
Journal of Computer Science 8 (10): 1615-1626, 2012
ISSN 1549-3636
© 2012 Science Publications

Corresponding Author: Senthil Kumar, S.K., Department of Computer Science and Engineering, Jansons Institute of Technology,
Coimbatore, Tamil Nadu, India

1615

Dynamic Scheduling for Cloud Reliability using Transportation Problem

1Senthil Kumar, S.K. and 2P. Balasubramanie

1Department of Computer Science and Engineering,
Jansons Institute of Technology, Coimbatore, Tamil Nadu, India

2Department of Computer Science and
Engineering Kongu Engineering College, Erode, Tamil Nadu, India

Abstract: Problem statement: Cloud is purely a dynamic environment and the existing task
scheduling algorithms are mostly static and considered various parameters like time, cost, make span,
speed, scalability, throughput, resource utilization, scheduling success rate and so on. Available
scheduling algorithms are mostly heuristic in nature and more complex, time consuming and does not
consider reliability and availability of the cloud computing environment. Therefore there is a need to
implement a scheduling algorithm that can improve the availability and reliability in cloud
environment. Approach: We propose a new algorithm using modified linear programming problem
transportation based task scheduling and resource allocation for decentralized dynamic cloud
computing. The Main objective is to improve the reliability of cloud computing environment by
considering the resources available and it’s working status of each Cluster periodically and
maximizes the profit for the cloud providers by minimizing the total cost for scheduling,
allocation and execution cost and minimizing total turn-around, total waiting time and total
execution time. Our proposed algorithm also utilizes task historical values such as past success
rate, failure rate of task in each Cluster and previous execution time and total cost for various
Clusters for each task from Task Info Container (TFC) for tasks scheduling resource allocation for
near future. Results: Our approach TP Scheduling (Transpotation Problem based) responded for
various tasks assigned by clients in poisson arrival pattern and achieved the improved reliability
in dynamic decentralized cloud environment. Conclusion: With our proposed TP Scheduling
algorithn we improve the Reliability of the decentralized dynamic cloud computing.

Key words: Transportation problem, cloud reliability, profit maximization, dynamic decentralized

scheduling, Task Info Container (TFC)

INTRODUCTION

 Cloud computing refers to Internet based
development and utilization of computer technology
and hence, cloud computing can be described as a
model of Internet-based computing and a subscription-
based service where you can obtain networked storage
space and computer resources and so on. Cloud
Computing, dynamically scalable (and mostly
virtualized) resources are provided as a service over the
Internet. With the promotion of the world’s leading
companies, cloud computing is attracting more and
more attention for providing a flexible, on demand
computing infrastructure for a number of applications.
 The actual cloud computing definition (Badger et
al., 2011; An and Neuman, 2011) by the national
institute of standards and technology is: “Cloud
computing is a model for enabling convenient, on-mand

network access to a shared pool of configurable
computing resources (e.g., networks, servers, storage,
applications and services) that can be rapidly
provisioned and released with minimal management
effort or service provider interaction”. The goal of
cloud computing in general is to provide services to
users with greater flexibility and availability as is
often described as “taking everything as a service”
(XaaS) (An and Neuman, 2011).
 Demand (Goudarzi and Pedram, 2011) for
computing power has been increasing due to the
penetration of information technologies in our daily
interactions with the world both at personal and public
levels, encompassing business, commerce, education,
manufacturing and communication services. At
personal level, the wide scale presence of online
banking, e-commerce, SaaS (Software as a Service),
social networking and so on produce workloads of great

J. Computer Sci., 8 (10): 1615-1626, 2012

1616

diversity and enormous scale. At the same time
computing and information processing requirements of
various scientific researches (Hoffa et al., 2008), public
organizations and private corporations have also been
increasing rapidly. Examples include digital services
and functions required by the various industrial sectors,
ranging from manufacturing to housing, from
transportation to banking. Such a dramatic increase in
the computing demand requires a scalable and
dependable IT infrastructure comprising of servers,
storage, network bandwidth, physical infrastructure,
electrical grid (Deelman et al., 2003), IT personnel and
billions of dollars in capital expenditure and operational
cost (Yang et al., 2008) to name a few
 For consumers, it is illusion of infinite
computing resources available on demand (Armbrust
et al., 2008) and computing resources become
immediate rather than persistent (Dillon et al., 2010)
there are no up-front commitment and contract as
they can use them to scale up whenever they want
and release them once they finish scaling down.
Moreover, resources provisioning appears to be
infinite to them, the consumption can rapidly rise in
order to meet peak requirement at any time. In
practice, physical resources of clouds are limited and
a performance bottleneck will eventually develop.
 Scheduling (Senkul et al., 2002; Sakellariou and
Zhao, 2004) is fundamental to the achievement of high
performance in parallel and distributed systems.
Scheduling problems, which are concerned with
searching for optimal (or near-optimal) real-time
(Srikanth et al., 2012) and predictive schedules subject
to a number of constraints (Zhang et al., 2009, Yu and
Shi, 2008), are mostly NP-hard. In general, problem of
determining whether there is an assignment of tasks to
servers so that each task's demand may be satisfied by
the available resources is NP-complete (Heger, 2010)
(unlikely to be solvable in an amount of time that
reflects a polynomial function). Even if resources are
available to meet a certain demand, to correctly
mapping the set of demands with a set of resources may
be too complex to solve within an acceptable time-
frame. In cloud computing, delivering services and
resources on demand over a network requires
addressing numerous technological issues, including
automated provisioning, dynamic virtual server
migration, or network security problems. Further, in a
cloud environment, not all the resources (virtualized
server systems) may actually be available to all
customers, due to network latency, commercial
agreements, or some security policy issues.
 A cloud resource scheduler (Bautista et al, 2012,
Dillon et al., 2010) should make full use of all kinds of
resources on Internet such as computing, network
bandwidth and storage resource. However, most of jobs
that cloud computing needs to deal with are small

