
Journal of Computer Science 8 (10): 1649-1659, 2012
ISSN 1549-3636
© 2012 Science Publications

Corresponding Author: Mohammed Nazer, Department of Computer Applications, IFET College of Engineering, Villupuram, India
1649

Evaluating the Strengths and Weaknesses

of Mining Audit Data for Automated Models for
Intrusion Detection in Tcpdump and Basic Security Module Data

1Mohammed Nazer, G. and 2A. Arul Lawrence Selvakumar

1Department of Computer Applications,
 IFET College of Engineering, Villupuram, India

2Department of Computer Applications,
Adhiparasakthi Engineering College, Melmaruvathur, Tamilnadu, India

Abstract: Problem statement: Intrusion Detection System (IDS) have become an important
component of infrastructure protection mechanism to secure the current and emerging networks, its
services and applications by detecting, alerting and taking necessary actions against the malicious
activities. The network size, technology diversities and security policies make networks more
challenging and hence there is a requirement for IDS which should be very accurate, adaptive,
extensible and more reliable. Although there exists the novel framework for this requirement namely
Mining Audit Data for Automated Models for Intrusion Detection (MADAM ID), it is having some
performance shortfalls in processing the audit data. Approach: Few experiments were conducted on
tcpdump data of DARPA and BCM audit files by applying the algorithms and tools of MADAM ID in
the processing of audit data, mine patterns, construct features and build RIPPER classifiers. By putting
it all together, four main categories of attacks namely DOS, R2L, U2R and PROBING attacks were
simulated. Results: This study outlines the experimentation results of MADAM ID in testing the
DARPA and BSM data on a simulated network environment. Conclusion: The strengths and weakness
of MADAM ID has been identified thru the experiments conducted on tcpdump data and also on
Pascal based audit files of Basic Security Module (BSM). This study also gives some additional
directions about the future applications of MADAM ID.

Key words: Feature construction, data mining, intrusion detection, denial of service, network security

INTRODUCTION

 There was clear evidence from many studies (for
example (Durst et al., 1999), that the insiders, who have
not blocked by firewalls, are the causes for computer
security incidents. At the same time, the intruders, so
called legitimate users require access with significant
privileges to do their day to day work. Moreover, the
vast majority of the harm from the insiders are not
malicious, rather it is honest people make some honest
mistakes. However, there are so many potential
outsiders who are very clever and have somehow
passed all the screens of firewalls and access and
authorization controls and do malicious activities,
especially in a network environment. Then, how to
prevent them? Although, prevention is very much
necessary, it is not a complete solution for computer
security. Moreover, it is not practically possible to
detect such harmful incidents in advance. Many surveys
have been done to control the intrusions and (Halme

and Bauer, 1995) identified various range of controls to
address intrusion detection.
 All these preventive controls can be complimented
as the next line of defense, an Id. This intrusion
detection system acts as a separate spy computer in a
network environment to monitor all the users and
system activities, audit the system configuration for
vulnerabilities, misconfigurations, accessing the system
integrity and data files, recognizing the known attack
patterns, violation of user access policy and much more
functions. In case if it detects any harmful or suspicious
activities, it will alarm the system administrator
immediately to take necessary action.
 Since the technology has been improved
significantly, the modern IDs operates on real time and
these ATIDS-Automated IDS monitor all the activities
of the user, system and network and alarm the
administrator in case if any malicious or suspicious
event occurs. Ideally an IDs should be fast, simple,
complete and more accurate. This is because, in the

