tamil Nadu, India

Abstract: Problem statement: Multicore and multithreaded CPUs have become the new approach for
increase in the performance of the processor based systems. Numerous applications benefit from
use of multiple cores. Unified threat management is one such application that has multiple
functions to be implemented at high speeds. Increasing performance of the system by knowing the
nature of the functionality and effective utilization of multiple processors for each of the functions
warrants detailed experimentation. In this study, some of the functions of Unified Threat
Management were implemented using multiple processors for each of the functions. Approach:
This evaluation was conducted on SunfireT1000 server having Sun UltraSPARC T1 multicore
processor. OpenMP parallelization methods were used for scheduling the logical CPUs for the
parallelized application. Results: Execution time for some of the UTM functions implemented
was analyzed to arrive at an effective allocation and parallelization methodology that is dependent
on the hardware and the workload. Conclusion/Recommendations: Based on the analysis, the type
of parallelization method for the implemented UTM functions are suggested.

Key words: Logical CPUs, OpenMP, packet processing, performance analysis, URL filtering, spam

filtering, Unified Threat Management (UTM), parallelization method

INTRODUCTION

 Network security is one of the most critical
issues facing today’s internet. Traditionally, for an
enterprise, a firewall was used as a first line of
defense. With more complicated network
environment and mature attack means, the traditional
firewall strategy cannot meet the demands of
security. For the combined protection against
complex and blended threats, multiple security
features are integrated into a unified security
architecture that results in a Unified Threat
Management (UTM) appliance. Unified Threat
Management products integrate multiple security
features, such as firewall, VPN, intrusion detection
and prevention systems, antivirus, spam blocking,
URL filtering, content filtering and network
monitoring into a single secure appliance (Qi et al.,
2007). The design challenges of implementing a
UTM are: the performance of multiple functions,

cost effectiveness, scalability and co-existence with
third party software.
 With the increase in the network speeds and also
the increase in the security threats, the
implementation of high performance UTM is
essential. Multi-core technology offers high
performance, scalability and energy efficiency. UTM
processing can be decomposed into parallel activities
such as per packet, per flow or type of processing.
 A multicore processor (or Chip-level
Multiprocessor, CMP) combines two or more
independent cores into a single Integrated Circuit
(IC) and performs multiprocessing (Lee and Shakaff,
2008). Multicore architecture has become more and
more widely used in intensive computing
applications as well as in computer networking
systems. The amount of improvement in performance
by the use of a multicore processor is dependent on
the software algorithms and their implementation.
Scheduling of parallel activities on the multicore

J. Computer Sci., 8 (1): 68-75, 2012

69

processor is very vital to improve the performance of
the system. The underlying hardware of the multicore
processor has to be effectively used to obtain the
optimum performance of the system.
 The per chip core counts are increasing
significantly. For example, Oracle’s SPARC T3
processor features up to 16 cores and 128 threads on
a single chip with integrated logic for 1GbE
networking and cryptographic coprocessor engines.
octeon II CN6880 of Cavium Networks is a 32 core
processor with over 85 application acceleration
engines that provides high-performance, high
throughput solution for intelligent networking
applications (Cavium Networks, 2011).
 Programming of the multithreaded multicore
processor needs a thorough understanding of the
hardware and the effective use of the Application
Program Interface (API) for parallel programming.
The task partitioning and CPU allocation in
multicore processors is done based on the application
requirement and the time taken for execution of these
tasks. OpenMP API is one of the parallel
programming models used to exploit the available
parallelism of multicore processors.
 In a multicore environment, CPUs or a set of CPUs
can be assigned to a particular process. Proper
performance indicators need to be used for
simulation, testing and realization of multicore
implementations. Parallelization of UTM functions is
considered for generating the load and analyzing the
performance of the system.