granularity jobs (Liu et al., 2011), which means to need
longer waiting-time, consume more resources and lead
to lower flexibility and other drawbacks. Under cloud
computing environment, in regard to multi-user and
large amounts of small granularity concurrent job
requirements, how to properly dispatch jobs to different
slave nodes to avoid underutilization and how to deal
with workload unbalance are the bottlenecks which
importantly influence system performance.
 The existing scheduling algorithms (Bala and
Chana, 2011) consider various parameters like time,
cost, make span, speed, scalability, throughput,
resource utilization, scheduling success rate and so on.
but, for a multiple workflows (Yang et al., 2008),
metrics like reliability and availability (Bamiah and
Brohi, 2011) should also be considered. Existing
scheduling algorithms does not consider reliability and
availability. Therefore there is a need to implement a
workflow scheduling algorithm that can improve the
availability and reliability in cloud environment.

Related work: There are plenty of research is going
for resource scheduling for improving various factors
in cloud computing. Normally all research is based
on the heuristic based algorithm where we requires
lot iterations to achieve the optimal cost and
minimizing the waiting time and turn-around time.
No scheduling algorithm considers the important
parameters such as reliability, Availability and
improving the scalability. And also complex algorithm
makes the cloud scheduler as more complex.
 Gu et al. (2012) proposed a genetic algorithm
based scheduling and considers the historical data
and current states of VM, uses tree structure to do
the coding in genetic algorithm, proposes the
correspondent strategies of selection, hybridization
and variation also puts some control on the method
so that it has better astringency.
 Chen and Zhang, 2009, Yang et al. (2008) proposed
an Ant colony based task scheduling architecture to
improve the scheduling behavior, better utilize (balance)
the available resources, lower aggregate task execution
time and hence, minimize cost.
 Heger (2010) proposed an ANN based task
scheduling architecture to improve the scheduling
behavior, better utilize (balance) the available
resources, lower aggregate task execution time and
hence, minimize cost.
 Henzinger et al. (2010) proposed a method known
as “flexible provisioning of resources in a cloud
environment, (Flex PRICE) where the cloud
(provider) and the users build a symbiotic relationship.
Instead of renting focuses on allocation of resources
across tasks using a set of specific resources, the user

J. Computer Sci., 8 (10): 1615-1626, 2012

1617

simply presents the job to be executed to the cloud.
The cloud has an associated pricing model to quote
prices of the user jobs executed.
 Tayal (2011) proposed a centralized scheduler
(master node) a choice by referring to a global view of
the whole system with fuzzy setting based on GA
parameters. Their idea was the adaptation of the GA
operator’s value (selection; crossover; mutation) during
the run of the GA. The fuzzy control is applied if the
condition of fuzzy adaptation is true. This Model
described the information related to processors which
includes slot information, data replication information
and workload information of processors.
 Senkul et al. (2002) presented a logical framework
for scheduling work-flow under resource allocation
constraints. The framework is based on Concurrent
Constraint Transaction Logic (CCTR) and integrates
Concurrent Trans-action Logic with Constraint Logic
Programming. They presented an algorithm that took
the initial work flows specification and a set of resource
allocation constraints and returns a new work-flow and
a resource assignment, such that every execution of that
workflow is guaranteed to satisfy the constraints.
 Clark et al. (2012) introduced an Intelligent Cloud
Resource Al-location Service (ICRAS). ICRAS supports
the consumer with (1) discovering all available resource
con-figurations, (2) choosing the desired configuration,
3) negotiating a service agreement with the CSP, (4)
monitoring the service agreement for violations and 5)
assisting in the migration of services between CSPs.
 Ramamritham et al. (1989) was among the first
to propose the use of distributed algorithms to
schedule tasks with time and resource restrictions.
They give different algorithms for this purpose and a
comparison of their performance. They claim that
their solution is effective even in hard real-time
environments. However, their approach requires each
node to have full knowledge of the rest of the
system, which naturally limits its scalability.
 Zhong and Zhang (2010) proposed an optimized
scheduling algorithm to achieve the optimization or
sub-optimization for cloud scheduling. In this algorithm
an Improved Genetic Algorithm (IGA) is used for the
automated scheduling policy. It is used to increase the
utilization rate of resources and speed.
 Selvarani and Sadhasivam (2010) proposed an
improved cost-based scheduling algorithm for making
efficient mapping of tasks to available resources in
cloud. This scheduling algorithm measures both
resource cost and computation performance, it also
Improves the computation/communication ratio.

