
Journal of Computer Science 8 (4): 545-550, 2012
ISSN 1549-3636
© 2012 Science Publications

Corresponding Author: Palanisamy, S., Department of Computer Science and Engineering,
 Institute of Road and Transport Technology, Erode, India

545

Similarity Based Clustering with Indexing for Semi-Structured Document

1Palanisamy, S. and 2K. Baskaran

1Department of Computer Science and Engineering,
Institute of Road and Transport Technology, Erode, India

2Department of Computer Science and Engineering,
Government College of Technology, Coimbatore, India

Abstract: Problem statement: To improve the performance of data retrieval in a homogeneous large
XML document. Approach: Clustering of XML elements based on the content with indexing. The
element which is used for clustering has been identified from the document and/or XML schema. This
element is used as a parameter for clustering. The suitable index is created after clustering. Results:
The clustering combined with indexing strategy support the efficient retrieval of XML element from
the document. Conclusion: The proposed method is used to improve the efficiency of XML data
manipulation and comparatively give the better performance rather than clustering or indexing alone.

Key words: Clustering, indexing, XML, query

INTRODUCTION

 The evolution of Internet and communication
technologies supported the business enterprises to get
more benefits. Business partners across the world
communicated via Internet and shared their business
information rapidly and easily. The complexity of
application is increased and data management in
Internet becomes a tedious task. To handle these
complexities new techniques and methods are
constantly proposed and implemented. XML is a simple
language to describe and exchange data across Internet.
Data in the form of semi-structure become inevitable in
business databases. These semi structured data cannot
be easily handled in relational database management
systems. The ability to manage structured data in a
flexible manner is one of the fundamental differences
between XML and relational databases. Semi-structured
data does not have rigid structure and the structure can
be frequently changed. Data with no rigid structure
can be easily represented in the form of XML data.
Several new technologies such as Xpath, Xquery,
Document Type Definition (DTD), XML schema and
Xlink are available to manipulate the semi-structured
data in the form of XML. Performance is the one of
the important criteria for any new technology or
methods. In this study the performance of proposed
similarity based clustering method is analyzed on SQL
Sever2005 database engine and oracle Berkely
Database XML (BDXML).

Literature survey: some of the existing works in the
area of clustering XML documents are given, stressing
the fact that any of the existing work does not deal with
efficiently clustering the elements of single large XML
document. Clustering is an intelligent technique for
mining XML documents. It has been utilized as an
excellent way of grouping the documents by their
content or structure. A lot of efforts have been taken on
how to cluster XML documents effectively with
structural (Nierman and Jagadish, 2002; Dalamagas et
al., 2006; Leung et al., 2005a; Hwang and Ryu, 2010)
or semantic (Lee et al., 2001; Nayak and Iryadi, 2007;
Tagarelli and Greco, 2004; Kim et al., 2008)
information. Hierarchical algorithms (Lian et al., 2004)
are based on structural information present in the data.
The notion structure graph is specified, supporting a
computationally efficient distance metric defined
between documents and set of documents. The simple
metric yields new clustering algorithm, which is
efficient and effective, compared to other approaches.
A clustering based on path pattern is presented (Leung
et al., 2005b). It is a method of XML structural
representation called Common XPath (CXP), which
encodes the frequently occurring elements with the
hierarchical information and proposed to take the CXPs
mined to form the feature vectors for XML document
clustering. Distance based clustering of XML
documents (Francesca et al., 2003) it focus on the
notion of XML cluster representative, it is a prototype
XML document subsuming the most relevant features

J. Computer Sci., 8 (4): 545-550, 2012

546

of the set of XML documents with in the cluster.
Dynamic XML documents clustering (Rusu et al.,
2008) are established an intelligent and efficient
technique to reassess the distance between dynamic
XML documents when one or all of the initially
clustered documents have changed. It allows the user to
reassess the pair-wise XML document distances, not
fully comparing each new pair of versions in the
clustering solution, but by determining the effect of
temporal changes on the previously known distances
between them. It is both time and I/O effective, as the
number of operations involved in distance reassessing
is reduced. A clustering model (Yang et al., 2005) is
developed for representing XML documents. The term
semantics, element similarity, as well as elements
relative importance for a given set of documents can all
be taken in to account. It is also formulated an iterative
estimation procedure for automatically learning an
element similarity matrix associated to this model. The
structural similarity between a pair of XML documents
can thus be computed based on different edit distances
(Zhang et al., 2003; Nierman and Jagadish, 2002)
which differ from each others in terms of the set of
allowed edit operators and their support for repetitive
and optional XML elements. It has been proved in
(Zhang et al., 1992) that computing the edit distance for
unordered labeled trees is NP-Complete and yet the
distance is not optimal in any sense related to the
elements semantics. None of the existing algorithms are
used to cluster the elements of large XML document
based on similarity. Similar elements are moved into a
closure places. It is quite nature that similar elements
may be accessed for computing summarization or
manipulation as a group. It is difficult for the system to
identify the similarity between the elements directly. It
is not possible to build the system to automatically
detect the similarity between elements.