Multithreaded multicore processor architecture:
The UltraSPARC T1 is a chip multicore/multi-threads
processor that contains 8 cores and each of the
SPARC cores has 4 hardware threads. A single
pipeline processes instructions from four threads and
completes one instruction in each cycle. All together,
the chip handles 32 hardware threads and is addressed
as 32 logical CPUs (Weaver, 2008; Leon et al., 2006).
 Each SPARC core has a 16 KB, 4-way
associative, 32B line size of Level 1 instruction
cache (I Cache), 8 KB, 4-way associative, 16B line
size of Data Cache (D Cache), 64-entry fully
associative instruction TLB (Translation Look aside
Buffer) and 64-entry fully associative data TLB that
are shared by the four hardware threads. The eight
SPARC cores are connected through a crossbar to an
on-chip unified 3 MB, 4-way associative L2 cache

(64B lines). The L2 cache connects to 4 on-chip
DRAM controllers, which directly interface to
DRAM interface.
 Figure 1 show a simplified block diagram of the
multicore processor wherein each core has separate L1
instruction cache and L1 data cache. All the cores share
the common L2 cache with external shared memory.
Each hardware thread of UltraPSARC T1 processor has
a unique set of resources in support of its execution.
The per-thread resources include registers, a portion of
I-fetch data path, store buffer and miss buffer. Multiple
threads within the same SPARC core share a set of
common resources in support of their execution. The
shared resources include the pipeline registers and data-
path, caches, Translation Lookaside Buffers (TLB) and
execution unit of the SPARC core pipeline due to
which the performance of a thread is also affected by
other threads running on the same core.
 UltraSPARC T1 processor has one Modular
Arithmetic Unit (MAU) per core that supports modular
multiplication and exponentiation. The hardware thread
that initiated the MAU stalls for the duration of the
operation, but the other three threads on the core can
progress normally.

Open MP: The OpenMP Application Program
Interface is a portable, parallel programming model for
shared memory multithreaded architectures (Sun
Microsystems, 2009; Chapman et al., 2009). OpenMP
specification version 3.0 introduces a new feature called
tasking. By using the tasking feature, applications can
be parallelized where units of work are generated
dynamically, as recursive structures or while loops. The
task directive defines the code associated with the task
and its data environment. The task construct can be
placed anywhere in the program and whenever a thread
encounters a task construct, a new task is generated.

Fig. 1: Simplified block diagram of multicore

processor with external shared memory

J. Computer Sci., 8 (1): 68-75, 2012

70

 Ayguade et al. (2009) have evaluated the
performance of the runtime prototype with several
applications using OpenMP tasking feature and have
measured the performance in terms of the speedup for
different number of CPUs and have proved that OpenMP
task implementation can achieve very promising
speedups when compared to other established models
like OpenMP nested, task queues and Cilk.

Packet processing and parallelization: Packet
processing functions have to be done in real time at
network line rates. When packet processing functions
are implemented in multicore processor based system,
the packet processing rate is dependent on the number
of threads and cores used for processing and the
effective utilization of the hardware resources by the
application programs. Packet processing workload is
characterized by a large number of simple tasks and
large amounts of input/output operations. Typical
packet processing applications include forwarding of
packets, packet classification, packet scheduling, packet
statistics and monitoring and security application.
Gigabit data rates that have to be handled by network
systems generate significant performance demands
(Weng and Wolf, 2009). The overall packet processing
tasks are split into three different tasks, namely,
receiving, processing and transmitting. Time critical
functions take place in the processing task and the
nature and extent of parallelism for the processing task
and the processor architecture determines the system
performance (Sleit et al., 2009).
 The processing demands on the packet processing
system are affected by computational characteristics of
all tasks in the system; and by network traffic that
exercises the processing system. To derive an optimal
allocation of tasks to processing resources at runtime,
these factors have to be quantified and considered in the
mapping process (Wu and Wolf, 2008).
 Weng and Wolf (2009) presented the analytic
performance model that could be applied for
understanding tradeoffs in the network processor design
space to determine suitable network processor
topologies and multithreading configurations.
 The design challenges of implementing a UTM are:
the performance of multiple functions, cost
effectiveness, scalability and co-existence with third-
party software. Multiple functions of UTM are to be
performed simultaneously at required performance
levels. Hui (2008) discussed the concept of defining the
policies for the flow based on the classification and the
implementation of the different policies for the first