 An and Neuman (2011) proposed a scheduling
algorithm which takes cost and time. The simulation
has demonstrated that this algorithm can achieve
lower cost than others while meeting the user
designated deadline.
 Liu et al. (2010) presented a novel compromised-
time-cost scheduling algorithm which considers the
characteristics of cloud computing to accommodate
instance-intensive cost-constrained workflows by
compromising execution time and cost with user input
enabled on the fly.
 Pandey et al. (2010) presented a Particle Swarm
Optimization (PSO) based heuristic to schedule
applications to cloud resources that takes into account
both computation cost and data transmission cost. It is
used for workflow application by varying its
computation and communication costs. The experimental
results show s that PSO can achieve cost savings and
good distribution of workload onto resources.
 Lin and Lu, (2011) proposed an SHEFT workflow
scheduling algorithm to schedule a workflow elastically
on a Cloud computing environment. The experimental
results show that SHEFT not only outperforms several
representative workflow scheduling algorithms in
optimizing workflow execution time, but also enables
resources to scale elastically at runtime.
 Wu et al. (2011) proposed a market-oriented
hierarchical scheduling strategy which consists of a
service-level scheduling and a task-level scheduling.
The service-level scheduling deals with the Task-to-
Service assignment and the task-level scheduling deals
with the optimization of the Task-to-VM assignment in
local cloud data centers.
 Xu et al. (2009) worked on multiple workflows and
multiple QoS. They had a strategy implemented for
multiple workflow management system with multiple
QoS. The scheduling access rate is increased by using
this strategy. This strategy minimizes the make span
and cost of workflows for cloud computing platform.
 Varalakshmi et al. (2011) proposed OWS
algorithm for scheduling workflows in a cloud
environment. The scheduling algorithm finds a solution
that meets all user preferred QoS constraints. With this
algorithm, a significant improvement in CPU utilization
is achieved. Parsa and Entezari-Maleki (2009) proposed
a new task scheduling algorithm RASA. It is composed
of two traditional scheduling algorithms; Max-min and
Min-in. RASA uses the advantages of Max-min and
Min-min algorithms and covers their disadvantages. The
experimental results show that RASA is outperforms the
existing scheduling algorithms in large scale distributed
systems (Xu et al., 2009).

J. Computer Sci., 8 (10): 1615-1626, 2012

1618

Inconveniences with existing methods: In practice,
cloud computing is highly dynamic and tasks are not
always executed in the same style. For this type of
problem, genetic algorithms have difficulty dealing with
"deceptive" fitness functions (Melanie, 1998), those
where the locations of improved points give misleading
information about where the global optimum is likely to
be found. ANN, ant colony (Yang et al., 2008) PSO
(Liu et al., 2010) and honey bee algorithms are heuristic
and need lot of considerable time to get trained and
react on the situation. As the cloud, dynamic style,
more new clients and new tasks introduces, same type
of task may not be very much frequent.

Linear Programming (LP or linear optimization):
Linear Programming (LP or linear optimization) is a
mathematical method for determining a way to achieve
the best outcome (such as maximum profit or lowest
cost) in a given mathematical model for some list of
requirements represented as linear relationships. Linear
programming is a specific case of mathematical
programming (mathematical optimization).
 More formally, linear programming (Liu et al.,
2010) is a technique for the optimization of a linear
objective function, subject to linear equality and/or
linear inequality constraints. It is feasible region is a
convex polyhedron, which is a set defined as the
intersection of finitely many half spaces, each of which is
defined by a linear inequality. Its objective function is a
real-valued affine function defined on this polyhedron.

The Transportation problem: There is a type of linear
programming problem (Reeb and Leavengood, 2002,
Liu et al., 2010) that may be solved using a simplified
version of the simplex technique called transportation
method. Because of its major application in solving
problems involving several product sources and several
destinations of products, this type of problem is
frequently called the transportation problem. It gets its
name from its application to problems involving
transporting products from several sources to several
destinations. The two common objectives of such
problems are either (1) minimize the cost of shipping m
units to n destinations or (2) maximize the profit of
shipping m units to n destinations. Let us assume there
are m sources supplying n destinations. Source
capacities, destinations requirements and costs of
material shipping from each source to each destination
are given constantly.

Proposed system:
Overview of proposed system: In our proposed
system, the clients can assign their tasks with priority

value between 1 and 5 where 1 has the highest priority
and charges more per unit of time and 5 has the lowest
priority with least charges per unit of time. Sometimes
the priority value can be automatically assigned to the
client’s task based on the Service Level Agreements
(SLA) (Buyya et al., 2011) with client. Our System
receives the tasks from clients with Flexible Quantum
of buffer time. This buffer time to receive can be
extended based on the inter-arrival time of tasks. After
receiving set of tasks, that is transferred to scheduler.
The scheduler gets all necessary information from other
phases like workload predictor and Historical
information from Task Info Container such as Expected
Execution Time (EET), Expected Worst-case execution
Time (EWT), Success Score within Expected Time
(SSEET), Success Score within Worst-case Time
(SSWT), Resources-Required (RR) and Cost for the
task execution for each Cluster. With that information
preprocessing is done to build the Transportation
Problem Table (Table 3). The Column Minima (which
gives the least cost for the execution in particular
Cluster of resource from set of Cluster) method is used
for efficient scheduling plan, which provide as much
tasks scheduling as possible with minimum total cost
for allocation. After the Scheduling, the Allocator
generates a queue (execution Sequence order) of
scheduled tasks based on EET and EWT time in
ascending order for available resources at an every
instance of time and allocates resources in the order.
Resources availability can be periodically predicted
with Resource predictor. Figure 1 shows the
decentralized dynamic cloud scheduler.
 With this system we can persevere and enhance
the Reliability by considering the available fault-free
resources for allocation of tasks and we also take the
historical values for scheduling. So the task
Execution failure because of resources is prevented.
So the reliability can be preserved. Also our system
considered the minimum cost and maximum profit to
the cloud providers.

Proposed System Architecture: Our proposed
system Architecture is shown in Fig. 2. It consists of
7 different phases to produce the scheduling and
allocation of tasks with reliability. The concept
behind the each phases of our system are

Task initiator: Our cloud environment is decentralized
scheduling and task allocation, dynamic in nature, the
clients can assign task to the cloud at any point of time.
The tasks are assigned to the cloud is in poisson arrival
pattern and tasks are independent with other tasks.
 The task initiator has the following functions.