MATERIALS AND METHODS

Similarity based clustering algorithm: The basis for
similarity based clustering algorithm is defined the
same type of elements present in the XML document.
In this method, our human expertise is used to identify
and specify the similar elements present in the
document. The entire XML data and schema of the
data are displayed to the user. Based on his expertise
user can specify the element which is used to cluster
the entire XML document into clusters. Similar
elements present in the XML documents are grouped.
The number of clusters is computed based on the
different data values of XML elements. Figure 1
shows the basic steps of clustering algorithm.

Fig. 1: Pseudo code for clustering algorithm

Experimental setup: Similarity based clustering
algorithm is implemented in Java and all experiments
were run on a PC with a 2.66 GHz Intel core 2 Duo
processor, 250 GB SATA HDD and 2GB DDR RAM
with windows XP operating system environment. The
SQLserver2005 and the open source software tool
BDBXML are used as a database engine to store and
manipulate XML data.

XML indexes: One major advantage of modern native
XML databases is their ability to index the XML
documents they contain. Proper use of indices can
significantly reduce the time required to execute a
particular Xquery expression. If no index exists, SQL
Server 2005 evaluating each and every element in the
table against the query. If index, exits SQLServer2005
can find a subset of matching documents with a single
or significantly reduced set of lookups. By carefully
applying XML indexing strategies, the retrieval
performance can be improved considerably. Indices are
specified in four parts: path type, node type, key type
and uniqueness. The Fig. 2 shows the time required to
access the elements of XML document stored in a table
using index and without index. It shows that indexing
reduces the time required to retrieve elements of XML
document from the table.

J. Computer Sci., 8 (4): 545-550, 2012

547

Fig. 2: Effect of indexing

Fig. 3: Data generation SQL query

SQL server 2005: The Microsoft SQL Server 2005
database engine is the core service for storing, processing
and securing data. The database engine provides
controlled access and rapid transaction processing to
meet the requirements of the most demanding data
consuming applications within the enterprise. The
database engine also provides rich support for
sustaining high availability. In SQL Server 2005 the
xml data type allows to store XML documents and
fragments in SQL Server database. An XML fragment
is an XML instance that is missing a single top-level
element. In a table XML data type can be used to create
columns and variables that store XML instances in
them. Note that the stored representation of XML data
type instances cannot exceed 2GB. XML instances are
stored in the XML type columns as Binary Large
Objects (BLOBs). These XML instances can be large
and the stored binary representation. Without an index,
these binary large objects are shredded at run time to
evaluate a query that can be time-consuming. Indexes
can reduce the amount of data that must be read to
return the query result set. The XML indexes fall into

two categories: Primary XML index, Secondary XML
index. The first index on the XML type column must be
the primary XML index. Using the primary XML
index, three types of secondary indexes are supported.
These include PATH, VALUE and PROPERTY.
Depending on the type of queries, these secondary
indexes may help improve query performance. Figure 3
show the query for the generation of sample XML
document in SQL Server 2005.

Berkeley database XML: BDBXML an embedded
XML database engine that provides support for Xquery
access. In BDBXML all XML data are stored within
files called containers. The BDBXML shell provides a
simple and convenient way to work these containers
and exposes most of the BDBXML functionality in a
friendly, interactive environment. Containers also store
XML documents as either whole documents or as
nodes. When containers stores whole documents, the
XML documents are stored as all one unit in the
containers exactly as it was presented to the system.
When documents are stored as nodes, the XML
document is deconstructed into smaller pieces-nodes
and those small chunks are stored in the container.
Node storage offer better performance than does
document storage and for this reason node storage is the
default container type.