packet and subsequent packets of the same flow.
Classification, rule based policy enforcement and
signature based policy enforcement are some of the
common processes for UTM. Pattern matching is used
in content filtering, URL filtering, spam filtering and
intrusion detection functions.
 In this study, we present the performance analysis
of UTM functions by varying the assignment of CPUs
of Sun Microsystems UltraSPARC T1 processor.
OpenMP is used for parallelizing the code for execution
on the hardware threads referred as CPUs. We also
proposed the type of parallelization based on the UTM
function for better throughput.

MATERIALS AND METHODS

 The performance evaluation is done on SunFire
T1000 server having Sun Microsystems UltraSPARC
T1 processor. Sun Studio12 Update 1 Integrated
Development Environment (IDE) on Solaris 10
Operating System was used to develop the programs in C
language and to test the programs. OpenMP parallelizing
features are used for implementing parallelism within
each process. Libpcap Application Program Interface
(API) is used for reading the packets from the physical
interface or writing the packets to the physical
interface. Furthermore, POSIX.1b Real-time Extension
Library is used for message passing, process scheduling
and timer options. System V message queues are used
for queuing the packets between various stages.
 Implementation of UTM requires multiple
independent processes. Data is communicated between
these processes by use of message queues. Semaphores
are used wherever synchronization is necessary. Fork
function is used to create the required independent
processes and the processor sets are bound to each of
these processes. PSet_assign function is used for the
assignment of the CPU to a particular processor set.
One processor set each is bound to each of the
processes. Figure 2 shows the conceptual diagram of
allocation of processor sets for different UTM
functions. Seven processor sets are created and CPUs
are assigned to each of these processor sets.
 As shown in Fig. 2, one CPU is assigned to
processor set PSetR for the receive_packets process that
receives the packets from the physical interface and
enquires the packets to the appropriate queues based on
the classification. Another CPU is assigned to processor
set PSetT for transmit_packets process that dequeues the
packets from the queues and transmits the packets to
the physical interface. For implementation of the UTM
functions like the VPN, spam filtering, URL filtering,
intrusion detection and virus detection, five processor
sets PSet1 to PSet5 are bound to five different
independent processes.

J. Computer Sci., 8 (1): 68-75, 2012

71

Fig. 2: Allocation of processor sets for UTM functionality

Fig. 3: Block diagram for URL filtering

 Incoming packets are first classified and the stream
index number is allocated for the packets. All packets
belonging to the same stream will have the same stream
index value. Policies are defined for the first packet of
the stream index based on the five-tuple classification.
Subsequent packets of the same stream would have
specific policies enforced. Based on these policies to be
enforced, the packets are appropriately enqueued for
specific UTM function processing or forwarded directly
to the transmit processor set.
 For parallelization and execution by multiple CPUs
assigned to a processor set, OpenMP parallelizing
directives are used.

URL filtering: For URL filtering, URL that is
extracted from the ftp or the http header field is
compared with the list of suspicious sites. Block
diagram for URL filtering is shown in Fig. 3. During
the initialization phase, each of the 80,000 suspicious
URLs are extracted from the file, converted to regex

format and stored in an array. The number of arrays for
storage of URLs of suspicious sites is equal to the
number of CPUs used for parallelization of URL
processing. For testing the performance of URL
filtering, a maximum of four CPUs are assigned to the
processor set. Regex functions are used for matching
each of the URLs extracted from the packet with the
URLs stored in the arrays. If there is a match, the
packet is tagged for being dropped; else the packet is
tagged for being transmitted. Packets to be transmitted
are queued in the transmit queue for being transmitted
by the transmit_packet process.
 Parallelization using OpenMP sections feature is
used for URL filtering. The number of threads and the
number of logical CPUs are set to be equal to the
number of OpenMP sections. URLs are extracted from
the packet headers and queued for URL filtering. Each
CPU in the parallel region compares the URL that is
extracted from the queue with each of the patterns
stored in the corresponding array concurrently.