J. Computer Sci., 8 (10): 1649-1659, 2012

1650

initial stages, there were a huge false alarm signals and
very little positive alarm signals. On attending these
signals, there were so much of resources has been applied
and much time has been wasted in attending the false or
negative alarm signals. Modern commercial IDs tends to
be more accurate. But these IDs, detects all known and
unknown attacks with limited performance penalty.
 Monitoring the use and system activities is
appropriate for an attack of initial impact. Indeed, the
actual goal of an ID is to check, what resources are
being accessed and various attempted attacks are tried.
Moreover, recording all the traffic of a given source or
destination is very much useful for future audit
analysis. This type of approach should be invisible to
the user. Finally, IDS should respond an initial
defensive action immediately while generating an alarm
to the administrator, who can act, only upon receiving
an alarm, which takes some time.
 Many research works are still in progress on the
evolving product of IDS, which has started from the
early 1990s. Recent researches (Dickerson and
Dickerson, 2000) reveal that, IDS detect a number of
serious problems, which are even growing and as the
number of problems or attacks increases, so do the
signature patterns to the IDS model. Thus, modern IDS
are improving in defending continuously. On the other
side, avoiding IDS are the first and prominent priority
for a number of successful intruders. As we all say that
AN ID that is not well defended is useless. Another
boom in the IDS technology is that the stealth mode
IDS, which is very difficult, even to find on an internal
network and is left alone to compromise by itself.
 In today’s network environment, even though,
accuracy of IDS is the essential requirement, its
extensibility and adaptability are also very much
critical. In a network environment, there exist multiple
penetration points for the attackers. For example, in a
network level, a well designed malicious IP packets
penetrate even through the firewalls and crash the victim
host, as well as, at the host side, more vulnerabilities in
system software can be exploited to yield an illegal root
shell. Since activities at different penetration points are
recorded in different audit data sources, an IDS often
needs to be extended to incorporate additional modules
that specialize in certain components, such as hosts,
subnets, etc. of the network system.
 Snort, which is another milestone in IDS
technology, is a signature based lightweight open
source network intrusion prevention and NIDS-
Network IDS. This captures and analyze whether there
exist a pattern that matches a known signature inside
the packet content. Snort has been designed with
flexible rules to describe the network traffic to
identify which packets to collect or to pass and with a
modular plug-in structured detection engine.

 A real time alerting capability and generating logs
when an attack occurs are the major credits of this
Snort. Snort can be distributed to different parts of the
network and can send alerts to the central console.
Snort’s network interface card runs in promiscuous
node, which captures all the network traffic that goes by
NIC and detect the unexpected events in the traffic to
generate real time alerts to the central console.
 As a next step, a system for automated network
intrusion detection is in progress as a part of JAM
project. This ANIDS -Automated Network Intrusion
Detection System is designed with many data mining
methods, to build network intrusion classifiers which
are used to monitor live network stream input to
detect the intrusions.
 This study discusses about our experiments on the
audit data files for building intrusion detection models
from the DARPA and Basic Security Module (BSM)
Intrusion detection evaluation program and the security
related problems. We obtained a set of tcpdump data,
available at http://iris.cs.uml.edu:8080/network.html. Even
though, the output of tcpdump data is not intended for
security purposes, we had to go through multiple iterations
of data pre-processing to extract meaningful features and
measures. We studied TCP/IP and its security related
problems, for example (Stevens, 1994; Paxson, 1997;
1998; Atkins, 1996; Bellovin, 1989; Porras and Valdes,
1998), for the guidelines of protocol features.
 This study is organized as follows. We first give a
brief overview of our experiments on tcpdump data. We
then outline construction of manual and automatic
features along with various detection models applied
and the performance results of tcpdump data. In the last
section, we give a brief overview of our experiments on
BCM data and their results.

MATERIALS AND METHODS

 In this study, we describe in detail about our
experiments on DARPA and BSM audit data files for
building intrusion detection models. We have applied
the classification rules, link analysis and sequence
analysis algorithms that has been discussed in (Nazer
and Selvakumar, 2011) and we also applied the tools of
Mining Audit Data for Automated Models (MADAM)
to process the audit data, mine patterns and construction
features that has been discussed in (Nazer and
Selvakumar, 2012a) and (Nazer and Selvakumar,
2012b) in our simulated network environment. In these
experiments on tcpdump and BSM data, the strengths
and weakness of MADAM ID has been identified and
illustrated with their performance results.