RESULTS

Performance analysis SQL server 2005: The
similarity based clustering algorithm, is tested using
several thousand XML elements stored in a document.
Initially database named empfull.mdb is created. In this
database, table named empc is created with the
following fields Sno (int) and Empinfo (xml). The
XML column Empinfo contains name, deaprtment,
designation and address as elements. Ten thousand well
formed XML elements are inserted into the table. From
the table queries can be used to retrieve the data. For
example without indexing and clustering the following
queries used to retrieve data. Timestamp before and after
the query command present the time required to retrieve
the data from the table. The following Xquery would
read as “from the table named empc select all staff
elements that contain designation as ‘System Analyst’”:

select current_timestamp
select Empinfo.query(‘/staff/[desig=”System Analyst”]’)
from empc
select current_timestamp

J. Computer Sci., 8 (4): 545-550, 2012

548

Fig. 4: Performance comparisons SQL server2005

Fig. 5:Performance comparisons Berkely DBXML

 The query “from the table named empc select all
staff elements that contain designation as ‘System
Analyst’ or ‘Project Manager’”

select current_timestamp
select empinfo.query(‘/staff/[desig=”System Analyst” or
desig=”Project Manager”]’ from empc
select current_timestamp

 The time required for executing the above query
without indexing and clustering is 0.58 sec. One of the

major advantages of modern native XML databases is
their ability to index the XML elements they contain.
Proper use of indices can significantly reduce the time
required to execute a particular Xquery expression. The
column Empinfo elements are retrieved and clustered
using the field designation. The elements with
designation value “System Analyst” are grouped and
placed in the beginning of the document and similarly
other groups are placed. After clustering the clustered
data are inserted into the table empc and is indexed
with column empinfo. Now the queries are executed
to retrieve the elements of particular category. Figure
4 shows that time required to retrieve XML data
from the table under different strategies. Y-axis
represents the time required to retrieve XML data
from the table in seconds. X-axis represents the
number of elements retrieved. The time required to
retrieve 2500 elements of particular type from the
table without cluster and indexing is 0.33 sec.
 After indexing time required retrieving the data is
0.314 sec. The time required to retrieve the same data with
cluster and indexing is 0.19 sec.

Performance analysis BDBXML: In BDBXML the
XML data are maintained in the containers. Initially
container named staff.dbxml is created. In this
container ten thousand elements are added with the
following field. Serial number as attribute, name,
department, designation, address as elements. The
command create container is used for creating the
container and elements are inserted to the container by
putDocument. From the container staff.dbxml queries
can be used to retrieve the data. For example without
indexing and clustering the query used to retrieve data.
The query could read as “from the container named
staff.dbxml select all staff elements that contain
designation as “System Analyst”.
 Time in seconds for command query is 2.313.
 The above time is required for retrieving the data
from the container without indexing and clustering.
With indices Berkely DBXML can find the subset of
matching elements with a single or significantly
reduced set of lookups. By carefully applying indexing
strategies the retrieval performance can be improved
considerably. The container elements are first clustered
using field designation. After clustering the clustered
data are inserted into the container staff.dbxml and is
indexed with filed designation. Now the queries
executed to retrieve the elements of particular category.
Fig. 5 shows that time required to retrieve XML
data from the container under different strategies. Y-
axis represents the time required to retrieve XML
data from the whole document container in seconds.

J. Computer Sci., 8 (4): 545-550, 2012

549

Table 1: Performance comparison SQL server 2005
 Number of elements retrieved

Strategy 2.5.k 5.0 k 7.5k 10k
Without cluster and index 0.330 0.58 0.767 0.85
Cluster alone 0.310 0.50 0.670 0.84
Index alone 0.314 0.53 0.700 0.84
Clusterwith index 0.190 0.34 0.470 0.51

Table 2: Performance comparisons Berkeley DBXML
 Number of elements retrieved
 --
Strategy 2.5.k 5.0 k 7.5k 10k
Without cluster and index 2.310 2.530 2.640 3.450
Cluster alone 1.940 2.325 2.485 2.937
Index alone 0.625 1.110 2.125 2.718
Clusterwithindex 0.462 0.964 1.658 2.390

X-axis represents the number of elements retrieved. The
time required to retrieve 2500 elements of particular type
from the container without cluster and indexing is 2.313
sec. After indexing time required retrieving the data is
0.625 sec. The time required to retrieve the same data
with cluster and indexing is 0.462 sec. This graph
proves that, clustering with indexing procedure yields
the better performance.

DISCUSSION

 Table 1 shows the time required for the data
retrieval from the table in SQLserver2005. Table 2
contains the time required to retrieval of data from the
container of Berkely database. Clustering increases
performance for data retrieval certain extent. Indexing
supports fast retrieval of data for manipulation. Figure 4
and 5 show that the proposed similarity based clustering
method with indexing provides better performance in
data retrieval.