J. Computer Sci., 8 (1): 68-75, 2012

72

Fig. 4: Block diagram for spam filtering

Once there is a match in any one of the sections, further
comparison in all the sections are aborted and the
execution time recorded for the matching process.

Spam filtering: Spam filtering is applicable to the
packets that carry the email content and use SMTP
protocol. The block diagram for implementation of
spam filtering is shown in Fig. 4. During initialization,
spam words with probability value for each of the
words are extracted from the file, the words compiled to
regex format and then the words along with its probability
value are stored in the array. These words are used for
checking the email content and for identifying the mail as
spam. The packets that are received from the interface are
classified and after filtering, the Email header and content
are extracted from the packet and enqueued using the
message queues. The spam filtering process is done in the
subsequent stage based on which decision is taken to term
the mail as spam. In the next stage the mail is transmitted.
 As the time taken for the spam filtering process,
i.e., repetitive pattern matching of all the spam words
and accumulation of the probability value of the
matched patterns and terming the mail as spam, takes
relatively longer time that receiving and transmitting
the packets, the pattern matching process is
parallelized. The number of CPUs used for
parallelization is defined in the initialization phase.
 Experimentation is done using flow based
parallelization and pattern based parallelization. In flow
based parallelization, each packet is handled
independently by each CPU of the processor set
assigned for spam filtering. CPU dequeues the message,
implements the logic for spam filtering and then
enqueues the message. OpenMP tasking feature is used
for implementing this flow based parallelization.
 Experimentation is also done using pattern based
parallelization wherein the same message is
simultaneously handled for pattern matching by all the
CPUs of the processor set assigned for spam filtering.
Parallelization using OpenMP for loop feature is used
for implementing this pattern based spam filtering. For
each iteration of the parallelized loop, a word along
with the probability value is extracted from the array
and the word is compared with the email message and

header. In each iteration, repetitive pattern matching for
each word is done till the end of the content and for each
match the probability value is accumulated. The summed
up probability value of all the words is used to check with
the threshold value to declare the mail as spam.
 There are three scheduling methods that are used for
implementation of OpenMP for loop parallelization for
spam filtering, namely, static scheduling, dynamic
scheduling and guided scheduling:

• In static scheduling, the number of iterations of the

for loop are equally distributed to the number of
CPUs before the parallelization starts

• In dynamic scheduling, iterations equal to the chunk
size defined will be allocated by the scheduler to each
CPU for parallelization. Once the CPU completes the
assigned iterations, it picks up another chunk value
for processing. This process continues till the total
number of iterations is complete

• In guided scheduling, for each of the CPU
available for parallelization, based on the
algorithm, the number of iterations greater than the
chunk size is allocated initially. Progressively the
number of iterations reduces to the chunk size. The
advantage of guided scheduling is that the number
of times the CPU has to be scheduled reduces
compared to the dynamic scheduling

 For both the pattern matching methods,
experimentation is done by changing the number of
CPUs for the parallelized code that determines the mail
as spam or not and the total execution time is measured.
Study was also done on the performance of the
parallelized region by changing the scheduling
parameters when using the OpenMP for loop feature.

RESULTS

Performance of URL filtering: The total execution
time is measured by taking 80 of the 80,000 URLs as
inputs for URL filtering. These 80 URLs are taken
such that they occur at uniform intervals spread over
80,000 URL records.

J. Computer Sci., 8 (1): 68-75, 2012

73

Fig. 5: Packet processing rate for URL filtering with
varying number of CPUs

Fig. 6: Packet processing rate for flow-based spam

filtering with varying number of CPUs

Fig. 7: Packet processing rate for pattern based spam
filtering with vary number of CPUs

 Packet processing rate is computed from the
measured execution time and is as shown in Fig. 5 for
varying number of CPUs for the parallelized process of
dequeuing, URL filtering and enqueuing for 80 URLs.
The execution time is measured for two sets of
readings, first by allocating the CPUs on different cores
and then by allocating the CPU on the same core.
OpenMP sections feature is used for parallelization.