J. Computer Sci., 8 (10): 1649-1659, 2012

1651

Experiments on tcpdump data and their results: In
order to test the effectiveness of data mining techniques
in IDS (Abraham, 2001), we took the user of
established and more appropriate data sets and these
data sets are more popular and widely used for research
work at MIT Lincoln Laboratory @ http://www//ll/mit-
edu/IST/ideval. They have collected and distributed the
first version of standard corporation for evaluation of
network intrusion detection systems. In this evaluation,
the probability of detection (whether it detects all
intrusions or known attacks) and the probability of false
alarm are measured for each system under simulated or
testing environments. The objective of these
experiments is to study and to analyze the performance
shortfalls in the intrusion detection research work.
 All these experiments were done on the training
data set provided at Lincoln Laboratory of
Massachusetts Institute of Technology (DARPA
Intrusion Detection Evaluation Dataset) and these are
available at
‘http://www.ll.mit.edu/mission/communications/ist/cor
pora/ideval/data/1998 data.html’. We have collected 4
gigabytes of compressed tcpdump data of 7 weeks of
network traffic, for these experiments. These data can
be processed into 5 million connection records of 100
bytes each. Each of this data contains the data portion
of every ICMP packet transmitted between host inside
and outside the simulated net work environment. For
testing, we considered and simulated DOS, R2L, U2R
and PROBING attack types and in addition to that there
was anomaly user behaviour (Ghosh et al., 1999),
which means a normal user acts as a system
administrator with full authentication privileges.
 Before commencing our experiments, certain data
preprocessing was done, so that, for data packet
filtering and reassembling work, we used Bro tool
(Paxson, 1998). In our case, in order to avoid the system
crashing in ping-of-death and teardrop attacks, we have
made new changes in the ICMP packets to its packet
fragment inspection modules. This change include a
Bro-connection finished event handler so that we get a
summarized record for each connection and these
records have intrinsic features which are described in
the following table (Table 1).
 The above table lists the various intrinsic features
of network connection records.

Misuse detection: The ‘list files’ which are included in
the training data files were used to identify type of
attack, source and destination host and port id and also
the timestamp of the files. For building the
classification model, we used these information for
pattern mining, feature construction and to name each
correction record with ‘normal’ and an attack type to
create training data. For our testing purpose, we did not
aggregate all the connection records, since the amount of

audit data is really very huge, instead, we considered only
those connection records that fall within a surrounding
time of plus and minus 5 min of each attack. Similarly, we
created a dataset for each attack type and for normal
dataset, we aggregated only the sequences of normal
connection records.

Construction of manual and automatic features:
When each ICMP packet data is summarized into the
connection records (Nazer and Selvakumar, 2012b)
using commonly available packet processing engines,
each network connection record contains a set of
‘intrinsic’ features that are for general network traffic
analysis purposes. These features include service,
src_host, src_port, dst_host, duration (duration of
the connection), src_bytes and dst_bytes (number of
data bytes from source to destination and vice versa)
etc. These intrinsic features were shown in the above
mentioned table (Table 1). The frequent sequential
patterns from these initial connection records can be
viewed as statistical summaries of the network
activities. For each attack type, e.g., syn flood, port-
scan, we performed pattern mining and comparison
using its intrusion data set and the normal data set.
But for each attack method, the actual network hosts
are irrelevant and moreover there were over a
thousand different hosts in the tcpdump training data.
Hence we did post-processing work on the frequent
patterns of each record before we do encode and
compare on the training data. The post processing
work was done with the following procedure.
 In each dataset, check a frequent pattern from left
to right, one by one as follows:

• Let the first src_host value be s0
• Let the first dst_host value by d0

 In each dataset, whenever a src_host value is
identified, check whether it is the same as one of the
previous src_host in the pattern:

• If yes, then replace it with the appropriate si
• Otherwise replace it with sn+1
• Perform the same process for the dst_host value

 For example, a pre-processing dataset pattern:

(service = http, src_host = hostA),
(service = telnet, dst_host = hostB) →
(service = smtp, src_host = hostC dst_host = hostB),
[0.2,0.1,2s]
The above data is post-processed into
(service = http, src_host = s0),
(service = telnet, dst_host = d0) →
(service = smtp, src_host = s1, dst_host = d0),
[0.2,0.1,2s]

J. Computer Sci., 8 (10): 1649-1659, 2012

1652

Table 1: Intrinsic features of network connection records

Feature Description Value type

Duration Length of the connection (number of seconds) Continuous
Protocol_type Type of protocol, e.g., tcp, udp, Discrete
Service Network service on the destination, eg., http, telnet Discrete
Src_bytes Number of data bytes from source to destination Continuous
Dst_bytes Number of data bytes from destination to source Continuous
Flag Normal or error status of the connection Discrete
Land 1- connection is from/to the same host/port; 0 - otherwise Discrete
Wrong-fragment Number of wrong fragments Continuous
Urgent Number of urgent packets Continuous

As a result of post-processing, the redundancy patterns
are reduced and this means, the number of unique
patterns within a pattern set is significantly reduced.
Moreover, the process of creating a normal pattern set,
pattern encoding and pattern comparison becomes very
much efficient and all these processes are possible only
because of the post processing. In this process, we have
created two features namely ‘same host’ (same_host)
and ‘same service’ (same_srv) for intrusion only
patterns of each attack type. These two intrinsic
features are explained as follows:

• The ‘same_host’ feature examines only the

connections in the past 2 sec that have the same
destination host as the current connection record

• The ‘same_srv’ feature examines only those
connections in the past 2 sec that have same
services as the current connection record

 We finally summarize the statistical features that
are automatically constructed in this process. The
statistical feature includes:

• Count of same_host and same_srv connections
• Percentage of connections having same_srv as the

current one
• Percentage of different services
• Percentage of different destination hosts
• Percentage of Serror_% and Rerror_%

 These time-based ‘traffic’ features of connection
records are summarized in the Table 2.
 Out of all the four attack types that we considered
namely DOS, R2L, U2R and PROBING, only the
PROBING is very slow that did not produce intrusion-
only patterns within the specific time of 2 sec, to say, it
can scan the host or the port in a time span of more
than a minute. In order to create a ‘host based’ traffic
features, these connection records were sorted based on
the destination hosts and applied same pattern mining
and feature construction process. Similar to the time

based traffic features, we constructed a mirror set of
host based traffic feature by using a ‘connection’
window of 100 connections instead of time span of 2
sec. The R2L and U2R attacks don’t have any intrusion
only frequent patterns as found in most of the DOS and
PROBING attacks. These DOS and PROBING attacks
involve a lot of connection to some hosts or ports in a
very short period of time and hence they can have more
frequent sequential patterns than the normal traffic
pattern. In case of R2L and U2R attacks, these are
encapsulated within the data portion of ICMP packets
which generally appear in a single connection.
 Our automatic feature construction model would
fail to produce any model or features for these types of
attacks since because these attacks don’t have any
unique frequent patterns of traffic. Also in case of
unstructured data contents of IP packets, our current
data mining algorithm cannot deal and hence we
consider the domain knowledge for defining
appropriate current features. To inspect the data
exchanges of interactive TCP connection, such as
ftp, smtp, we added some more functions that assign
values to a set of content features in order to identify
any suspicious behaviour inside the packet data
contents. The various features are listed in the
following table (Table 3).
 The statistical features include number of hot
indicators, number of failed login attempts, successful
logins, number of compromised conditions, whether
root shell is obtained or not, whether a su command is
attempted and successful or not, number of file
creations, number of shell prompts, number of write,
delete and create operations on access control files,
number of outbound commands in a ftp session, root or
admin logins or a guest login status. With so much of
statistical indicators, the classification program can
decide, which minimal set of discriminating features
can be used in order to identify the instructions and this
is the basic idea behind Table 3.

J. Computer Sci., 8 (10): 1649-1659, 2012

1653

Table 2: Network traffic features of network connection records
Feature Description Value type
Count Number of connections to the same host as the current connection in the past 2 sec Continuous
The following features refer to these same-host connections
Serror_% % of connections that have ‘SYN’ errors Continuous
Rerror_% % of connections that have ‘REJ’ errors Continuous
Same_srv_% % of connections to the same service Continuous
Diff_srv_% % of connections to the different services Continuous
Srv_count Number of connections to the same service as the current Continuous
 connection in the past 2 sec
The following features refer to these same-service connections
Srv_serror_% % of connections that have ‘SYN’ errors Continuous
Srv_rerror_% % of connections that have ‘REJ’ errors Continuous
Srv_diff_host_% % of connections at different hosts Continuous

Table 3: Content features of network connection records
Feature Description Value type
hot Number of ‘hot indicators’ Continuous
failed_logins Number of failed login attempts Continuous
logged_in 1- successful login; 0 - otherwise Discrete
compromised Number of ‘compromised’ conditions Continuous
root_shell 1- root shell is obtained; 0 - otherwise Discrete
su 1 -‘su root’ command attempted;
 0-otherwise Discrete
file_creations Number of file creation operations Continuous
shells Number of shell prompts Continuous
access_files Number of write, delete and create operations on access control files Continuous
outbound_cmds Number of outbound commands in a ftp session Continuous
hot_login 1- the login belongs to the ‘hot’ list (e.g., root, admin, 0 - otherwise Discrete
guest_login 1 - the ‘guest’ login; 0 - otherwise Discrete

Table 4: Example of ‘traffic’ connection records
Label Service Flag Count. Srv_count Rerror_% Diff_srv_%
Normal ecr_i SF 1 1 0 1
Smurf ecr_i SF 350 350 0 0
Satan user-level REJ 231 1 85% 89%
Normal http SF 1 0 0 1