J. Computer Sci., 8 (10): 1615-1626, 2012

1619

Fig. 1: Our decentralized dynamic cloud environment model

Fig. 2: The proposed system architecture

 This phase maintains the necessary condition for
the Linear Programming problem Transportation
problem where Σ Sources = Σ Destinations by
receiving the tasks from various clients’ task
assignment in which the sum of resources required
should be equal to readily available Cluster resources at
an instance of time.
 Task initiator contains the Flexible Quantum
Time Slice (FQTS) as tasks receiving buffer time. By
default it has a fixed slice of time to receive the
clients’ tasks say 5 sec. If more tasks are assigned by
clients and the inter-arrival time is too short say less
than or equal to 200 ms then the time slice extended
up to the inter-arrival time maintained to 200
millisecond. When FQTS completed and no tasks
arrived with less than equal to 200 millisecond then
tasks are transferred to TP scheduler.

Workload predictor: This phase provide the necessary
information to the Tasks arrived into decentralized
cloud environment for execution. Those information are
such as (i) Expected Execution Time (EET) which
gives the average case execution time for the task with
given input parameters, (ii) Expected Worst case
Execution Time (EWT) for the task with given input
parameters. This phase also predicts an important
attribute such as (iii) Resources-Required (RR) to
complete the task in an efficient manner.
 We have an assumption that the resources
available in the Cluster of the cloud have same
capacity and same capability but it has different
quantity of resources available at instance of time.
To minimize the prediction time, the Workload
Predictor calculates EET, EWT and Resources-
Required for only the tasks assigned for the first time
to our cloud environment, if the task is already
introduced, then those information such as EET, EWT
and RR can be retrieved from the Task Info Container
which was updated by the Log and Info Updater.

J. Computer Sci., 8 (10): 1615-1626, 2012

1620

Task info container: The Task Info Container is
storage with controller that keeps all the historical
information about already assigned task. The
Historical information is such as Task id, EET, EWT
and Resource-Required those can be predicted at the
first time by work load predictor and can be utilized
for the near future execution. And other Historical
data such as Success Percentage of a Task within
EET called SSET, Success Percentage of a task
within EWT called SWET and execution cost for
task in each Cluster represented by Costij where i
stand for Cluster and j represents the Task.
 When the task is assign to the cloud, Task Info
Container provides all the historical information to
the TP scheduler for scheduling. For the new task
these information’s are newly generated and stored
into the Task Info Container.

Log and info update: This phase keeps-on updating all
activities within cloud environment into the log as well
as updating of task information in the appropriate
storage. The functions of this phase are:

• Provide the status of all Clusters and its resources

by periodically collected from Cluster
• Update the success and failure percentage of each

task executed with EET and EWT represented as
SSET, SSWT

• Update the Cost information of a task in each
execution for appropriate Cluster

• This Phase helps the Resource availability
predictor by providing periodic status

• Update unallocated task details and reasons for that
such as resource unavailability, resource failure
during the execution, Task failure during the
execution time and when the Task exceeds the EWT

• Provide all the above information to the TP
scheduler on demand

TP task scheduler: The objectives of TP task
scheduler are:

• Efficiently allocate more tasks within available

Resources at an instance of time
• To maximize the reliability of the cloud environment

and to maximize the profit for cloud provider
• To minimize the execution cost within Clusters and

load of the resources of the Cluster
• To maximizing the success percentage of task

either in EET or in EWT
• The TP scheduler has control over the Task

Scheduling based on the following constrains
• Selection of Tasks which are all satisfying the

necessary conditions on the TP at instance of the time
• Priority queue maintained for the Tasks by priority

value given either by client for the Task or as in the
Service Level Agreement (SLA) with the client.

• Scheduling the highest Success Percentage of the
task either within EET or cumulative success
percentage of EET and EWT (Percentage of
successful Task completion updated by Log and
Info Updater)

• The lowest cost for task-Cluster combination
(predicted from historical values)

 With the above constrains, this phase formulate
LPP based TP table and generate schedule plan with the
lowest execution cost and make allocation queue based
on smallest to highest value of EET.

Task allocator: This phase receives the schedule plan
for the tasks from the TP task scheduler. The allocator
makes the queue or allocation order of tasks for each
Cluster with appropriate Tasks by ascending order
based on EET. The task allocator allocates all tasks or
some possible task to the Cluster resources as per the
scheduler plan generated by the scheduler. Sometimes
the task allocator may not allocate the entire task to the
Cluster because of the unavailability of resources.
These tasks are kept in separate queue and allocate
when resources are released from the task already
allocated. One additional queue is maintained where all
new tasks which do not have the necessary information
such as SSET, SSWT cost for all clusters, will be
allocated to the freely available resources in any
clusters with near future.

Resource predictor: This phase periodically collects the
status of each resources of the Cluster and keeps them
update for helping the task allocator. Thus the task
allocator can allocate the tasks as available in the queue.
Also this phase monitors and collects the working status
of the resources available in the Cluster, which can be
used to avoid the resource failure before it occurs.