Performance of flow based spam filtering: Packets of
1000 bytes each are simulated as email header and
content and queued for spam mail filtering. The words
that occur in the spam mail with repetitions of some
such words are present in the packets. These 80 packets
are dequeued, checked for spam and later enqueued
with the status information by the CPUs assigned to
processor set PSet2 in the parallelized mode.
 Figure 6 shows the throughput for flow based spam
filtering while processing 80 packets of 1000 bytes each
with different number of CPUs in the parallelized
region using OpenMP tasking feature.

Performance of pattern based spam filtering: Packet
processing rate measured by processing 80 packets of
1000 bytes each by varying the number of CPUs in the
parallelized region for detection of spam mail is shown
in Fig. 7. OpenMP for loop is used for the
parallelization. The plot shows the packet processing
rate for static scheduling, dynamic scheduling and
guided scheduling. For dynamic scheduling, the chunk
size is set as 5 and for guided, the chunk size is set as 2.

DISCUSSION

 For URL filtering, as the number of CPUs increase,
there is reduction in the execution time. The relative
improvement of the execution time using CPUs of the
same core vis-à-vis CPUs of different core is mentioned
in Table 1 for different number of CPUs.
 URL filtering is normally time consuming and the
time taken for detecting the pattern match, if any,
depends on the location of the pattern in the array. URL
filtering is generally done for only the first packet
having the new session index. Policy is generally
defined such that subsequent packets of the same
session index are not forwarded for URL filtering.
 Flow-based spam filtering uses OpenMP tasking
feature wherein each CPU dequeues one packet,
implements spam filtering and enqueues the packet
with the status word. Due to the repetitive pattern
matching requirement for each word, for the given test
conditions, 1,472 packets could be processed per
second when six CPUs are allocated for spam filtering.
 OpenMP for loop feature is used for pattern-based
spam filtering wherein all the CPUs handle only one
packet in the parallelized zone but would be
implementing the repetitive pattern matching with
different patterns concurrently. The time taken for each
process is non-uniform due the number of matches that
would occur for each of the pattern. In static
scheduling, based on the initial distribution of the
number of iterations for each CPU, due to the non-
uniformity of time for processing, there is significant
wait time for all the CPUs to complete the processing
that adds to the overall processing time.

J. Computer Sci., 8 (1): 68-75, 2012

74

Table 1: Relative improvement of execution time using CPUs
belonging to the same core vis-à-vis CPUs belonging to the
different cores

No. of CPUs Improvement factor
2 1.05
3 1.12
4 1.24

Table 2: Relative improvement using dynamic scheduling methods with

reference to static scheduling for pattern-based spam filtering
 Scheduling type

No. of CPUs Dynamic, 5 Guided, 2
1 1.00 1.00
2 1.02 1.04
3 1.05 1.06
4 1.03 1.07
5 1.15 1.17
6 1.05 1.07

Table 3: Relative performance of spam filter using flow based

approach and pattern based approach
 Packets per second Packets per second
 for flow-based for pattern-based
No. of CPUs spam filter spam filter
1 440.92 475.70
2 733.68 747.58
3 900.39 791.56
4 935.67 828.92
5 1248.05 951.85
6 1471.67 992.97

This delay is overcome by using the two other
scheduling methods, namely, dynamic and guided
scheduling. Table 2 shows the relative improvement in the
number of packets processed per second using the
dynamic and guided scheduling methods. Load balancing
is done effectively by these dynamic and guided
scheduling methods which show an improvement in
performance as compared to static scheduling.
 For the same set of conditions, the comparison is
done for spam filtering using flow-based and pattern-
based approach. Table 3 shows the relative performance
of flow-based spam filtering as compared to the pattern-
based spam filtering. As the number of CPUs increase,
the number of packets processed per second in the
flow-based spam filtering is greater as compared to the
pattern-based. This is due to the dynamic scheduling
overhead for allocation of the number of iterations to
each CPU and the overheads in handling multiple CPUs
in OpenMP for loop parallelization.