CONCLUSION

 Performance of similarity based clustering method
with indexing is analyzed for XML document in
SQLServer2005 and Berkeley DBXML. From the
results it is concluded that the indexing alone does not
yield the expected performance improvement. If
clustering is combined with indexing it offers better
performance than expected level of indexing or
clustering alone. In future it is planned to modify the
existing indexing techniques of XML to improve the
efficiency of data retrieval. Further it is proposed to
test clustering method using oracle database
management systems.

REFERENCES

Dalamagas, T., T. Cheng, K.J. Winkel and T. Sellis,

2006. A methodology for clustering XML
documents by structure. Inform. Syst., 31: 187-228.
DOI: 10.1016/j.is.2004.11.009

Francesca, F.D., G. Gordano, R. Ortale and A.
Tagarelli, 2003. Distance-based clustering of XML
documents. Proceedings of the 1st International
Workshop on Mining GraphsTrees and Sequences
(MGTS’ 03), pp: 75-78.

Hwang, J.H. and K.H. Ryu, 2010. A weighted common
structure based clustering technique for XML
documents. J. Syst. Software, 83: 1267-1274. DOI:
10.1016/j.jss.2010.02.004

Kim, T.S., J.H. Lee and J.W. Song, 2008. Semantic
structural similarity for clustering XML
documents. Proceedings of the International
Conference on Convergence and Hybrid
Information Technology, Aug. 28-30, IEEE Xplore
Press, Daejeon, pp: 552-557. DOI:
10.1109/ICHIT.2008.183

Lee, J.W., K. Lee and W. Kim, 2001. Preparations for
semantics-based XML mining. Proceedings of the
IEEE International Conference on Data Mining,
Nov. 29-Dec. 02, IEEE Xplore Press, San Jose,
USA, pp: 345-352. DOI:
10.1109/ICDM.2001.989538

Leung, H.P., F.L. Chung and S.C.F. Chan, 2005b. On
the use of hierarchical information in sequential
mining-based XML document similarity
computation. Knowl. Inform. Syst., 7: 476-498
DOI: 10.1007/s10115-004-0156-7

Leung, H.P., F.L. Chung, S.C.F. Chan and R. Luk,
2005a. XML document clustering using common
Xpath. Proceedings of the International Workshop
on Challenges in Web Information Retrieval and
Integration, Apr. 08-09, IEEE Xplore Press, pp: 91-
96. DOI: 10.1109/WIRI.2005.39

Lian, W., D.W.I. Cheung, N. Mamoulis and S.M. Yiu,
2004. An efficient and scalable algorithm for
clustering XML documents by structure. IEEE
Trans. Knowl. Data Eng., 16: 82-96. DOI:
10.1109/TKDE.2004.1264824

Nayak, R. and W. Iryadi, 2007. XML Schema
clustering with semantic and hierarchical similarity
measures. Knowl.-Based Syst., 20: 336-349. DOI:
10.1016/j.knosys.2006.08.006

Nierman, A. and H.V. Jagadish, 2002. Evaluating
structural similarity in XML documents. University
of Michigan.

J. Computer Sci., 8 (4): 545-550, 2012

550

Rusu, L.I., W. Rahayu and D. Taniar, 2008. Intelligent
dynamic XML documents clustering. Proceedings
of the 22nd International Conference on Advanced
Information Networking and Applications, Mar.
25-28, IEEE Xplore Press, Okinawa, pp: 449-456.
DOI: 10.1109/AINA.2008.122

Tagarelli, A. and S. Greco, 2004. Clustering
transactional XML data with semantically-enriched
content and structural features. Web Inform. Syst.,
3306: 266-278. DOI: 10.1007/978-3-540-30480-
7_28

Yang, J., W.K. Chenung and X. Chen, 2005. Integrating
element and term semantics for similarity-based
XML document clustering. Proceedings of the
IEEE/WICA/ACM International Conference on
Web Intelligence, Sept. 19-22, IEEE Xplore Press,
pp: 222-228. DOI: 10.1109/WI.2005.80

Zhang, K., R. Statman and D. Shasha, 1992. On the
editing distance between unordered labeled trees.
Inform. Process. Lett., 42: 133-139. DOI:
10.1016/0020-0190(92)90136-J

Zhang, Z., R. Li, S. Cao and Y. Zhu, 2003. Similarity
metric for XML documents. The Pennsylvania
State University.