Mathematical formulation: The mathematical
formulation of cloud resource scheduling and allocation
using the modified Transportation problem consist of
present and historical values. The cloud reliable
scheduling and allocation using Transportation problem
CRSATP can be defined as:

TP_Schedular = {T, C, S, D, TP, CO, EET, EWT,
SSEET, SSWT, CH}

Where:

T = Set of TASKS from various Requesters defined as

Tj with j = 1, 2 ,…, n
C = Set of Clusters of the cloud with various number

of equal capability resources, defined as Ci with i
= 1, 2 ,…, m

J. Computer Sci., 8 (10): 1615-1626, 2012

1621

Table1: Initial problem formulation table

 T1 T2 T3 T4
 --------------------------- ---------------------------- ------------------------------ -------------------------
 TP I (Task Priority) TP 2 (Task Priority) TP 3 (Task Priority) TP 4 (Task Priority)
 EET1 EWT1 EET1 EWT1 EET1 EWT1 EET1 EWT1 Source

C1 COST 1, 1 SSWT (1,1) COST 1,2 SSWT (1,2) COST 1,3 SSWT (1,3) COST 1,4 SSWT (1,4) Available
 SSEET Allocation SSEET Allocation SSEET Allocation SSEET Allocation resources at
 (1,1) (1,2) (1,3) (1,4) instance of time S1
C2 COST 2, 1 SSWT (2,1) COST 2,2 SSWT (2,2) COST 2,3 SSWT (2,3) COST 2,4 SSWT (2,4) Available
 SSEET Allocation SSEET Allocation SSEET Allocation SSEET Allocation resources at
 (2,1) (2,2) (2,3) (2,4) instance of time S2
C3 COST 3,1 SSWT (3,1) COST 3,2 SSWT (3,2) COST 3,3 SSWT (3,3) COST 3,4 SSWT (3,4) Available
 SSEET Allocation SSEET Allocation SSEET Allocation SSEET Allocation resources at
 (3,1) (3,2) (3,3) (3,4) instance of time 3
C4 COST 4,1 SSWT (4,1) COST 4,2 SSWT (4,2) COST 4,3 SSWT (4,3) COST 1,1 SSWT (4,4) Available
 SSEET Allocation SSEET Allocation SSEET Allocation SSEET Alloc resources at
 (4,1) (4,2) (4,3) (4,4) ation instance of time S4
Desti Resources required Resources required Resources required Resources required
nation for Task 1 for Task 2 for Task 3 for Task 4
CHA Charges / Unit of Time Charges / Unit of Time Charges / Unit of Time Charges / Unit of Time
RGES As per Priority or SLA As per Priority or SLA As per Priority or SLA As per Priority or SLA

Table 2: Cost score calculation table

 SS Value TP = 1 TP = 2 TP = 3 TP = 4 TP = 5

SSEET > 90 0 0.442 0.884 1.326 1.768 2.21
SSET + SSWT > 90 1 1.442 2.884 4.326 5.768 7.21
SSET + SSWT BETWEEN 80 - 90 2 2.442 4.884 7.326 9.768 12.21
SSET + SSWT BETWEEN 70 - 80 3 3.442 6.884 10.326 13.768 17.21
SSET + SSWT BETWEEN 60 - 70 4 4.442 8.884 13.326 17.768 22.21
SSET + SSWT BETWEEN 50 - 60 5 5.442 10.884 16.326 21.768 27.21
SSET + SSWT BELOW 50 10 10.442 20.884 31.326 41.768 52.21
NEW EXECUTION (SAME AS ABOVE) 10 10.442 20.884 31.326 41.768 52.21

Table 3: Actual transportation problem table

 T1 T2 T3 T4
 --------------------------- ------------------------ ------------------------- -----------------------
 EET1 EWT1 EET2 EWT2 EET3 EWT3 EET4 EWT4 Source

C1 Cost score Cost score Cost score Cost score Available
 (1,1) (1,2) (1,3) (1,4) no. of resources
 Allocation Allocation Allocation Allocation at instance of time S1
 or zero or zero or zero or zero
C2 Cost score Cost score Cost score Cost score Available no.
 (2,1) (2,2) (2,3) (2,4) of resources at
 Allocation Allocation Allocation Allocation instance of time
 or zero or zero or zero or zero S2
C3 Cost score (3,1) Cost score (3,2) Cost score (3,3) Cost score (3,4) Available no. of
 resources at instance
 Allocation or zero Allocation or zero Allocation or zero Allocation or zero of time S3
C4 Cost score Cost score Cost score Cost score Available no. of
 (4,1) (4,2) (4,3) (4,4) resources at instance
 Allocation or zero Allocation or zero Allocation or zero Allocation or zero of time S4
Destination Resources Resources Resources Resources Resources
 Required for Task 1 Required for Task 2 Required for Task 3 Required for Task 4 Required for Task 1
Charges Charges / / Unit of Time Charges / Unit of time Charges / Unit of Time Charges / Unit of Time Charges / Unit of Time
 As per Priority or SLA As per Priority or SLA Unit of Time As per As per Priority or SLA As per Priority or SLA

J. Computer Sci., 8 (10): 1615-1626, 2012

1622

S = Set of sources ie. Resources of equal
capability available for each Cluster, defined
as Si with i= 1,2,..m (Si is available
resources at an instance of time for Cluster
Ci)

D = Set of destinations ie. Number of Resources
of equal capability required to complete the
Task, defined as Dj with j= 1, 2,n

TP = Set of TASK Priority of a TASK specified
by either Requester or as per SLA with
Requester, defined as TPj with j = 1,2,…n

CO = Set Of Processing COST for TASK
processing each Cluster, defined as COij,

where COij is the cost at clusteri for TASKj
for one resource used in unit of time

EET = Set of Expected Execution Time by
workload Predictor for a TASK (Average
case Time for N input) irrespective to the
CLUSTER, defined as EETj, where
Expected Execution Time for TASKj.

Eewt = Set of expected execution worst case time by
workload predictor for N input to a TASK
irrespective to the cluster, defined as eewtj,
where Expected Execution Time for TASKj.

SSEET = Set of success score for EET (Percentage of
Success in EET time at Clusteri for TASKj)
by Historical Value to a TASK respective to
the cluster, defined as SSEETij, where
success score EETIJ at Clusteri for TASKj.