 CONCLUSION

 Various functions of UTM were studied and the
URL filtering and spam filtering were implemented
using the CPUs of the multicore processor. Different
OpenMP parallelization features were tried for URL
and spam filtering. OpenMP sections feature is

appropriate for the URL filtering. For spam filtering,
flow-based and pattern-based parallelization methods were
tried. Parallelization using runtime scheduling methods
like the dynamic and guided were used for pattern-based
spam filtering. However results show that flow-based
spam filtering performed better than pattern-based spam
filtering. Future study will be done in implementing other
UTM functions and synchronization of UTM functions.

ACKNOWLEDGMENTS

 The researchers acknowledge TIFAC-CORE in
Network Engineering (established under the Mission
REACH program of Department of Science and
Technology, Govt. of India) for providing necessary
facilities for working on this project.

REFERENCES

 Ayguade, E., N. Copty, A. Duran, J. Hoeflinger and Y.

Lin et al., 2009. The design of OpenMP tasks.
IEEE Trans. Parallel Distrib. Syst., 20: 404-418.
DOI: 10.1109/TPDS.2008.105

Chapman, B., L. Huang, E. Biscondi, E. Stotzer and A.
Shrivastava et al., 2009. Implementing OpenMP on
a high performance embedded multicore MPSoC.
Proceedings of the IEEE International Symposium
on Parallel and Distributed Processing, May 23-29,
IEEE Xplore Press, Rome, pp: 1-8. DOI:
10.1109/IPDPS.2009.5161107

Cavium Networks, 2011, Octeon II CN68XX Multi-
Core MIPS64 Processors Product Brief.

Hui, M., 2008. Designing UTM with a Multi-Core
Processor.

Lee, W.F. and A.Y.M. Shakaff, 2008. Implementing a
Large Data Bus VLIW Microprocessor. Am. J.
Applied Sci., 5: 1528-1534. DOI:
10.3844/ajassp.2008.1528.1534

Leon, A.S., B. Langley and J.L. Shin, 2006. The
UltraSPARC T1 processor: CMT Reliability.
Proceeding of the IEEE Custom Integrated Circuits
Conference, Sept.10-13, IEEE Xplore Press, San
Jose, pp: 555-562. DOI:
10.1109/CICC.2006.320989

Qi, Y., B. Yang, B. Xu and J. Li, 2007. Towards
system-level optimization for high performance
unified threat management. Proceedings of the 3rd
International Conference on Networking and
Services, Jun. 19-25, IEEE Xplore Press, Athens,
pp: 7-7. DOI: 10.1109/ICNS.2007.126

J. Computer Sci., 8 (1): 68-75, 2012

75

Sleit, A., W. AlMobaideen, M. Qatawneh and H.
Saadeh, 2009. Efficient processing for binary
submatrix matching. Am. J. Applied Sci., 6: 78-88.
DOI: 10.3844/ajassp.2009.78.88

Sun Microsystems, 2009. Sun Studio 12 Update 1:
OpenMP API User's Guide. 1st Edn., Sun
Microsystems, Inc, USA., pp: 73.

Weaver, D., 2008. OpenSPARC Internals. 1st Edn., Sun
Microsystems, Inc, USA., ISBN: 978-0-557-
01974-8, pp: 369.

Weng, N. and T. Wolf, 2009. Analytic modeling of
network processors for parallel workload mapping.
ACM Trans. Embedded Comput. Syst., 8: 1-29.
DOI:10.1145/1509288.1509290

Wu, Q. and T. Wolf, 2008. On runtime management in
multi-core packet processing systems. Proceedings
of the 4th ACM/IEEE Symposium on Architectures
for Networking and Communications Systems,
(ANCS’ 08), ACM, New York, USA., pp: 69-78.
DOI: 10.1145/1477942.1477953