Table 5: Example of RIPPER Classifier for DOS and PROBING Attacks
RIPPER rule Description
smurf :- count = 5, srv_count >= 5, If the service is ecr_i (icmp echo request) and for
service = ecr_i the past 2 sec, if the number of connections (that has
 the same destination host as the current one) is 5 and the
 number of connections that has the same service as the current one
 is at least 5, then this is a smurf type of DOS attack.
satan :- rerror_% >= 83%, For the past 2 sec, if the number of connections have
diff_srv_% >= 87%. the same destination host as the current connection, the %
 different services is at least 87%, then this
 of the rejected connection is at least 83%,
 and the % of is a satan type of PROBING attack

Different detection models: Since different types of
intrusion requires different construction features to
detect them, we have created three classification models,
each of which will be using different set of construction
features and these models are explained below:

• Traffic model
• Host-based traffic model
• Content model

The ‘Traffic’ model: In this model, each connection
record contains the ‘traffic’ and ‘intrinsic’ features as
shown in the following table. Table 4 shows the
example labeled connection records.

 The appropriate RIPPER classifier detects the DOS
and PROBING attacks and the following table (Table
5) shows such an example.

The ‘Host-Based Traffic’ model: In this model, each
connection record contains the ‘intrinsic’ and the ‘host-
based traffic’ features and the resultant RIPPER classifiers
detect the slow PROBING attacks.

The ‘Content’ model: In this model, each connection
record contains the ‘intrinsic’ and the ‘content’ features
of each ICMP packets and the resultant RIPPER
classifier detects the R2L and U2R type of attacks all
the above mentioned classification models detects a

J. Computer Sci., 8 (10): 1649-1659, 2012

1654

specific type of intrusion. Instead of having different
models individually, we combine all these three
classification models into a meta classifier. The
advantage of this meta classifier is that each meta level
audit record contains the three predictions from the
traffic, host-based and content models and additionally
one more information of true class label which means
‘normal’ and an attack type. In order to identify
whether a connection is normal or an intrusion type, we
apply RIPPER rules, so that to detect the R2L and U2R
attack type, the meta level classifier uses the content
model and to detect the DOS and PROBING attacks,
the meta level classifier uses the combination of the
traffic and host-based traffic models.

RESULTS AND DISCUSSION

 The training audit data were provided by Lincoln
Laboratory of Massachusetts Institute of Technology at
‘http://www.ll.mit.edu/mission/communications/ist
/corpora /ideval/data/1998data.html’. These tcpdump
data is about 7 weeks of network traffic and took 2
weeks of unlabelled test data for our experiment. The
test data were having so many attack types and we
considered 14 types in test data only since our models
were not trained to detect of all attack types. These ere
reported in the following figure (Fig. 1).
 The above figure shows the performance of
tcpdump misuse detection models and the ROC curves
on detection rates and false alarm rates, on all four
attack types such as DOS, PROBING, U2R and R2L.
The x-axis represents the false alarm rate and the y-axis
represents the detection rate. The false alarm rate is
calculated as the percentage of normal connections that
are classified as an intrusion. The upper left corner data
print on each ROC curve shows the low false alarm rate
with high detection rate. Group 1 to 3 ROC curves
represent the performance of an intrusion detection by
other knowledge engineering models.
 From the above figure, we can see that our
detection model has the best overall performance on
detecting intrusion attacks. However, in the case of R2L
attacks, all models performed very poorly. The
features we built would be general enough so that the
models can detect new variations of the known
attacks and the new attack refer to those that did not
have corresponding instances of our trained data.
Moreover, our model can handle a large percentage
of PROBING and U2R attacks when compared to
DOS and R2L intrusions.
 Experiments on BSM data and their results-The
Basic Security Module (BSM) (Sunsoft, 1995) audit
data were provided by DARPA for a particular host,
pascal. With this data, we did some experiments in
building host-based intrusion detection model. In a host

machine, when BSM data is enabled, we get time-
bounded sequence of actions that are audited on the
system which contains one or more audit files.
 Each record in the audit file may contain a kernel
event such as a system call or a user-level event which
is nothing but a system program. Audit session is the
collection of incoming or outgoing sessions on a
particular host such as terminal login, telnet login,
rlogin (remote login), rsh, ftp and sendmail.
 Data Preprocessing-We need to perform a
sequence of data preprocessing tasks on the BSM data.
Since the BSM data is in the form of binary, it has to be
converted into ASCII data and hence we further
extended the preprocessing component of USTST
(Ilgun, 1993). The following table (Table 6) represents
some example BSM event records.
 Table 7 shows example of BSM event records and
a ‘?’ refers that the value is not given in the original
audit record itself. In this each audit record contains
various basic features and these features are shown in
the following table.
 We have created a procedure to process the event
data and convert into session records and the procedure
is constructed as follows:

• In the beginning of a audit session, we execute
• The inetd_connect event (for telnet, rlogin, rsh) or
• The execve event on a system program in.fingerd

(for incoming finger request) or finger (outgoing),
mail.local (incoming) or sendmail (outgoing), ftpd
(incoming) or ftp (outgoing)

• We record the setaudit event, which assigns the
auid and sid of the session

• We examine all audit records that share the same
combination of auid and sid to consolidate a
number of session features

• Finally record the session termination

Session features: The various tests with feature
construction for session records were analyzed as well
and as the first step we computed the frequent patterns
from the BSM audit event records. For pattern mining,
we prepared the data set in such a way that it contains
all the accountable event records of a particular session.
The word ‘accountable’ here means an audit record
having a meaningful audit user id and a valid session id.
From these data sets, we have removed audit user id
and session id in order to get a generalized data set and
this is because as such the data set is session specific.
Then we replaced ruid and euid features with a flag
same_reid so that ruid agrees with euid.

J. Computer Sci., 8 (10): 1649-1659, 2012

1655

 (a)

 (b)

 (c)

 (d)

Fig. 1: Performance of tcpdump misuse detection models (a) DOS (b) BROBING (c) U2R and R2L (d) Over all

J. Computer Sci., 8 (10): 1649-1659, 2012

1656

Table 6: Example records of BSM Event Records
Time Auid Sid Event Pid Obname Euid
08:05:22 0 0 Inet_connect 0 ? 0
08:05:22 -2 0 Execve 415 /usr/bin/ 0
08:05:31 2104 417 Setaudit 417 ? 0
08:05:31 2104 417 Chdir 418 /home/tristank 2104

Table 7: Features of BSM Event Records
Features Description Value
Time Timestamp of the event Discrete
Auid Audit user id, inherited by all child processes started Discrete
 by the user’s initial process of a session
Sid Audit session id, assigned for each login session and Discrete
 inherited by all dependent processes
Event Audit event name Discrete
Pid Process id of the event Discrete
Obname Object name, that is full file path that the event operates on Discrete
Argl_arg4 Arguments of the system call Discrete
Text Short event information (e.g., successful login) Discrete
Error_status Error status of the event Discrete
Return_value Return value of a system call event Discrete
Tmid Terminal id Discrete
Ip_header Source and destination ip address and ports of the socket used by the event Discrete
Socket The local and remote ip addresses and ports of the socket used by the event Discrete
Ruid The real user id of the event Discrete
Rgid The real group id of the event Discrete
Euid Effective user id of the event Discrete
Egid The effective group id of the event Discrete

Table 8: Features for BSM session records
Feature Description Value type
Duration Length (number of seconds) of the session Continuous
Service Operating system or network service Discrete
Logged_in Whether the user successfully logged in Discrete
Failed_logins Number of failed login attempts Continuous
Process_count Number of processes in the session Continuous
Suid_sh Whether a shell is executed in suid state Discrete
Suid_p Whether a suid system program is executed Discrete
User_p Whether a user program is executed Discrete
Su_attempted Whether a su command is issued Discrete
Access_files Number of write, delete and create operations on access control files Continuous
File_creations Number of file creations Continuous
Hot_login Whether the login belongs to the ‘hot’ list Discrete
Guest_login Whether the login belongs to the ‘guest’ list Discrete

Table 9: Example records of BSM Session
Label Service Suid_sh Suid_p User_p File_creations
Normal Smtp 0 0 0 0
Normal Telnet 0 1 1 3
Normal Telnet 0 1 0 0
Buffer_overflow Telnet 1 1 1 2
Normal Ftp 0 0 0 0
Wraz_master Ftp 0 0 0 42