SSWT = Set of success score for EWT(Percentage of
Success within EWT Time for TASKi at
Clusterj) by Historical Value to a TASK
respective to the CLUSTER, defined as
SSWTij, where SSWTij at Clusteri for
TASKj.

CH = Set of Charges for processing the TASK in
any cluster for any number of resources for
a Unit of Time, Defined as CHj

Objective function: The main objective to this
scheduling and allocation function is to minimize the
total cost Min i m , j n

i 1 j 1 Xij Cij− −
= =∑ ∑ , failure percentage of

execution of a Task Min i m , j m
i 1 j 1 Xij Fij− −
= =∑ ∑ and to

maximize the profit and success percentage
Max i m , j n

i 1 j 1 Pij− −
= =∑ ∑ . The initial table formulation is as

given in Table 1. This table contains the tasks, Clusters
sources, destinations and predicted execution time,
success score calculated from the previous history vales
and charges to each tasks completion. To formulate the
following formula is used to find the single cost score
to fit into the actual TP table, shown in Table 3:

Cost score = ((COij / 1000) + SS Valueij) * TPj

 The equivalent SS value for the SSET and SSWT
is shown in Table 2, for example if the COij = 442 then
cost score is available in the Table 2

Algorithm for our proposed TP scheduling:

Step 1: Formulate the initial transportation table with

available and received attributes and tasks as
 Table 1
Step 2: Find the cost score ij, cost score = (((COij/1000)

+ SS Value ij) * TPj SS value = 0 if SSET>90, 1
if SSET+SSWT>90, 2 IF SSET+SSWT
Between 80-90, 3 for 70-60, 4 for 60-50, 5 for
50-60 and FOR<50 and new execution 10. refer
Table 2.

Step 3: Formulate the actual transportation problem
with above data as Table 3.

Step 4: Repeat step 5-7 for all tasks available.
Step 5: Find the minimum EET/EEWT mark the

column
Step 6: Find the minimum cost score for the column

marked and allocate the resources as required
by the task

Step 7: Make the EET marked and cost score ij into
infinitive value.

Step 8: Find the order of execution by finding
maximum charges/unit of time as the first task
and so on.

Step 9: Allocate all resources and update the tasks
history after execution is over

Step10: If required resources are more than resources of
all Cluster then eliminate the tasks which has
more resources required.

MATERIALS AND METHODS

The genetic algorithm based scheduling the Tasks and
resource allocation is implemented. The fitness function
was selected to find the total cost for task allocation in
Cluster and population is taken as 100 tasks and
mutation by changing the allocation vector one task on
Cluster with random value. The crossover function was
implemented by generating new combination of tasks to
Cluster allocation vector. The genetic Algorithm is
executed with 100 tasks, mutation rate by 1% and
Crossover rate by 96.5%.
 The Genetic Algorithm generates the maximum
of 400 iterations to produce the near optimum value
comparing with our algorithm which generates best
optimum cost with minimum number of resources.
Two different experiments are conducted. One with
one set of 100 tasks another with 10 different set of
each 100 tasks to prove that our system can
efficiently allocate the dynamic tasks.

J. Computer Sci., 8 (10): 1615-1626, 2012

1623

Fig. 3: Comparison between Genetic Algorithms with our Proposed TP scheduling algorithm

Fig. 4: Experimenting with10 different sets of 100 Tasks between genetic and our proposed

Fig. 5 Comparison of global optimization system with our proposed TP scheduling system

J. Computer Sci., 8 (10): 1615-1626, 2012

1624

Naturally the genetic algorithm could not produce
the optimum results for both experiments and also it
takes more execution time to produce the results. All
the results are imported in mat lab as xpls file and
graphs 1 and 2 are generated (Fig. 3 and 4).
 Next we compare our proposed TP scheduling
system with Global Optimization System Implemented
with total Permutation and Combination method in
JAVA, This System can take only of 10 tasks for 4
Clusters and produced the best optimum cost after
execution of 10,48,576 different iterations to complete.
The graph 3 (Fig. 5.) shows the comparison of TP
scheduling with Global Optimization for 10 tasks.

RESULTS

From the graph 1(Fig. 3) we understand that the blue
horizontal line (TP Scheduling System) is producing
the optimal allocation cost in first iteration itself for the
given 100 tasks, but the black line (genetic Scheduling
and allocation system) takes 400 itterations it
converged to find the near optimal result. It also takes
long time to complete the task scheduling. With the
graph 2 (Fig. 4) we understand that the black line (TP
Scheduling) produces the optimal allocation cost for all
10 sets of each 100 tasks, whereas the red line (Genetic
Scheduling) produces near optimal value for all sets
with long execution time.
 From the graph 3 (Fig. 5) we understand that the
TP scheduling produces (red horizontal line) shows that
TP scheduling optimal cost in first iteration whereas
Global optimization system (red dotted line) produces
the optimal cost at 20,000 th iteration (in this data set)
and goes upto 10,48,576 total iterations to complete.
 From this we can understand TP Scheduler
produces better scheduling and resource allocation and
minimizes the Cost and maximizes the profit. And the
objective of reliability also preserved and enhanced.

DISCUSSION

Our proposed system is implemented as simulation
environment using the Core JAVA with System
Configuration of Core 2 Duo with T6600 and 2.20 GHz
processor and with 2 GB RAM, in which we have 5
clients and 4 Clusters. Each will have random number
of resources and 100 tasks are generated with random
inter-arrival time. Out of 100 tasks some of the tasks
were generated with random priority, EET, EWT,
SSET, SSWT, Cost for 4 Clusters. Some of them are
generated as new tasks so that the system will
generate the Cost and Success scores. With that the
TP scheduler is called for scheduling and allocation

of tasks. The system generates the allocation and
maintains and updates the historical information in
Task Info Container. It produces the reliable and best
optimum cost in first iteration itself.
 With the same simulated environment, our system
is compared with two other systems also developed
with Core JAVA. (1) Genetic Scheduling Algorithm
with same 4 tasks, 100 tasks and with necessary
information. (2) Global Optimization by total
permutation and combination method for 10 tasks, 4
Cluster and with necessary information.

