
Journal of Computer Science 8 (1): 175-180, 2012
ISSN 1549-3636
© 2012 Science Publications

Corresponding Author: D. Ramesh,

Department of CSE, Anna University of Technology, Tiruchirappalli

175

Hybrid Algorithm for Optimal Load Sharing in Grid Computing

1D. Ramesh and 2A. Krishnan

1Department of CSE, Anna University of Technology, Tiruchirappalli
2K.S. Rangasamy College of Technology, Tiruchengode

Abstract: Problem statement: Grid Computing is the fast growing industry, which shares the
resources in the organization in an effective manner. Resource sharing requires more optimized
algorithmic structure, otherwise the waiting time and response time are increased and the resource
utilization is reduced. Approach: In order to avoid such reduction in the performances of the grid
system, an optimal resource sharing algorithm is required. In recent days, many load sharing technique
are proposed, which provides feasibility but there are many critical issues are still present in these
algorithms. Results: In this study a hybrid algorithm for optimization of load sharing is proposed. The
hybrid algorithm contains two components which are Hash Table (HT) and Distributed Hash Table
(DHT). Conclusion: The results of the proposed study show that the hybrid algorithm will optimize
the task than existing systems.

Key words: Hash Table (HT), Distributed Hash Table (DHT), High Performance Computing (HPC),

distributed computing, information virtualization, double hashing reduces, grid
environment, heterogeneous network, computing components

INTRODUCTION

 Now a day, the scientific problem becomes very
complex; therefore it requires more computing power
and more storage space. These requirements are very
common in an organization when dealing with current
technological methodology. The past technologies such
as distributed computing, parallel computing are not
suitable for recent advancement. Because, the modern
computer industry operating very large amounts of data
which utilise more processing power and high storage
volumes of data. Therefore, the Grid computing is
proposed as effective resource management to the
organization. The Grid computing is a growing
technology, which is a High Performance Computing
(HPC) branch for solving complex problems where two
or more computing components of such as a traditional
supercomputing centre, clusters of computers, a
heterogeneous network, a distributed resources centre
are integrated in a hardware and software infrastructure.
 Grid computing has similar architecture to
distributed computing but it is differentiated from
almost all distributed computing paradigms by the
following characteristic: the essence of grid computing
lies in the efficient and optimal utilization of a wide
range of heterogeneous, loosely coupled resources in an
organization tied to sophisticated workload
management capabilities or information virtualization.
 As the Grid is growing in the modern era, it attracts
researcher. There are variety of research activity is
identified in the grid environment which is shown in

the Fig. 1. In which the workflow scheduling and
load balancing are the major research issue even till
date. The architectural design of Grid is shown in the
Fig. 2 and 3. AliEn RB (Boukerram and Azzou 2006,
Suguna and Thanushkodi, 2011) is a Grid Broker which
handles File transfer optimization, fault tolerance by
multithreading and Push and pull task assignment. In
Apples (Odeh et al., 2009; Latip et al., 2011), the
Parameter study support, event-driven rescheduling,
Centralized adaptive scheduling with heuristics and self-
scheduled study queues are handled. In EZ-GRID Broker
(Ibrahim and Salman, 2011; Richard et al., 2008), job
handling, transparent file transfer, self-information service
ith dynamic and historical data, Policy Engine Framework
for provider policies are proposed.

Fig. 1: Various research activity in the grid environment

J. Computer Sci., 8 (1): 175-180, 2012

176

Fig. 2: Architectural design of job scheduler

Fig. 3: Virtual organizaion based Grid Architectural

design

 In GRID BUS Grid Service system (Alshoaibi et
al., 2009), Failure management and application
recovery, parameter study, API support, Economy-
based and data aware scheduling are focused for
solving. The GRUBER (Al-mazroi and Rashid, 2011)
handles SLA-based resource sharing in multi-VO
environment, disk quota considerations, internal site
monitoring feature and various users oriented policies.
 The APAC (Australian Partnership for Advanced
Computing) Grid interconnects various Grid sites
distributed across Australian Institutions and
Universities. The APAC Grid uses a hierarchical
information service, MDS-2. VPAC (Victorian
Partnership for Advance Computing), which is a part
of the APAC Grid, hosts the centralised GIIS (Grid
Index Information Service:-a component MDS-2),
while the remaining Grid sites run the GRIS (Grid
Resource Information Service) that connects to the
VPAC GIIS. A Grid resource broker who wishes to
access the APAC Grid has to contact the VPAC
GIIS, as contacting one of the other Grid sites
running a GRIS would only allow access to
information about that particular resource.