Since axis is very important attribute to describe an
event data, we represent event as the axis attribute. To
compute the number of occurrences of each unique
event and the object name, we used relative support of
0.1, so that the patterns of frequent occurrences of
object names can be captured using the relative support
0.1. On further proceeding in our testing, we identified
the frequent patterns are related a specific object names.
For example, although an object name of /usr/bin/nazer
may appear only once or twice in the dataset for a
session, we can still identify its patterns using the
relative support of 0.1, these occurrences are all of
frequent patterns. After a few rounds of initial
experiments, we discovered that the patterns are all

related to very specific object name or event values. But
there are many system calls (kernel events) which
cannot be directly linked to user-level commands and
hence we reasoned that for intrusion detection purposes,
we only need to analyze user-level commands and their
operations. For this purpose, we kept only the read,
write, create, delete, execute, change ownership,
permission, rename and link event records.
 The event value of each audit record is replaced by
the appropriate type name, for example, open_r is
replaced by read event. We kept only the original
object name if the event is execute, otherwise we used
‘user’ to replace all object name values that indicate
files in the user directories and ‘system’ to replace the

J. Computer Sci., 8 (10): 1649-1659, 2012

1657

object name values that indicate files in the system
directory. We have also removed ‘?’ (missing) object
name values as well and finally we aggregated all event
patterns of all normal sessions into a normal pattern set.
 For each U2R session, we further mined its event
patterns and compared with the normal pattern set. On
encoding, we used the same_reid, event, obname and
rest in alphabetical order. On applying the pattern
encoding and comparison procedures, we received the
top 20% of intrusions-only patterns for each U2R
attack. But soon, we came to know that there are many
U2R attacks of buffer-overflow, having the same
characteristics of intrusion only patterns.
 On further investigating, we identified that there is
an execution of a user program with a system tool
SUID and a shell program. Hence there is a need to

build a feature that handles the normal behaviour of the
attack. But in the event data, we are having specific
operating system information, we have to use domain
knowledge (KDD process, Fayyad et al., 1996; Lee et
al., 1999) to acquire the general and abstract information.
Here all the limitations of fully automatic feature
construction has been analyzed in case of a low level
event data, but still the intrusion-only patterns from the
pattern mining and comparison gives more helpful
information for the manual feature construction. We
defined some set of features as shown in the following
table for the BSM session records.
 Table 8 shows some set of features for BSM
session records and some of the features (those in bold)
are from the buffer overflow patterns, while others are
similar to ‘content’ features as mentioned above.

(a)

(b)

Fig. 2: ROC curves showing Detection Rates and False Alarm Rates (a) U2R (b) DOS, R2L, PROBING and over all

J. Computer Sci., 8 (10): 1649-1659, 2012

1658

BSM misuse detection models: In the BSM session
records, each record is labeled as ‘normal’ or an
intrusion name. All the BSM session records are
aggregated in to a single dataset for this experiment.
The following table (Table 9) shows some example
records of BSM session.
 We then applied the RIPPER rules for BSM
session records to know the classification rules. We
tested the performance of the rule set on these test data
using the DARPA files. Here we compared our model
with other models in terms of performance in detecting
the U2R attack and the performance of our model in
detecting DOS, R2L and PROBING attacks and finally
the overall performance of the attacks. These ROC
curves of the detection models were shown the
following figure (Fig. 2).

Results of BSM data: The following figure shows the
performance of BSM Misuse Detection Models. Since
there are much fewer attacks contained in the BSM
data of a single host, the model has slightly better
performance. From the above figure it is very clear that
the BSM model has good performance in detecting
DOS, U2R and PROBING attack but very poor
performance in R2L attacks. When compared with the
predictions between the BSM and the tcpdump models,
we found that they simply agree with other’s
predictions on the pairs of host session and network
connections, because of the following reasons:

• The nature of intrusion detection, one that uses a

service that was not modeled can go undetected and
• BSM model feature and tcpdump model features

are very similar for the evidences with different
data sources

 Our experiments in meta-learning, where a
combined model was computed based on a model for
tcpdump header-only connection data and a model for
BSM host session data, indeed showed that the same
level of accuracy was maintained as using a
heavyweight tcpdump model that also checked the IP
data contents.

CONCLUSION

 In this study we presented detailed performance
evaluation experimentation results on network tcpdump
data and on operating system BSM audit data set. The
experiments on tcpdump data showed the effectiveness
of MADAM ID’s automatic pattern mining and
comparison and feature construction procedures. These
patterns were mechanically parsed to construct a set of
temporal and statistical ‘traffic’ features for the

detection models. There are no intrusion-only patterns
from connection records of R2L and U2R attacks since
they involve in a single connection. We have used
domain knowledge to define a set of ‘content’ features
for these attacks. Where as in the case of BSM data
experiments, we found that the intrusion-only patterns
of buffer overflow attacks contain specific program
names that are not inherent to the attack method. This
is because, compared with connection records which
are more general and their semantics well
understood, the BSM audit records are contains low
level details of system events. Hence we need to use
domain knowledge to interprete these patterns. And
the most general information is aggregated into
BSM session records.
 This shows the advantages of using MADAM ID
to process huge volume of audit data, construct features
and inductively lean more classification rules.
However, since our models were intended for misuse
detection and were trained using only the available data
sets, a number of new attacks in the test may not be
identified and these attacks need to be detected as well.