CONCLUSION

 Thus our proposed TP scheduling algorithm for
task scheduling and resource allocation in decentralized
and dynamic cloud computing environment, efficiently
schedule and allocate the tasks. The main objective of
this algorithm, to enhance the reliability and
maximization the profit by minimizing the allocation
and execution cost and minimizing the complexity of
cloud controller is achieved.
 The reliability is achieved by the following ways.
First it considered the actual availability of the
resources which are all physically and logically good
condition and based on that it schedules the tasks.
Second preferences given to the task which are all have
most successful by historical values and up-to-date cost
values is considered for finding the minimal cost. Third
it maximizes allocation of all assigned tasks as earlier
as possible. So it serves almost all assigned tasks. This
system has Task initiator which removes the bottleneck
problem by control the task incoming flow.
 Now we have proposed the method for independent
tasks with equal capability resources of Clusters and
assuming no advanced reservation in Task Assinment.
In Future the we are planning to improve the reliability
and availability for Task Scheduling and resource
allocation for some complex constraints which are not
considered now such as resource specialization, critical
resources, tasks dependent to predecessor task, time
bounded prescheduled tasks and advanced reservation.

REFERENCES

An, L. and C. Neuman, 2011. A Survey on Cloud

Computing System Implementation. University of
Southern California, Los Angeles, California, U.S.

Armbrust, M., A. Fox, R. Griffith, D. Anthony and
Joseph et al., 2008. Above the Clouds: A Berkeley
View of Cloud Computing. University of
California, Berkeley.

Badger, L., T. Grance, R. Patt-Corner and J. Voas,
2011. Draft cloud computing synopsis and
recommendations, U.S. Department of Commerce.

J. Computer Sci., 8 (10): 1615-1626, 2012

1625

Bala, A. and I. Chana, 2011. A survey of various
workflow scheduling algorithms in cloud
environment. Proceedings of the 2nd National
Conference on Information and Communication
Technology, (ICT’ 11), IJCA, India, pp: 26-30.

Bamiah, M.A. and S.N. Brohi, 2011. Seven deadly
threats and vulnerabilities in cloud computing.
Inter. J. Adv. Eng. Sci. Technol., 9: 087-090.

Bautista, L., A. Abran and A. April, 2012. Design of a
performance measurement framework for cloud
computing. J. Software Eng. Appli., 5: 69-75. DOI:
10.4236/jsea.2012.52011

Buyya, R., S.K. Garg and R.N. Calheiros, 2011. SLA-
Oriented Resource Provisioning for Cloud
Computing: Challenges, Architecture and
Solutions. Proceedings of the International
Conference on Cloud and Service Computing,
IEEE, Australia, pp: 1-10.

Chen, W. and J. Zhang, 2009. An ant colony
optimization approach to a grid workflow
scheduling problem with various QoS
requirements. IEEE Transactions on Systems, Man
and Cybernetics-Part C. Appli. Rev., 39: 29-43.

DOI: 10.1109/TSMCC.2008.2001722
Clark, K., M. Warnier and F.M.T. Brazier, 2012. An

intelligent cloud resource allocation service agent-
based automated cloud resource allocation using
micro-agreements. Delft University of Technology.

Deelman, E., J. Blythe, Y. Gil, C. Kesselman and G.
Mehta et al., 2003. Mapping abstract complex
workflows onto grid environments. J. Grid
Comput., 1: 25-39. DOI:
10.1023/A:1024000426962

Dillon, T., C. Wu and E. Chang, 2010. Cloud
Computing: Issues and Challenges. Proceedings of
the 24th IEEE International Conference on
Advanced Information Networking and
Applications, Apr. 20-23, IEEE Xplore
Press, Perth, WA, pp: 20-23. DOI:
10.1109/AINA.2010.187

Goudarzi, H. and M. Pedram, 2011. Maximizing profit
in cloud computing system via resource allocation.
Proceedings of the 31st International Conference
on Distributed Computing Systems Workshops,
Jun. 20-24, IEEE Xplore Press, USA., pp: 1-6.

DOI: 10.1109/ICDCSW.2011.52
Gu, J., J. Hu, T. Zhao and G. Sun, 2012. A new

resource scheduling strategy based on genetic
algorithm in cloud computing environment. J.
Comput., 7: 42-52. DOI: 10.4304/jcp.7.1.42-52

Heger, D.A., 2010. Optimized resource allocation and
task scheduling challenges in cloud computing
environments.

Henzinger, T.A., A.V. Singh, V. Singh, T. Wies and D.
Zufferey, 2010. FlexPRICE: Flexible provisioning
of resources in a Cloud Environment. Proceedings
of the 3rd International Conference Cloud
Computing, Jul. 5-10, IEEE Xplore Press, USA.,
pp: 83-90. DOI: 10.1109/CLOUD.2010.71

Hoffa, C., G. Mehta, T. Freeman, E. Deelman and K.
Keahey et al., 2008. On the use of cloud computing
for scientific workflows. Proceedings of the IEEE
4th International Conference on eScience, Dec. 7-
12, IEEE Xplore Press, Indianapolis, pp: 640-645.
DOI: 10.1109/eScience.2008.167