 This isolation in resource information organisation
in grids and among grids leads to the resource
fragmentation problem. In this case, Grid users get
access to only small pool of resources. Further, the
institution hosting the root GIIS service is central point
of contact for the overall system. Failure of the root
GIIS can partition the system, and can lead to
significant performance bottlenecks. To overcome the
limitations of centralised and hierarchical information
services, proposed a decentralised Grid resource
information service based on a spatial publish/
subscribe index. It utilises a Distributed Hash Table
(DHT) routing substrate for delegation of d-
dimensional service messages. DHTs have been proven
to be scalable, self-organising, robust and fault-tolerant.
The proposed Grid resource discovery service organises
data by maintaining a logical d-dimensional
publish/subscribe index over a network of distributed
Grid brokers/Grid sites. The spatial nature of the
publish/subscribe index has the capability to respond to
complex Grid resource queries such as range queries
involving various attribute types including, those that
have a spatial component.
 Further, the resource discovery system is extended
to provide the abstraction/facility of a P2P tuple space
for realising a decentralised coordination network. The
P2P tuple space can transparently support a decentralised
coordination network for distributed brokering services.
The P2P tuple space provides a global virtual shared
space that can be concurrently and associatively accessed
by all participants in the system and the access is
independent of the actual physical or topological
proximity of the tuples or hosts. The Grid peers
maintaining the tuple space undertake activity related to
job load-balancing across the Grid-Federation resources.

MATERIALS AND METHODS

 The proposed method is a hybrid version of Hash
Table (HT) and Distributed Hash Table (DHT).
Therefore, this section further explains the methods and
implementations of HT and DHT (Banejad et al., 2009;
Latip et al., 2011; Salaheddin et al., 2009).

Hash Table (HT): The hash table is a fair and feasible
way of resource optimization in the last few years. A
hash table entry stores an item which is composed by a
key and possibly some data, i.e., a pair of <k, d>. In
hash table, every table position has a pointer, initially
pointing to an empty value. When an item is inserted in
the table, the pointer of the corresponding position
refers to it. The hash table structure used by the minimal
perfect hashing approach is designed such a way that all
the items which are inserted directly in the table. This
design is opt in many ways such that there are no empty
entries in the hash table and no space is lost even when the

J. Computer Sci., 8 (1): 175-180, 2012

177

data volume in the item is large. The minimal perfect
hashing avoids the use of memory space to keep the
pointers and the space overhead does not depend on the
items length. Some of the open addressing techniques are,
linear hashing, quadratic hashing, double hashing, dense
hashing and cuckoo hashing.
 The linear hashing is the simplest open addressing
schemes which uses a hash function and tests positions
and so on, until it finds the term k being searched.
Otherwise, if it finds an empty position, or if the
sequential search reaches position h(k) after running
over all other positions, the item being searched does
not exist in the hash table. The main problem of linear
hashing is, it degenerates in a sequential search when
the number of terms n gets closer to the table size m,
which causes a waste of time. Another issue is the waste of
space caused by empty positions in the hash table.
 The quadratic hashing is very similar to linear
hashing that uses two additional parameters r and q.
The parameter r indicates how many positions ahead
from the current position of the next search for the term
k will be performed and the parameter q indicates that
the value of parameter r will be added to after each
iteration. The quadratic hashing is expected to have a
better performance when compared to linear hashing
for higher load factors, since it prevents the production
of clusters which delay the search for items. However,
this method shares some problems found in linear
hashing, e.g., the waste of space due to empty positions
and the waste of time due to successive collisions when
n gets closer to m. The quadratic hashing method may
also have a smaller spatial locality when compared to
linear hashing, as the pace r may become much larger
than one. The period of search is defined as the number
of entries that appear in a sequence from a particular
initial position before an entry is encountered twice.
The period of search should preferabaly be the same as
the table size m or, at least, as large as possible.
Otherwise, the table may appear to be full when there is
still space available. If m is a prime number then the
period of search for the quadratic hash method is m/2.
 The double hashing also study in a way very
similar to linear hashing, but instead of one function, it
uses two: h1(k) and h2(k). The first one produces values
in the range (0, m−1), mapping the term into its position
in the hash table, the same way the hash function in
linear hashing does. The additional function h2(k)
produces values in the range 1, m−1, which are used as
steps in the process of finding empty positions. Values
produced by h2(k) are relatively primes to the table size
m. The double hashing reduces the problem of
clustering in a better way than quadratic hashing does.
This is because function h2(k) provides a different step
d for each key k and the multiple step sizes produce a
more uniform distribution of the used positions.