REFERENCES

Abraham, T., 2001. IDDM: Intrusion Detection using

Data Mining techniques. DTIC.
Atkins, D., 1996. Internet Security Professional

Reference. 1st Edn., New Riders Publishing,
Indianapolis, ISBN-10: 1562055577, pp: 908.

Bellovin, S.M., 1989. Security problems in the TCP/IP
protocol suite. Comput. Commun. Rev., 19: 32-48.
DOI: 10.1145/378444.378449

Dickerson, J.E. and J.A. Dickerson, 2000. Fuzzy
network profiling for intrusion detection.
Proceedings of the NAFIPS 19th International
Conference of the North American Fuzzy
Information Processing Society, (NAFIPS’ 00),
IEEE Xplore Press, Atlanta, Atlantan, pp: 301-
306. DOI: 10.1109/NAFIPS.2000.877441

Durst, R., T. Champion, B. Witten, E. Miller and L.
Spagnuolo, 1999. Testing and evaluating computer
intrusion detection systems. Commun. ACM, 42:
53-61. DOI: 10.1145/306549.306571

Fayyad, U.M., G. Piatetsky-Shapiro and P. Smyth,
1996. The KDD process for extracting useful
knowledge from volumes of data. Commun.
ACM., 39: 27-34. DOI: 10.1145/240455.240464

Ghosh, A.K., A. Schwartzband and M. Schatz, 1999.
Learning program behavior profiles for intrusion
detection. Proceedings of the 1st Workshop on
Intrusion Detection and Network Monitoring,
(WIDNM’ 99), USENIX Technical Program, pp: 51-62.

J. Computer Sci., 8 (10): 1649-1659, 2012

1659

Halme, L.R. and R.K. Bauer, 1995. Intrusion Detection
FAQ: AINT Misbehaving: A Taxonomy of Anti-
Intrusion Techniques. Arca Systems, Inc.

Ilgun, K.U., 1993. USTAT: a real-time intrusion
detection system for UNIX. Proceedings of the
IEEE Computer Society Symposium on Research
in Security and Privacy, May 24-26, IEEE Xplore
press, Oakland, CA, pp: 16-28. DOI:
10.1109/RISP.1993.287646

Lee, W., S.J. Stolfo and K.W. Mok, 1999. A data
mining framework for building intrusion detection
models. Proceedings of the IEEE Symposium on
Security and Privacy, (SSP’ 99), IEEE Xplore
Press, Oakland, pp: 120-132. DOI:
10.1109/SECPRI.1999.766909

Nazer, G.M. and A.A.L. Selvakumar, 2011. Current
intrusion detection techniques in information

technology-a detailed analysis. Eur. J. Sci. Res.,
65: 611-624.

Nazer, G.M. and A.L. Selvakumar, 2012a. A
systematic framework for analyzing audit data and
constructing network ID models. CIIT Int. J. Data
Mining Knowledge Manag., 4: 178-185.

Nazer, G.M. and A.L. Selvakumar, 2012b. Intelligent
data mining techniques for intrusion detection
models on network. Eur. J. Sci. Res., 71: 36-45.

Paxson, V., 1997. End-to-end Internet packet dynamics.
Proceedings of the ACM Conference on
Applications, Technologies, Architectures and
Protocols for Computer Communication,
(SIGCOMM’ 97), ACM, USA, pp: 139-152. DOI:
10.1145/263105.263155

Paxson, V., 1998. A system for detecting network
intruders in real-time. Proceedings of the 7th

USENIX Security Symposium, Jan. 26-29, San
Antonio, Texas, pp: 1-22.

Porras, P.A. and A. Valdes, 1998. Live traffic analysis
of TCP/IP gateways. Proceedings of the Internet
Society's Networks and Distributed Systems
Security Symposium, (ISNDSSS’ 98), pp: 2-13.

Stevens, W.R., 1994. TCP/IP Illustrated. Addison-
Wesley Publishing Company.

Sunsoft, S.D., 1995. Basic security Module Guide.
SunSoft.