Lin, C. and S. Lu, 2011. Scheduling scientific
workflows elastically for cloud computing.
Proceedings of the IEEE 4th International
Conference on Cloud Computing, Jul. 4-9, IEEE
Xplore Press, Washington, DC, pp: 746-747. DOI:
10.1109/CLOUD.2011.110

Liu, K., Y. Yang, J. Chen, X. Liu, D. Yuan and H. Jin,
2010. A compromised-time-cost scheduling
algorithm in swindew-c for instance-intensive cost-
constrained workflows on a cloud computing
platform. Inter. J. High Perfor. Comput. Appli., 24:
445-456. DOI: 10.1177/1094342010369114

Liu, X.P., Y. Mei, S. Sivathanu, Y. Koh and C. Pu,
2011. Who is Your neighbor: Net I/O performance
interference in virtualized clouds. IEEE Tran. Serv.
Comput., DOI: 10.1109/TSC.2012.2

Melanie, M., 1998. An Introduction to Genetic
Algorithms. 1st Edn., MIT Press, Cambridge,
ISBN-10: 0262133164, pp: 221.

Pandey, S. L. Wu, S.M. Guru and R. Buyya, 2010. A
particle swarm optimization-based heuristic for
scheduling workflow applications in cloud
computing environments. Proceedings of the 24th
IEEE International Conference on Advanced
Information Networking and Applications, Apr.
20-23, IEEE Xplore Press, Perth, WA., pp: 400-
407. DOI: 10.1109/AINA.2010.31

Parsa, S. and R. Entezari-Maleki, 2009. RASA: A new
task scheduling algorithm in grid environment.
World Applied Sci. J. Spec. Comput. IT., 7: 152-160.

Ramamritham, K., J. Stankovic and W. Zhao, 1989.
Distributed scheduling of tasks with deadlines and
resource requirements. IEEE Transactions
Comput., 38: 1110-1123. DOI: 10.1109/12.30866

Reeb, J. and S. Leavengood, 2002. Transportation
problem: A special case for linear programming
problemsr. Operations Res.

Sakellariou, R. and H. Zhao, 2004. A hybrid heuristic
for DAG scheduling on heterogeneous systems.
Proceedings of the 18th International Parallel and
Distributed Processing Symposium, 2004.
Proceedings, Apr. 26-30, IEEE Xplore Press, DOI:
10.1109/IPDPS.2004.1303065

J. Computer Sci., 8 (10): 1615-1626, 2012

1626

Selvarani, M.S. and D.G.S. Sadhasivam, 2010.
Improved cost-based algorithm for task scheduling
in cloud computing. Proceedings of the IEEE
International Conference Computational
Intelligence and Computing Research, Dec. 28-29,
IEEE Xplore Press, Coimbatore, pp: 1-5. DOI:
10.1109/ICCIC.2010.5705847

Senkul, P., M. Kifer, I.H. Toroslu, 2002. A logical
framework for scheduling workflows under
resource allocation constraints. Proceedings of the
28th International Conference on Very Large Data
Bases, (VLDB’ 02) ACM, Inc., pp: 694-705.

Srikanth, G.U., A.P. Shanthi, V.U. Maheswari and A.
Siromoney, 2012. A survey on real time task
scheduling. Eur. J. Sci. Res., 69: 33-41.

Tayal, S., 2011. Tasks scheduling optimization for the
cloud computing system. Inter. J. Adv. Eng. Sci.
Technol. 5: 111-115.

Varalakshmi, P., A. Ramaswamy, A. Balasubramanian
and P. Vijaykumar, 2011. An optimal workflow
based scheduling and resource allocation in cloud.
Depar. Inform. Technol. Anna Univ. Chen. Ind.,
190: 411-420. DOI: 10.1007/978-3-642-22709-7-41

Wu, Z., X. Liu, Z. Ni1, D. Yuan and Y. Yang, 2011. A
market-oriented hierarchical scheduling strategy in
cloud workflow systems. J. Supercomputing, DOI:
10.1007/s11227-011-0578-4

Xu, M. L. Cui, H. Wang and Y. Bi, 2009. A multiple
qos constrained scheduling strategy of multiple
workflows for cloud computing. Proceedings of the
IEEE International Symposium on Parallel and
Distributed Processing with Applications, Aug. 10-
12, IEEE Xplore Press, Chengdu, pp: 629-634.

DOI: 10.1109/ISPA.2009.95

Yang, Y., K. Liu, J. Chen, X. Liu, D. Yuan and H. Jin,
2008. An algorithm in swindew-c for scheduling
transaction-intensive cost-constrained cloud
workflows. Proceedings of the 4th IEEE
International Conference on e-Science, Dec. 7-12,
IEEE Xplore Press, Indianapolis, pp: 374-375.

DOI: 10.1109/eScience.2008.93
Yu, Z. and W. Shi, 2008. A planner-guided scheduling

strategy for multiple workflow applications.
Proceedings of the International Conference on
Parallel Processing-Workshops, Sept. 8-12, IEEE
Xplore Press, Portland, pp: 1-8. DOI:
10.1109/ICPP-W.2008.10

Zhang, Y., A. Mandal, C. Koelbel and K. Cooper, 2009.
Combined fault tolerance and scheduling
techniques for workflow applications on
computational grids. Proceedings of the 9th
IEEE/ACM International Symposium on
Clustering and Grids. May 18-21, IEEE Xplore
Press, Shanghai, pp: 244-251. DOI:
10.1109/CCGRID.2009.59

Zhong, H., K. and X. Zhang, 2010. An approach to
optimized resource scheduling algorithm for open-
source cloud systems. Proceedings of the 5th
Annual China Grid Conference, Jul. 16-18, IEEE
Xplore Press, Guangzhou, PP: 124-129.
10.1109/ChinaGrid.2010.37