 The Cuckoo hashing mimics the cuckoo chick’s
behavior and uses two hash functions h1(k) and h2(k) to
get two possible table positions for a given term. When
a term x has to be inserted in the structure, one of the
two possible positions h1(x) or h2(x) is chosen. If the
chosen position is already occupied, the term y
contained there will be removed from the structure,
yielding an empty position to the term x being inserted.
Term y, in turn, has two possible positions given by
h1(y) and h2(y). Consequently, y can be inserted
differently from its prior position.
 The hopscotch hashing is based on a mix of
techniques from chaining, cuckoo hashing and linear
hashing. This algorithm was designed for providing
little synchronization overhead in a multi-processing
environment and for high cache hit ratios. Furthermore,
its performance does not degrade when the table load
factor is high, i.e., more than 90%. In hopscotch
hashing each key is mapped into an entry in an array of
entries using a hash function h, but in case of collision
it may be stored in one of the next H-1 neighboring
entries, where H is a constant. This fixed range of
entries is called a virtual bucket. Each entry keeps
information on its keys’ virtual bucket, with the
purpose of finding the exact physical location of each
key mapped into it. Each virtual bucket overlaps with
other virtual buckets in the entry array.
 The sparse hashing is based on a sparse array
structure that uses little memory space and it is
implemented as an array of groups A, where the
number of groups in a sparse array of m entries is
calculated as G = ⌈m/M⌉. Each group stored in A[g],
0⩽g<G, is responsible for m indexes of the hash table,
i.e., A [0] is responsible for the items in the range [0,M-

1], A[1] for the items in the range [M,2 M−1] and so on.
Each group g contains an array Rg that stores the actual
items, an S-bit number to control the size of Rg and a
bitmap Bg of size m. The bitmap Bg indicates the
assigned indexes in the range [0,M-1]. If Bg[f]=1,
0⩽f<M, then index f has a corresponding value stored
in Rg. An item in group g with an offset f is not
necessarily placed in position f of Rg, but in the position
Rg[j], where j is the number of bits set from Bg[0] to
Bg[f

-1]. Therefore, the array Rg is dynamically
reallocated when new items are inserted into it. Thus,
the size of Rg can differ among groups.
 Although being very efficient in memory usage,
sparse hashing is not designed to be efficient in time:
each lookup needs to perform a sequential search
through Bg to find the position of an item Rg. However,
it presents a high spatial locality and this increases the
number of cache hits when we perform insertions and
lookups in the sparse hashing structure.

J. Computer Sci., 8 (1): 175-180, 2012

178

Distributed Hash Table (DHT): Now a day,
Distributed Hash Tables (DHT) is a part of many Peer-
To-Peer (P2P) applications in the Internet. To mention
a few examples, DHTs are used to track the
upload/download ratings in Bit Torrent and resolve host
identifiers to IP addresses for Host Identity Protocol
(HIP). Each DHT node maintains a routing table of its
neighbors containing node Identifiers (IDs) and IP
addresses. The main service provided by DHTs is
routing a lookup query for a certain key to a DHT node
that stores the value for that key.
 Consider a DHT consisting of N nodes. Node IDs
are assigned from an identifier space with a distance
metric. Each node s maintains a routing table Ts of
entries (u, IPu), where u is a neighbor and IPu is its IP
address. Hence, s forwards messages to u via the
underlying IP network. A message to a destination node
d goes sequentially to nodes who’s IDs are
progressively closer to d according to the distance
metric. If v∈Ts, then s is forward a message to v
forming the one-hop path s → v. Routing from s to d
takes several hops forming a multi-hop path s→

+d.
 DHT is divided onto global and local parts. In the
global part, a message is delivered close to the
destination. In the local part, the destination is at a
nearby node. The reasons for division are:

• Since a node is responsible for the keys closest to

its ID, let a lookup message arrive to a node close
to the key

• Various replication techniques support routing into
an area of neighboring nodes

• A DHT node knows its neighborhood well,
keeping close nodes to its routing table when
possible. Obviously, global routing is more
vulnerable to attacks

 DHT routing is either iterative or recursive. With
iterative routing each node on the lookup path returns
the next-hop node v to the querying node. The latter
then contacts v to get iteratively closer to the
destination. With recursive routing, each node forwards
lookups directly to the next hop nodes and the querying
node receives a response from the destination. Iterative
routing is more secure since a querying node can
control the routing progress. Nevertheless, more
network resources are consumed and iterative routing is
not possible when a querying node cannot directly
contact some nodes on the path, e.g., due to NATs. In
this study, we consider recursive routing only.

Perfect Hash Function (PHF) and Minimal Perfect
Hash Function (MPHF): A PHF is an injective
function that maps keys from a set S to unique values.

Since no collisions occur, each key can be retrieved
from a hash table with a single probe. A MPHF is a
PHF with the smallest possible range, that is, the hash
table size is exactly the number of keys in S. MPHFs
are widely used for memory efficient storage and fast
retrieval of items from static sets. Differently from
other hashing schemes, MPHFs completely avoid the
problem of wasted space and wasted time to deal with
collisions. Until recently, the amount of space to store
an MPHF description for practical implementations
found in the literature was O (logn) bits per key and
therefore similar to the overhead of space of other
hashing schemes. Recent results on MPHFs presented
in the literature changed this scenario: an MPHF can
now be described by approximately 2.6 bits per key.

RESULTS

 A simple system design is shown in the Fig. 4.
The distributed resource discovery system that
supports multi-attribute based information search
which handles multi-attribute lookups by creating a
separate routing hub for every resource dimension.
Each routing hub represents a logical collection of
nodes in the system and is responsible for
maintaining range values for a particular dimension
while the notion of a circular overlay is similar to
DHTs, it does not use any randomizing
cryptographic hash functions for placing the nodes
and data on the overlay. In contrast, this network is
organised based on set of links. These links include
the: i) successor and predecessor links within the
local attribute hub; ii) k links to other nodes in the
local attribute hub (intra-hub links); and iii) one link
per hub (inter-hub link) that aids in communicating
with other attribute hubs and resolving multi-
attribute range queries.
 In this model, the total routing table size at a node
is k+2. When a node nk is presented with message to
find a node that maintains a range value [li, ri], it
chooses the neighbor ni such that the clockwise
distance d(li, v) is minimized, in this case the node ni
maintains the attribute range value [li, ri]. Key to
message routing performance of Mercury is the choice
of k intra-hub links. To set up each link i, a node draws
a number x ∈ I using the harmonic probability
distribution function: pn(x) = 1 n log x. Following this,
a node ni attempts to add the node n‘in its routing table
which manages the attribute range value r + (Ma −ma)
×x; where ma and Ma are the minimum and maximum
values for attribute a.

J. Computer Sci., 8 (1): 175-180, 2012

179

 Fig. 4: Data flow on Hybrid Scheduling in Grid System

DISCUSSION

 The objective of this study is to show that hybrid
scheduling are, after the new recent results, a good
option to index internal memory when static key sets
are involved and both successful and unsuccessful
searches are allowed. We have shown that our proposed
hybrid scheduling provide the best tradeoff between
space usage and lookup time when compared with other
open addressing and chaining hash schemes such as
linear hashing, quadratic hashing, double hashing,
dense hashing, cuckoo hashing, sparse hashing,
hopscotch hashing, chaining with move to front
heuristic and exact fit.

CONCLUSION

 We considered lookup time for successful and
unsuccessful searches in two scenarios: (i) the MPHF
description fits in the CPU cache and (ii) the MPHF
description does not fit entirely in the CPU cache.
Considering lookup time, the minimal perfect hashing
outperforms the other hashing schemes in the two
scenarios and, in the first scenario, the performance is
better even when the compared methods leave more
than 80% of the hash table entries free. Considering
space overhead (the amount of used space other than
the key-value pairs), the minimal perfect hashing is
within a factor of O (logn) bits lower than the other
hashing schemes for both scenarios.

REFERENCES

 Al-mazroi, A.A. and N.A. Rashid, 2011. A fast hybrid
algorithm for the exact string matching problem.
Am. J. Eng. Applied Sci., 4: 102-107.
DOI: 10.3844/ajeassp.2011.102.107.

 Alshoaibi, A.M., A.K. Ariffin and M.N. ALmaghribi,
2009. Development of efficient finite element
software of crack propagation simulation using
adaptive mesh strategy. Am. J. Applied Sci., 6:
661-666.
DOI: 10.3844/ajassp.2009.661.666.

Banejad, M., R.A. Hooshmand and M.T. Esfahani,
2009. Exponential-hyperbolic model for actual
operating conditions of three phase arc furnaces.
Am. J. Applied Sci., 6: 1539-1547.
DOI: 10.3844/ajassp.2009.1539.1547.

Boukerram, A. and S.A.K. Azzou, 2006.
Implementation of load balancing algorithm in a
grid computing. Am. J. Applied Sci., 3: 1810-1813.
DOI: 10.3844/ajassp.2006.1810.1813.

Ibrahim, L.F. and H.A. Salman, 2011. Using hyper
clustering algorithms in mobile network planning.
Am. J. Applied Sci., 8: 1004-1013.
DOI: 10.3844/ajassp.2011.1004.1013.

Latip, R., H. Ibrahim and F.A. Al-Hanandeh, 2011.
Scientific data sharing using clustered-based data
sharing in grid environment. Am. J. Econ. Bus.
Admin., 3: 146-149.

J. Computer Sci., 8 (1): 175-180, 2012

180

Latip, R., H. Ibrahim and F.A. Al-Hanandeh, 2011.
Scientific data sharing using clustered-based data
sharing in grid environment. Am. J. Econ. Bus.
Admin., 3: 146-149.
DOI: 10.3844/ajebasp.2011.146.149.

Odeh, S., R. Faqeh, L.A. Eid and N. Shamasneh, 2009.
Vision-based obstacle avoidance of mobile robot
using quantized spatial model. Am. J. Eng. Applied
Sci., 2: 611-619.
DOI: 10.3844/ajeassp.2009.611.619.

R. J.A. Richard, Ajay A. Joshi and C. Eswaran, 2008.
Implementation of computational grid services in
enterprise grid environments. Am. J. Applied Sci.,
5: 1442-1447. DOI:
10.3844/ajassp.2008.1442.1447.

Salaheddin Odeh, Rasha Faqeh, Laila A. Eid and Nihal
Shamasneh, 2009. Vision-based obstacle avoidance
of mobile robot using quantized spatial model. Am.
J. Eng. Applied Sci., 2: 611-619. DOI:
10.3844/ajeassp.2009.611.619

Suguna, N. and K.G. Thanushkodi, 2011. An
independent rough set approach hybrid with
artificial bee colony algorithm for dimensionality
reduction. Am. J. Applied Sci., 8: 261-266.
DOI: 10.3844/ajassp.2011.261.266.

